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Abstract
The common view on modeling and simulation of dynamic
systems is to focus on the specification of the state of the
system and its transition function. Although some interest-
ing challenges remain to efficiently and elegantly support this
view, we consider in this paper that this problem is solved.
Instead, we propose here to focus on a new point of view on
dynamic system specifications: the activity exhibited by their
discrete event simulation. We believe that such a viewpoint
introduces a new way for analyzing, modeling and simulat-
ing systems. We first start with the definition of the key notion
of activity for the specification of a specific class of dynamic
system, namely discrete event systems. Then, we refine this
notion to characterize activity regions in time, in space, in
states and in hierarchical component-based models. Exam-
ples are given to illustrate and stress the importance of this
notion.

1. INTRODUCTION
Complicated structures of simulation models consist of

a large number of components with many intense interac-
tions. It is not easy to extract abstractions of the dynamics
of the whole system, during, before or after its simulation.
The analysis of the many outputs and interactions is long and
meticulous. As far as we know, no established methods ex-
ist for finding patterns of interactions in system structures,
during a simulation. Some methods exist for particular do-
mains (multi-agent systems, distributed and parallel simula-
tions, image analysis, etc.), but except the work proposed by
[10], no generic methods have been developed for this pur-
pose.

In the simulation context, activity is usually used as a phase
of the system under study (e.g., activities of a customer in a
shop are: waiting, payCashier, etc.) [9]. We do not consider
this definition of activity here. Instead, activity is considered
as a measure of the number of events occurring during a sim-
ulation. We believe that this new definition of activity can be
used as a central guiding concept to construct generic struc-

tures for the analysis and specification of systems. The spec-
ification structures, driven by a measure of activity of the
simulation, can be used to faithfully chart the dynamics of
sub-components in time, space, and states. Inactive and ac-
tive regions may also be specified. Using activity, states and
components corresponding to systems can thus be dynam-
ically, structurally and behaviorally specified. For example,
one can imagine functional magnetic resonance image analy-
sis of a brain. The detetection of neural spikes are used for an
activity-based structural determination of behavioral brain re-
gions. These structures and behabiors are highly dynamical,
according to the activity exhibited.

In this paper, the usual notions of time, space, states and
components are reconsidered from an activity-based point of
view for the discrete event specification of systems [11]. Our
goal is to provide a new definition of activity. Benefits from
using this new definition are expected to be twofold: (i) Op-
timizing system specifications and related simulator architec-
tures, and (ii) Providing guidance to designers for modeling
and simulating systems .

This article introduces mathematical notations for dynamic
systems and how activity can be used for the analysis and
the specification of these systems, using discrete events (Sec-
tion 2). The new notion of activity regions is then presented
(Section 3) and applied to components (Section 4) before a
description of related works and a conclusion.

2. ACTIVITY TRACKING IN DISCRETE
EVENT SYSTEM SPECIFICATIONS

Dynamic systems can be described by mathematical struc-
tures. A discrete event specification of systems can then be
achieved. Activity is restrained here to discrete event system
specifications and related to event frequency.

2.1. Dynamic system specification
A dynamic system (or DS in short) corresponds to a phe-

nomenon that evolves over time, within some context. The
phenomenon is part of a system characterized by observ-
ables. The observables are called the variables of the system
(and are linked by some relations). The value of the variables
evolves over time. The collection of the values of the vari-
ables that describe the system constitutes its state. The state
of a system is an observation at a given instant. The temporal
sequence of state changes is called the state trajectory of the
system.



Let Q be the state space of a DS. We denote q ∈ Q its cur-
rent state. The transition to the next state is given by the tran-
sition function δ : Q→ Q. Let q be the value of the current
state (at the event time t), the value of q after the transition
is q′ = δ(q) [at the event time t + ∆, for t ∈ T , where T is
the time base (discrete or continuous)]. In previous notation,
time is implicit, to make time explicit, such a transition can
be written as q(t ′) = δ(q(t)), where t ′ = t +∆.

2.2. Activity of event sets
In a discrete event simulation, the dynamics of a system is

represented by a chronological sequence of events. An event
affects the system at a given time and possibly carries addi-
tional information, such as a value, an operation to perform,
etc. Consequently, we denote an event evi by a couple (ti,vi),
where ti is the timestamp of the event, and vi is the infor-
mation associated to the event. The event set is defined as
ξ = {evi = (ti,vi) | i = 1,2,3, ...}.

