
Topological Computation of Activity Regions

Work in Progress Paper

Martin Potier
U-PEC - LACL

61 avenue du Gal de Gaulle
94010 Créteil Cedex

martin.potier@u-pec.fr

Antoine Spicher
U-PEC - LACL

61 avenue du Gal de Gaulle
94010 Créteil Cedex

antoine.spicher@u-pec.fr

Olivier Michel
U-PEC - LACL

61 avenue du Gal de Gaulle
94010 Créteil Cedex

olivier.michel@u-pec.fr

ABSTRACT
Most of the frameworks and languages available in the field
of modeling and simulation of dynamical systems focus on
the specification of the state of the system and its transi-
tion function. Although we believe that this task has been
elegantly solved by the design of the rule-based topologi-
cal programming language MGS, an interesting challenge re-
mains in the computation of the activity, and its topology,
exhibited by their discrete event simulation. This additional
information can help in optimizing, analyzing and modeling
complex systems.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; F.4.2 [Mathematical Logic and
Formal Languages]: Grammars and Other Rewriting Sys-
tems—Parallel rewriting systems

General Terms
Algorithms, Theory, Language

Keywords
Activity tracking, MGS programming language, spatial com-
puting, rule-based modeling and simulation, topology of in-
teractions

1. INTRODUCTION
Complex simulation models consist of a large number of

interacting parts. In common modeling tools and languages
it is not easy to extract abstractions of the dynamics of the
whole system, during, before or after its simulation. The
analysis of the many outputs and interactions is long and
meticulous. To our knowledge, no established method ex-
ists for finding patterns of interactions in system structures,
during a simulation. Some methods exist for particular do-
mains (multi-agent systems, distributed and parallel simula-
tions, image analysis, etc.), but except for the work proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSIM-PADS’13, May 19–22, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-1920-1/13/05 ...$15.00.

by [12] no generic methods have been developed for this pur-
pose. In the simulation context, activity is usually used as
a phase of the system under study. We do not consider this
definition of activity here. Instead, activity is considered as
a locus of interaction occurring during a simulation step.

We define active regions as contiguous active parts that
are evolving according to the laws governing the model.
These regions are highly dynamical, usually changing at each
time step. Moreover, we are interested in giving a topolo-
gical definition of the active regions and to handle them
intentionally. We believe that this definition of activity and
activity regions [10] can be used as a central guiding concept
to construct generic structures for the analysis and specifi-
cation of systems. The specification structures, driven by a
measure of activity of the simulation, can be used to recog-
nize and enhance the dynamics of sub-components in time,
space, and states.

MGS is an experimental programming language dedicated
to the modeling and the simulation of a special kind of dis-
crete dynamical systems: dynamical systems with a dynam-
ical structure, or (ds)2 [3]. Dynamical systems with a dy-
namical structure arise when the state space is not fixed a
priori but is jointly computed with the current state dur-
ing the simulation. In this case the evolution function is
often given through local rules that drive the interaction be-
tween some system components. MGS offers a new kind of
data structure, topological collections, to describe the state
of a dynamical system, and a new kind of control structure,
transformations, to express local and discrete evolution laws.
These two notions permit an easy specification of (ds)2.

We focus in this paper on the computation of activity and
activity regions for MGS. Section 2 introduces the required
technical formalism to understand the next sections. Sec-
tion 3 investigates the topological computation of activity
and activity regions in MGS and preliminary results of their
use are given in Section 4. Conclusions are drawn in the last
section.

2. A PRESENTATION OF MGS
MGS is a domain specific language dedicated to the mod-

eling and simulation of (ds)2. It makes use of topology and
rewriting techniques to simulate all kind of systems. It is
a rule-based declarative, functional and dynamically typed
language.

2.1 Topology of Interactions
A (ds)2 is a dynamical system whose state space (i.e.,

whose structure) evolves jointly with the system itself. Think

337

for instance of a growing multi-cellular organism where cells
(which are the constitutive elements of the system) divide,
migrate and die: the spatial organization of the system
changes with the individual cells behavior which depends
on the cells locations in this organization.