Let’s consider first the basic usual and transversal defini-
tions of the notions of activity, event, and process. An activ-
ity “is what transforms the state of a system over time” [3].
It begins with an event and ends with another. An event is
also considered to cause a change in the state of a compo-
nent. A process “is a sequence of activities or events ordered
in time” [3].

We do not consider here activity as a phase of a system.
We define activity as a measure of the number of events in an
event set. Formally, we define the event-based activity mea-
sure νH(t) as a function of time that provides the activity in
a discrete event simulation, from t over a given time horizon
H:

νH(t) =
|{evi = (ti,vi) ∈ ξ | t ≤ ti < t +H}|

H

Activity is a measure of the event rate, or event frequency,
in an event set. The qualitative differences of influence of
events on the state of the dynamic system is voluntarily ne-
glected here. Only the quantity of events over a period of time
is taken into account. For example, assuming the event tra-
jectory depicted in Figure 1, the activity of the system cor-
responds to the following values for different time horizons:
ν10(t) = 0.3, ν20(t) = 0.15, ν30(t)' 0.133, ν40(t) = 0.175.

t

Event value

t+10 t+20 t+30 t+40

Figure 1. An example of event trajectory.

For the sake of simplicity, we will denote the activity mea-
sure ν(t) (making implicit the dependency on the time hori-
zon H).

2.3. Activity state in discrete event system
specifications

We start here with the specification of a basic activity-
based DS, through discrete-events. This system is merely a
model of a DS embedding an activity state based on the ac-
tivity measure introduced in section 2.2.. Remember that this
measure merely constitutes a counter of events, without the
information of events (as presented in [1], for example).

Activity states, QA ⊆ Q, can be attributed todiscrete event
system specifications to encode the activity level of simula-
tion levels, according to their reception/scheduling (or not)
of discrete events. In their simplest form, activity states are:
QA = {active, inactive}.

A mean-time activity (TA) function can be defined as:
ρTA:R→ QA.

More precisely we have:{
qA(t) = ρTA(ν(t)) = inactive if ν(t)=0
qA(t) = ρTA(ν(t)) = active otherwise

2.4. Activity for discrete event system specifi-
cations in Cartesian coordinates

The Cartesian coordinate space is defined as a set of ref-
erences: P = {(x1, . . . ,xn) | xi ∈ R, i ∈ N}. A spatial state is
thus defined as q(p) ∈ Q×P . Spatially referenced states can
be considered as a refinement of the set of states Q. Inter-
actions can be noted as: q(pi) = δ(q(p j∈Ni)), where Ni cor-
responds to the set of neighborhood positions of i (possibly
including the self-position i): Ni ⊂ N. A state in space and
time is defined as q(p, t) ∈Q×P ×T . Notice that, consider-
ing a single self-neighborhood: Ni = {i}, leads to the follow-
ing simplification: q(pi, t ′) = δ(q(pi, t)) and q(t ′) = δ(q(t)).
That is, our spatiotemporal notation is consistent with the
temporal one.

A mean-space activity (SA) function can be defined as:
ρSA:R→ QA.

More precisely we have:{
qA(p, t) = ρSA(νp(t)) = inactive if νp(t)=0
qA(p, t) = ρSA(νp(t)) = active otherwise

Figure 2 depicts the different activity regions in space.
A refinement of the activity structures definition can be

achieved through the notion of activity regions.

3. DEFINITION OF ACTIVITY REGIONS
A formalization of the activity notion must be provided be-

fore being able to study it thoroughly. In this section, we pro-
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Figure 2. Activity in space.

pose several mathematical structures for describing the activ-
ity of systems, going from particular cases to more general
notations. From the modeler’s perspective, the notion of ac-
tivity as such is not usually explicitly described. Most of the
time, we want to know which parts of the system are active
and which parts are not. Therefore, activity regions can be
used at a high level of abstraction to describe elements of a
discrete event system specification as active or inactive.

3.1. Activity regions in time
The activity measure is used to determine the sub-regions

of the time base T through:

• Activity region in time:

AR T = {t ∈ T | ν(t) > 0}

• Inactivity region in time:

AR T = {t ∈ T | ν(t)= 0}

Considering the chronological nature of time and that every
element of the time-base can be defined as active or inactive,
an activity-based partitioning of time base T is thus achieved:
T = AR T ∪AR T .

3.2. Activity regions in states
The activity measure is used to determine the sub-regions

of the state set Q:

• Activity region in states:

AR Q(t) = {q ∈ Q |ν(t) > 0}

• Inactivity region in states:

AR Q(t) = {q ∈ Q | ν(t)= 0}

We consider now the function of reachable states in time as
q : T → Q. We can define now the set of all reachable states
in the state set Q, through time, named the universe and noted
U = {q(t)⊆ Q | t ∈ T }. Considering that all reachable states
in time can be active or inactive, an activity-based partitioning
of the state set Q can be achieved: Q = AR Q∪AR Q.

3.3. Activity regions in Cartesian coordinates
The activity measure is used to determine the sub-regions

of the Cartesian coordinate space (as defined in 2.4.) through:

• Activity region in space:

AR P (t) = {p ∈ P | νp(t) > 0}

• Inactivity region in space:

AR P (t) = {p ∈ P | νp(t)= 0}

We consider now the function of reachable states in time and
space as q : P × T → Q. We can define now the set of all
reachable states in the state set Q, through time and space,
through the universe U = {q(p, t)⊆ Q | p ∈ P , t ∈ T }.

Considering that all reachable states in time and space can
be active or inactive, an activity-based partitioning of P can
be achieved: ∀t ∈ T , P = AR P (t)∪AR P (t).

Figure 3 depicts activity values for two-dimensional Carte-
sian coordinates X ×Y . This is a neutral example, which can
represent whatever activity measures in a Cartesian space
(fire spread, brain activity, etc.)

3.4. Activity referenced states
For the set of states Q, we consider here that:

Q = ∏
i=0...n

Ei

where Ei can be any set, and n is the number of sets. For ex-
ample, the model of a leaf could include its area in cm² (a real
number), its age in days (a natural number) and the amount
of energy received from sunlight in Watts per meter (a real
number). Hence, the state set of this model would be S = R×
N×R, and a possible state would be s = (68.2,20,381.5).

Now, we reference states through activity. Activity refer-
ences constitute a viewpoint of the state set where only the
variables relevant for activity are considered.

Formally, we define the set of activity referenced states GI
as a projection of the state space Q onto indexes I⊆{1, ...,n}:

GI = πI(Q) = ∏
i∈I

Ei

The projection operator π is used to “select” a subset of the
state elements1. I ⊆ {1, ...,n} is the set of indexes denoting
the elements of interest. For a given model, the set of activity
referenced states can vary depending on which states are se-
lected for activity indexing. In the previous leaf example, ac-
tive leaves can be defined as being the ones that are younger

1In the context of relational algebra, the projection could be defined using
attribute names instead of indexes.



Figure 3. 2D and 3D visualization of activity level in a 2D space. x and y represent Cartesian coordinates. The activity
amplitude (real value), of each coordinate, is represented in the third dimension.

than 100 days. In this case, the only activity referenced state
of interest is the age of the leaf. Therefore, the following
set of activity referenced states are used: G2 = π2(Q) = N.
However, active leaves are defined as being the ones that re-
ceive enough energy to grow (depending on their area and
the energy received), the set of activity referenced states will
be G1,3 = π1,3(Q) = R×R. The activity measure is used to
determine the sub-regions of the generalized activity regions
through:

• Activity region in activity referenced states:

AR GI (t) = {g ∈ GI | νg(t) > 0}

• Inactivity region in activity referenced states:

AR GI (t) = {g ∈ GI | νg(t) = 0}

Considering that all reachable states in the set of activity
referenced states GI are active or inactive, and that all un-
reachable states are inactive, an activity-based partitioning of
GI can be achieved: ∀t ∈ T , GI = AR GI (t)∪AR GI (t).

The computation of activity referenced states can be auto-
mated through the following steps: (i) Select all states q ∈ Q
relevant for activity, (ii) Copy these new states in the set of ac-
tivity referenced states, and (iii) Compute the activity regions
for every activity referenced state g∈GI , i.e., those satisfying
νg(t) > 0.