The dynamical property of its state space makes difficult
the specification of the global evolution function of a (ds)2.
However by comparing two successive global states, as one
could do with two successive frames of a movie, one can
identify the part of the system that has evolved and the
part where nothing has changed. Doing so for every pair of
successive states naturally decomposes the system into ele-
mentary atomic parts. Thus a (ds)2 may be considered as a
population of subsystems (the atomic parts) which interact
with each other, and where the local interactions give rise to
the structure of the whole system. For physical systems, sub-
systems are spatially localized and only subsystems that are
neighbors in space can interact directly. So the interactions
between parts are structured by the spatial relationships of
the parts. For abstract systems, in many cases the transition
function of each subsystem only depends on the state vari-
ables of a small set of parts (and not on the state variables
of the whole system) and the interactions are structured by
the functional relationships between the subsystems.

The idea is then to describe the global dynamics by sum-
ming up the local evolutions triggered by local interactions.
And if two subsystems s and s′ ever interact, it is not be-
cause they are known to interact but because they are neigh-
bors. Considering that if a subsystem s interacts with a
subset S = {s1, . . . , sn} of parts it also interacts with any
subset S′ included in S, it is tempting to provide the set of
subsystems with a topology based on this closure property:
the topology of interactions. It restricts the possible local
evolution functions of a subsystem s: the current state of s
only depends on the previous state of s and of its neighbors.
Furthermore, the evolution function not only specifies the
evolution of local states but also the coupled evolution of
the topology itself.

2.2 Rule-Based Simulation
The MGS programming language has been developed to

support the idea of interaction-based modeling of (ds)2. It
provides topological collections, an original data structure for
representing the state of a system based on the topology of
interactions, and transformations, a rule-based definition of
functions on collections for specifying the interaction laws of
the system.

Topological Collections
A topological collection is a data structure allowing the re-
presentation of a population of subsystems.

The underlying topology of interaction is specified using
an abstract cellular complex (ACC) which is a mathematical
concept from combinatorial algebraic topology [9]. An ACC
is a combinatorial structure made of objects of various di-
mensions called topological cells, each cell being an abstract
representation of a simple part of the domain. We call k-cell
a topological cell of dimension k: 0-cells are vertexes, 1-cells
are edges, 2-cells are faces, 3-cells are volumes, etc. Topo-
logical cells are glued together and we say that a k-cell σ1

is incident to a (k − 1)-cell σ2, denoted σ1 � σ2, if σ2 is in
the boundary of σ1. Formally the incidence relationship is
a ranked locally finite partial order on the set of cells where

f

e1

c1

e3

e2c3 c2

f

c3c1c2

e2 e3e1

(0, 4)

6

55

(3, 0)

12

(−3, 0)

Figure 1: On the left, the Hasse diagram of the inci-
dence relationship of the ACC given in the middle:
it is composed of three 0-cells (c1, c2, c3), of three 1-
cells (e1, e2, e3) and of a single 2-cells (f). The closure
of cell e1 is composed of e1, c1 and c2. The star of
cell e1 is the set {e1, f}. On the right, a topological
collection associates data with the cells: positions
with vertexes, lengths with edges and area with f .

the rank coincides with cells dimension. We call closure
(resp. star) of a cell σ the set Clσ = {σ′ |σ′ � σ } (resp.
Stσ = {σ′ |σ′ � σ }). The incidence relation can be used
in numerous ways to specify the neighborhood relationships
in a topological collection. In this paper, we consider that
two cells σ1 and σ2 are neighbors if they are not incident to
each other and if they are incident to a common cell either
of lower dimension or of higher dimension exclusively:

(Clσ1 ∩ Stσ2) ∪ (Stσ1 ∩ Clσ2) = ∅
(Clσ1 ∩ Clσ2) 6= ∅ ⊕ (Stσ1 ∩ Stσ2) 6= ∅

The set of all neighbor cells of some cell σ is given by the
link denoted Lkσ = St(Clσ)4Cl(Stσ), where 4 denotes
the symmetric difference operation.

The states of the subsystems are represented as labels on
topological cells: a topological collection C is a partial func-
tion that associates values from an arbitrary set V with cells
of some ACC (see Figure 1). Thus the notation C(σ) refers
to the value/state of cell σ in collection C. We call support
of C and write |C| for the set of cells for which C is defined.
Set V is left arbitrary to allow the association of any kind of
information with the topological cells: for instance geome-
tric properties (V = {−1, 0, 1} for representing orientation
or V = Rn for Euclidean positions) or arbitrary state of a
subsystem (a mass, a concentration of chemicals, or a force
acting on certain cells, etc.)

The collection C can be written as a formal sum
∑
σ∈|C| vσ·

σ where vσ
df
= C(σ). With this notation, the underlying

ACC is left implicit but can usually be recovered from the
context. By convention, when we write a collection C as a
sum

C = v1 · σ1 + · · ·+ vp · σp

we insist that all ci are distinct1. Notice that this addition is
associative and commutative: the order of operations used
to build a topological collection is irrelevant. Using this
notation, a subcollection S of a collection C is defined as a
sub-formal sum C = S + S′; subcollection S′ is then called
the complementary of S in C and one writes S′ = C − S.
Set operations and incidence operations (Cl, St and Lk) are
naturally extended on subcollections.

1This notation is borrowed from algebraic topology where
set V is taken with a commutative group structure which
gives to topological chains an abelian group structure [9].
We relax this assumption for topological collection.

338

Transformations
As previously mentioned, an interaction is a subset of sub-
systems evolving together due to the satisfaction of some
local conditions: the subsystems are neighbor in the topol-
ogy of interaction and their states match. We advocate that
a rule-based programming style fits well the description of
interaction laws and that rewriting techniques is the right
computation model for modeling and simulating (ds)2.

Transformations generalize this process to topological col-
lections with the concept of topological rewriting. A trans-
formation T is a function specified by a set {r1, . . . , rn} of
rewriting rules ri = pi ⇒ ei where each pi is a pattern and
ei is an expression. An application of such a rule selects a
subcollection S matching with pi that is then substituted by
the subcollection resulting from the evaluation of expression
ei. The application of a transformation T on a collection C
can be represented by the following diagram:

C = S1 + . . . + Sn + Ry T y ri1 y rin y
T (C) = S′1 + . . . + S′n + R

where each Sk is a subcollection of C matching with pattern
pik and S′k results from the evaluation of eik . Subcollection
R consists of unchanged subsystems. The formal semantics
is given in [13].

Since it may exist different ways to decompose collection C
w.r.t. transformation T , only one of the possible outcomes
(randomly chosen) is returned by the transformation. A
rule application strategy is then used to control the pattern
matching process.

3. ACTIVITY TRACKING IN MGS
We are now interested in investigating the concept of ac-

tivity in MGS. Activity [11] is a measure of event occurrences
or state changes in a simulation. This measure can be used
for different purposes like optimizing simulation or giving a
better understanding of dynamics. In the context of MGS,
activity will allow us to (1) develop a more efficient pattern
matching algorithm, and to (2) identify higher level struc-
tures in a model and to track them in simulations. The
former will be illustrated in the next section, the latter will
be discussed in the conclusion.

In this section, we present a generic way to track an active
region throughout the simulation.

Context
For the sake of simplicity, we restrict ourselves to patterns
involving only at most two interacting elements. For exam-
ple, pattern x, y, z (i.e., matching three elements where y

is a neighbor of x and z is a neighbor of y) is out of the scope
of the following study. However we conclude the section with
a paragraph about the generalization.

We illustrate our idea with a simplistic but paradigmatic
example, a forest fire spread. This 3-state cellular automa-
ton is easily encoded in an MGS transformation as follows:

trans fire_spread = {
‘Forest as x / member(‘Fire , neighbors x)

=> ‘Fire;
‘Fire => ‘Ashes;

}

C0 C1 = T (C0) C2 = T (C1)

Figure 2: Evolution relation, first three steps of a
forest fire simulation. Green, orange (hatched) and
black represent Forest, Fire and Ashes respectively.

States are represented by three symbols: ‘Forest, ‘Fire

and ‘Ashes. The first rule specifies how forest catches fire
when it is neighbor of some fire and the second rule specifies
that fire leaves ashes after burning. Figure 2 shows three
consecutive evolution steps of this automaton on a square
grid topological collection.