By restricting the states of the model to activity referenced
states, the specification of activity regions becomes straight-
forward. Activity regions can be used to map the activity of
the real system. Besides, an hypothetical “activity-aware sim-
ulator”, more efficient, can be developed to track and focus
computations on active states.

We end up here with an universe of elements
of reachable activity referenced states g ∈ G I :

UA = {g ∈ GI | GI = πI(Q), I ⊆ {1, ...,n}}. It can be
noticed that the definition of activity regions in states given
in 3.2. corresponds to a particular case where I = {1, ...,n}.

Let’s consider now a simple application example of fire
spreading. Using activity referenced states, we can model
very simply the activity regions of a fire spreading. Assume
the fire model describes the state of a cell with the following
states:

• x ∈ R and y ∈ R;

• status ∈ {burnt,burning,sa f e};

• type ∈ {tree,bush,water,road};

• heat ∈ R.

A simple model of the activity regions can involve the status
and the type of the cell. Formally, the set of activity refer-
enced states would be G2,3. Assuming the activity map de-
picted in Figure 4, the resulting activity region specification
would be:

ARG2,3(t) = {{burning,sa f e}×{tree,bush}} ,∀t ∈ T

4. ACTIVITY IN COMPONENT-BASED
MODELS

The modeling of a system can often be eased by break-
ing it down into several subsystems (top-down approach), or
by assembling existing subsystem models into a larger one
(bottom-up approach). This leads to component-based mod-
els that describe systems as sets of components, along with
the way they interact with each other. We propose in the fol-
lowing an extension of the notion of activity to this type of
hierarchical models.



Figure 4. Activity measures based on two activity refer-
ences (status and type). E.g., Bushes in a burning state have
an activity of 0.8.

4.1. Activity in a single composite model
The activity of a composite model depends on the activity

of its components, but also on the interactions between the
components. In the case of simple systems, the activity of a
model M composed of components C = {c1, . . . ,cn} might
be approximated by summing the ci activity measures:

νM (t) = ∑
c∈C

νc(t)

4.2. Activity regions in composite models
In previous sections, we successively defined activity re-

gions as sets of instants, sets of spatial (Cartesian) coordi-
nates, states, and as sets of activity referenced states being a
projection of the set of states in which activity is suppused
to occur. These mathematical structures are useful to model
activity in simple — not composed — models. In compos-
ite models, we must take into account that each subsystem is
itself a model. We provide here a new definition of activity
regions in composite models, noted ARC

H(t), which is the set
of sub-components whose level of activity is larger than zero,
at a given time t and for a given horizon H2:

AR C (t) = {c ∈ C | νc(t) > 0}

Once again, we will extend this definition to ease the spec-
ification of activity regions.

4.3. Activity regions in time for composite
models

Over time, a component can be active or inactive. The pe-
riods of time for which a component c is active is specified

2For the sake of brevity, we omit in this section the definition of inactivity
regions, which can be easily deduced from the active ones.

using an activity region in time AR T
c , as presented in sub-

section 3.1.. Using the activity regions of the components, we
define the overall activity region of the composite model as:

AR C (t) =
{

c ∈C | t ∈ AR T
c

}
In other words, the activity region of the hierarchical model

at time t is the set of components whose activity region in
time contains t.

4.4. Activity regions in Cartesian coordinates
for composite models

In spatialized models3 components are localized into a
Cartesian coordinate space P . Each component c is assigned
to a position cp ∈ P . Applying the definition of activity re-
gions in space (presented in section 3.1.) to components, we
obtain:

AR C (t) =
{

c ∈ C | cp ∈ AR P (t)
}

AR P (t) specifies the coordinates where activity occurs. Con-
sequently, active components correspond to the components
localized at positions p.