In the example of Figure 2, activity is located in a small
piece of space – only cells in fire and forest in their neigh-
borhoods evolve – and progresses from neighbor to neigh-
bor. However the usual MGS pattern matching process needs
to iterate over the whole collection at each application of
transformation fire_spread. Given the small number of
cells in interaction, the matching process is here quite in-
efficient. The following study of activity will allows us to
target specifically evolving cells during pattern matching.
Moreover activity enlightens an important emergent struc-
ture of fire spread models, the fire front.

Activity and Interactions
The interpretation of activity in MGS corresponds to the
number of interactions occurring at each time step of a simu-
lation. Since interactions happen whenever rules of a trans-
formation match subcollections, activity splits naturally a
collection into two parts: the active subcollection as the
subcollection where interactions can occur and the quies-
cent subcollection where they cannot.

Let us define the active and quiescent subcollections in a
formal and general way, using the construct of topological
collections. Let C be a collection and T be a transformation.
We define the matching function MT of transformation T as
the function which maps a collection C onto the set of all
subcollections of C matched by a pattern of T . In other
words, the matching function MT represents a call to the
pattern matching process. The active subcollection A of C
is then defined as

A =
⋃

S∈MT (C)

S

that is the merge2 of all matched subcollections of C. Thus,
the quiescent subcollection Q corresponds to the complemen-
tary of A in C:

Q = C −A

Figure 3 shows the decomposition into active and quiescent
subcollections for the fire spread example.

2The union operator is used instead of the addition since
some subcollections of MT may have overlapping support.

339

C = A + Q

Figure 3: Decomposition of a topological collection
into a set of active cells and quiescent cells. Green,
orange (hatched) and black represent Forest, Fire
and Ashes respectively.

Activity Dynamics
In order to track activity during the simulation of a sys-
tem, we define a way to compute the evolution of the active
region (grow, shrink, carve, etc.) based on the topological
properties of the active subcollection.

Let us consider (C0, C1, . . .) the trajectory of collections
due to the successive applications of a transformation T ,
where Ci+1 = T (Ci) for i ≥ 0. Using the active-quiescent
decomposition on Ci = Ai + Qi, one can notice that the
application of transformation T only acts on the active part
and leaves Qi unchanged so that the pattern matching can
be restricted to subcollection Ai only:

Ci+1 = T (Ci) = T (Ai|F i) +Qi (1)

The notation T (Ai|F i) reflects that the restricted pattern
matching process may require some information from Qi:
visiting the neighborhood of some matched element (e.g.,
in transformation fire_spread: member(‘Fire, neighbors

x)) does not imply that the visited neighbors are in Ai.
These information are denoted F i which is the subcollection
whose support consists of all quiescent cells with a neighbor
in Ai: F i = LkAi. The decomposition of Ci+1 proposed in
Equation (1) does not coincide with the definition of Ai+1

and Qi+1. In fact, some cells of |Qi| may become active
and vice versa. However the tracking of the active-quiescent
frontier during a simulation can be refined by making use
of subcollection F i. Indeed assuming that transformation
rules involve at most two neighbor elements, any quiescent
cell, at some iteration of the simulation, having no active
neighbor cell will observe no change in its environment and
then will remain quiescent at the next iteration step. More
formally we get:

Qi − LkAi ⊂ Qi+1 Ai+1 ⊂ T (Ai|LkAi) + LkAi (2)

The second statement is trivially obtained using comple-
mentary and means equivalently that the active part cannot
expand further than F i. Equation (1) is then rewritten

Ci+1 =
[
T (Ai|LkAi) + LkAi

]
+
[
Qi − LkAi

]
(3)

Optimized Pattern Matching
In the light of Equations (2), the active-quiescent decomposi-
tion of Ci+1 is obviously over-approximated in Equation (3).
As an example, on Figure 4, bold lines represent the limit
of expansion of the active part at next step but some cells
in this subcollection become quiescent. These cells can be
identified as the cells of T (Ai|LkAi) + LkAi which cannot

be involved in any interaction at time i+ 1. In other words
they are not selected by the pattern matching process:

MT (Ci+1) = MT (T (Ai|LkAi) + LkAi)

and the computation of sequence (Ai)i∈N follows{
A0 =

⋃
S∈MT (C0) S

Ai+1 =
⋃
S∈MT (T (Ai|LkAi)+LkAi) S

Notice that this recursive definition of Ai does not refer to
the quiescent subcollection Qi anymore, since the neighbor
operator Lk exactly targets the interesting cells. As a conse-
quence, activity tracking during the simulation allows us to
focus on a reduced part of the collection for pattern match-
ing. The induced optimization is discussed and illustrated
in Section 4.

Figure 4: Evolution of the active-quiescent frontier
for the three steps of Figure 2. Active cells in red,
quiescent cells in light blue (hatched). The bold
lines represent the decompositions induced by Equa-
tion (3).

Topological Characterization
The previous study can be generalized to transformation
involving more than two interacting elements by reconsid-
ering how far the active subcollection can expand at each
time step. Let n be the radius of an interaction, i.e., the
minimum distance (in terms of hops) between interacting el-
ements. The previous restriction was to only consider trans-
formation of radius n ≤ 1. Let us now consider arbitrary
radius n ∈ N. For example, patterns of the form f, e /

neighborsfold([...],f) are of radius n = 2 since the vis-
ited neighbors of f can be at distance 2 of e.

The expansion F in of Ai for a radius n is given recursively
by {

F i0 = 0
F in+1 = Lk(Ai + F in) + F in

This definition is analogous to the definition of the wave
operator W (n) in [1] and reveals the topological nature of
activity. The wave operator is used for the elaboration of a
combinatorial Morse theory; Morse theory is a mathemati-
cal tool for studying topology of spaces. Roughly speaking,
this theory deals with Morse functions – a way to flood the
space with some “liquid” – and critical points – where the
liquid reveals basins, passes and peaks of the topography of
the space. We are currently investigating the analogy be-
tween Morse theory and activity tracking: Morse functions
will correspond to activity propagation and critical points to
space-time positions where independent activity zones segre-
gate or collide, pointing out important events in the model.

340

Figure 5: Fire spread (fire is orange, forest is green,
ash is brown), Activity (active cells in red, quiescent
cells in blue) at iterations 5 (left), 22 (center) and 95
(right) of a simulation with wind blowing from the
left and a horizontal symmetrical chain of mountain
landscape.

4. PRELIMINARY RESULTS
In this section, we consider a more elaborate model of

forest fire spreading. Following results of Section 3, infor-
mation provided by activity are used to speed up simulation
by applying rules of transformation in active regions.

4.1 An Example of Forest Fire Simulation
Forest fire is a well known and paradigmatic example for

the community of discrete event simulation [6]. Here, we
implement in MGS a more elaborate, yet efficient, model for
forest fire spreading than the basic example used in Sec-
tion 3. The model is based on the work of [8] and uses the
cellular automata (CA) formalism while being both simple
and realistic. The forest fire spread model takes into account
the main environmental effects: wind (for both speed and
direction), type of fuel, and landscape topography. At any
time, the state of a cell in the CA is characterized by the
ratio of burnt area ranging continuously from 0 (wholesome
forest) to 1 (burnt forest - ashes) where (0, 1) represents
burning forest. Considering a fire front as the area sepa-
rating the forest from the ashes, the main concern of our
model is to determine the evolution of the fire front from:
the current fire front position, the distribution of rates of
fire spread in the forest, the wind speed and direction, as
well as the height and shape of the land.