4.5. Activity state references for composite
models

Denoting activity regions only through spatial coordinates
can be rather restrictive: Not all models are spatialized, far
from it. Moreover, even in spatialized contexts, active com-
ponents can often be identified using the states of the com-
ponents but not using their position. As we did previously
in section 3.4., we broaden the notion of activity regions to
the entire state set. Each component in the model has a state
qc ∈Q. For the component to be active, this state must match
one of the elements of the activity region AR GI , meaning
that the elements of the state that are activity referenced states
must belong to AR GI . Formally, we obtain the following def-
inition:

AR C (t) =
{

c ∈ C | πI(qc) ∈ AR GI (t)
}

4.6. Extension to the component types
In a composite model, all components do not neces-

sarily have the same type. An hypothetical plant model
can be composed of leaf, stem and root models. To al-
low the activation or deactivation of heterogeneous com-
ponents, we need to take their types into consideration in

3A model is said to be spatialized when the phenomenon under study
has a spatial extension. This requires that states have a richer structure than
just scalar values to cope with the discretization of a spatially embedded
phenomenon. Examples of spatialized models include cellular automata and
L-systems.



the definition of activity regions. A composite model with
heterogeneous sub-models aggregates a set of components{

c11,c12, . . . ,c1k,c21,c22, . . . ,ci j
}

where cm1, . . . ,cmn are of
type Tm. Components of different types have different state
sets. Therefore, separate activity referenced states must be
provided for every component type. To reflect this, we gener-
alize the previous definition of the activity region of a com-
posite model to:

AR C (t) =
{

cmk ∈ C | πTm
I (qcmk) ∈ AR GI

Tm
(t)
}

By using separate activity regions for each type of compo-
nents, an entire type set of components can be deactivated.
For example, if the leaves components have to be deactivated
during the night (because they do not receive any energy from
the sun), we can specify AR GI

leaves(t) = /0 when t belongs to
the nighttime (remember that activity regions are functions of
time, and therefore can be dynamic).

5. RELATED WORKS
As pointed out in [2], the notion of activity presented here

is a very generic term which can be applied to a variety of
different topics in computer science. This notion of activity
is different from the notion used usually in simulation. The
usual activity notion can be found in Tocher [9], who also first
described the three phase approach, as an optimization of an
activity-based simulation. In [3], Balci presents the concept
of activity as a possible approach to drive the implementa-
tion of a discrete event simulation kernel. An object-oriented
variant of the three phase approach was introduced by Pidd
[14].

In many fields, the notion of activity can be found. For
example, it is a fundamental issue in computer graphics,
from Z-buffers [4], to current work required for fast ren-
dering of different level of details [5, 6] in complex scenes
or multiresolution modeling in game engine [15]. In auto-
nomic systems [8, 16], ensuring the persistance of the self-∗
properties requires a feedback loop based on tracking cer-
tain variables that account for activity changes in the sys-
tem, from the level of the operating system (e.g., in So-
laris 10) to the level of large cloud-based systems. In every-
ware/ambiant/pervasive/ubiquitous systems [17], the key is-
sue is to track the activity/location of a user to adapt local
devices to the presence/absence and movement of the user’s
activity. Nowadays, any parallel system copes with dynamic
requirements for resources using load-balancing [12] algo-
rithms to track the activity taking place in each computing
sites to reallocate and reschedule tasks according to changes
in both the demands and the availability of resources. In dy-
namic systems, the notion of activity is a key notion since,
which, in some contexts, can lead to structure changes of the
state space as coined by [7], with the notion of dynamic sys-
tems embedding a dynamic structure. An attempt to quantify

and formalize a simulated system activity has been proposed
in [13] for model exploration. Using a thermodynamical ap-
proach functions characterized the activity and the speed of
evolution of a system. This approach enhances the analysis
of the trajectories of a system, facilitating the identification
of cyclic, stationary or chaotic behaviors.

While the concept of activity is found in many fields, very
few address activity explicitly, as we did here, through a pre-
cise definition. Even if we believe that the work started here
still needs to be worked-out.

6. CONCLUSIONS
In this paper, we have introduced a new definition of the

notion of (simulation) activity. All definitions constitute new
aspects of dynamic systems through a discrete event speci-
fication. These aspects focus on the possibly “changing” el-
ements of a system. Possible changes correspond to the oc-
currence of discrete events, i.e., whithout considering the ef-
fective impact of event occurences for state changes. It is ex-
pected that, for correct implementations and models, these
discrete event occurrences represent an efficient mapping of
a real-world dynamic phenomenon. Several region-based ex-
tensions of activity have been proposed through several ele-
ments: time, space, activity references and components. We
hope that this first work sketches many perspectives to deal
with activity (the definition of activity rates, levels, changes
in state, etc.)
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