The cyclic 2D square grid used in the CA is represented
using a GBF topological collection [4]. A GBF is topologi-
cal collection whose underlying ACC is the Cayley graph of
an abelian group presentation. The elements of the group
represents the allowed atomic displacements. In MGS, such
a collection is specified from a presentation of the group
of displacements. The definition of a Moore neighborhood
grid, requires four basic displacements n (north), e (east),
ne (north-east) and se (south-east):

gbf Land = < n, ne, e, se ;
500 n = 0, 500 e = 0,
ne = e + n, se = e - n >

The four additional equations specify that the grid is cyclic
of size 500× 500 and define relations between diagonal and

0 200 400 600 800 1,000
0

0.5

1

Iterations

N
o
rm

a
li
ze

d
Q

u
a
n
ti

ty

Normal run

Optimized run

Active cells

Figure 6: Amount of active cells and computation
time for non-optimized and optimized algorithm per
iteration on a 500× 500 grid. Values have been nor-
malized using the total size of the (250 000 cells) for
amounts of cells, and the average computation time
of a normal run step for computation times.

non-diagonal directions. The reverse directions are auto-
matically considered. Each cell of the GBF is labeled by its
state (a record containing the burned out state, the wind
direction, the burning rate and the altitude).

Transformation fire_spread of Section 3 is extended to
take into account dynamics of [8]. Figure 5 shows simula-
tions of the model at different iterations.

4.2 Benchmark
Using the classical pattern matching algorithm, the entire

topological collection must be iterated over at every update.
For a CA on a square grid of side length n, the process must
go through the n2 cells leading to an update step with a
constant time (see Figure 6), while only a fluctuating num-
ber of cells have their values changed on the update (which
correspond to only a fraction of the grid).

In this section, we use activity information to reduce the
cost of pattern matching. The previous example of forest fire
spread was rewritten to have the transformation rules only
apply to the active region and skip the quiescent part. As
with the theoretical view presented in Section 3, the cellular
automaton space is split between active cells taking part in a
transformation of their neighbors and quiescent cells having
no role to play whatsoever in the current iteration. This
results in a decent speedup of the whole computation.

Figure 6 presents a plot of the count of active cells for each
iteration, and of the computation time by iteration for both
the optimized and the regular run of the simulation. Time is
normalized by the average computation time of the normal
run so that both normal and optimized computation time
can be easily compared. The occasional spikes and noise
come from the fluctuating work on the test computer.

As can be deduced from Figure 5, at the beginning of the
simulation, very few cells are active. Their amount increases
dramatically with the spread of fire to only lower once the
forest has been consumed and turns into ashes. As a cellular
automaton, the computation time is linear with the number
of cells: the more cells, the more time with the same compu-

341

tation time by cell. From the figure, we can notice that the
computation time of the non-optimized run is roughly the
same for every iteration: the pattern matching mechanism
must explore all of the 250 000 cells to verify whether a rule
applies. Whether a rule matches or not does not change the
time required to compute the application of a transforma-
tion rule.

We can immediately notice that activity and computation
time of the optimized run coincide: it directly depends on
the amount of cells to explore, thus the shape of the curve
is nearly identical to the variation of the amount of active
cells. Cells are never all active at once, that is why, even at
its peak, the optimized run always requires less computation
time by iteration than the non-optimized one. The cost of
maintenance can be read from the difference between the
computation time of the optimized run and the active cell
count. This optimization is data-dependent, had we changed
the initial values, the graph would have been altered too.
Therefore, a general or global speed-up does not make sense.

5. RELATED WORK AND CONCLUSION
This paper focuses on the computation of activity and

activity regions in the context of the domain-specific lan-
guage MGS. We have characterized and provided a topolog-
ical framework to compute these two notions using the link
operator of combinatorial topology. Activity regions have
been successfully used to reduce the cost of pattern match-
ing in the simulation of an example of fire spread. In this
case, activity appears to be a data-dependent optimization
technique that can be easily combined with other techniques.

While our approach could appear similar to dependency
graph optimizations (as in Gillespie’s SSA algorithm by [5]),
it is very different since, due to the topological approach
followed by MGS, the computation of activity regions de-
scribed here is generic, unlike previously asserted in [11],
page 162. Moreover, it is valid for any kind of topologi-
cal collections available in the language. Based on the no-
tion of spatial interaction, MGS provides a unified simulation
framework encompassing discrete/continuous and determin-
istic/stochastic formalisms (as in the classical approach of
rewriting-based tools in computational biology, by [7, 2] for
example, that consider structureless objects - namely only
chemical reactions).

The perspectives opened by this work are numerous. We
have to internalize in the runtime the computation of the
active regions. Indeed, we believe that it is not to the pro-
grammer to seek for complex and obfuscating optimizations
but to the language (or the execution support) to provide au-
tomatic high-level techniques to reduce the execution time.

At the language level, activity regions are not first-class
objects: they are computed at each time-step of the simula-
tion, and there is no link between regions computed at two
different time steps. Reifying the regions to first-class ob-
jects and adding operators to handle these new objects will
be the key to level up the language to multi-level modeling
of complex dynamical systems that exhibits behaviors at
multiple levels of descriptions (like in biology the molecular
level, the cellular level, the organic level, etc.).

ACKNOWLEDGMENTS
The authors would like to thanks the anonymous reviewers
for their comments on a first version of this paper.

The authors are grateful to the community born during
the Cargese Interdisciplinary Seminar in 2009 and to the
colleagues of the spatial computing initiative. This research
is supported in part by the French ANR grant “SynBioTIC”
2010-BLAN-0307-03, U-PEC, IRCAM, Univ. of Évry and
ISC-Paris.

6. REFERENCES
[1] U. Axen. Topological Analysis Using Morse Theory

and Auditory Display. PhD thesis, University of
Illinois at Urbana-Champaign, Champaign, IL, USA,
1998.

[2] V. Danos, J. Feret, W. Fontana, R. Harmer, and
J. Krivine. Rule-based modelling, symmetries,
refinements. Formal Methods in Systems Biology,
pages 103–122, 2008.

[3] J.-L. Giavitto, C. Godin, O. Michel, and
P. Prusinkiewicz. Modelling and Simulation of
biological processes in the context of genomics, chapter
“Computational Models for Integrative and
Developmental Biology”. Hermes, July 2002.

[4] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group
based fields. In I. Takayasu, R. H. J. Halstead, and
C. Queinnec, editors, PSLS’95, volume 1068 of LNCS,
pages 209–215, Beaune (France), 2–4 Oct. 1995.
Springer Verlag.

[5] M. A. Gibson and J. Bruck. Efficient exact stochastic
simulation of chemical systems with many species and
many channels. The journal of physical chemistry A,
104(9):1876–1889, 2000.

[6] X. Hu, Y. Sun, and L. Ntaimo. DEVS-FIRE: design
and application of formal discrete event wildfire
spread and suppression models. SIMULATION,
88(3):259–279, Oct. 2011.

[7] M. John, C. Lhoussaine, J. Niehren, and C. Versari.
Biochemical reaction rules with constraints.
Programming Languages and Systems, pages 338–357,
2011.

[8] I. Karafyllidis and A. Thanailakis. A model for
predicting forest fire spreading using cellular
automata. Ecological Modelling, 99(1):87 – 97, 1997.

[9] J. Munkres. Elements of Algebraic Topology.
Addison-Wesley, 1984.

[10] A. Muzy, L. Touraille, H. Vangheluwe, O. Michel,
M. Kaba Traoré, and D. R.C. Hill. Activity Regions
for the Specification of Discrete Event Systems. In
DEVS’10, 2010.

[11] A. Muzy, F. Varenne, B. P. Zeigler, J. Caux,
P. Coquillard, L. Touraille, D. Prunetti, P. Caillou,
O. Michel, and D. R. Hill. Refounding of activity
concept? Towards a federative paradigm for modeling
and simulation. SIMULATION, 89(2):156–177, 2012.

[12] J. J. Shi. Activity-based construction (ABC) modeling
and simulation method. Journal of Construction
Engineering and Management, 1999.

[13] A. Spicher, O. Michel, and J.-L. Giavitto. Declarative
mesh subdivision using topological rewriting in mgs.
In Int. Conf. on Graph Transformations (ICGT) 2010,
volume 6372 of LNCS, pages 298–313, Sept. 2010.

342

http://www.spatial-computing.org
http://synbiotic.spatial-computing.org

	Introduction
	A Presentation of MGS
	Topology of Interactions
	Rule-Based Simulation

	Activity Tracking in MGS
	Preliminary Results
	An Example of Forest Fire Simulation
	Benchmark

	Related work and Conclusion
	References

