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Abstract. Binding and substitution of bound variables are major issues in the design of languages.
The mechanism of name capture lies at the heart of modular, incremental and object-oriented
programming.

In this paper, we present a new reflexive type-free formalism, the amalgams based upon three
operators that focus on the notion of names and name capture. The formalism is targeted towards
the modeling of incremental program construction. Because of its versatility, it allows a natural
emulation of several programming styles.

The core formalism is first presented and then examples of the definition of first-class environ-
ments, modeling a declarative object-oriented programming are given.
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1. Introduction

In this paper we investigate an approach for the incremental construction of declara-
tive programs based on the concept of name. Standard approaches rely on function-
nal composition (e.g. in dataflow). However, the concept of naming is a widespread
and heavily used notion in computer science in general and in programming lan-
guages in particular. The concept of name can be found, among others, in the
following areas:

• Imperative languages are built on the notion of state which is a partial function
from names to values.

• Names have recently been introduced in the λ-calculus for the following pur-
poses:

– allowing an out of order binding of the terms in a λ-abstraction [18],

– allowing the access to (possibly redefined) terms at various different abstract
levels [12, 10, 9, 11],

• Names are used in dynamic applications where they represent entry-points for
the sharing of information. Examples are:
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– dynamic linking that occurs at run-time with shared libraries [21] used in
a program,

– “Applets” of WWW browsers in Java [43] or Caml-Light [41] correspond to
code dynamically loaded through the access of specific parts of a WWW
page.

• In [38], Milner emphasizes naming as the key idea of the π-calculus [37], a model
of distributed computing.

• Names are central issues in many data and program structuring mechanisms:

– the object-as-record point of view [8] corresponds to a cartesian product
where names are associated to expressions,

– the use of name as the key to the construction of incremental programs is
a view widely shared [20, 27, 28],

– in the context of modular construction of programs, the notion of mixins [5],
where names are used as deffered references in another mixins, generalizes
inheritance [6, 16], module composition [2, 15] and separate compilation [1].

The previous examples show that the concept of name is a central notion in the
incremental construction of programs and this view has been subsequently stressed
by many authors [20, 27, 28, 15, 6].

In this work, we develop a core language used for defining components called
systems: a collection of definitions of components, where the definition of some of
them can be deferred to another system (eventually in a mutually recursive way).
Thus, the typical operator for composing systems is a binary merge operator “#”.
The combination mechanism relies on free names (the deferred components) and
name capture (the instantiation method).

Our approach in system composition is to retain the explicit composition operator
of the functional style and the naming scheme of the declarative style. The moti-
vation is to capture some structure induced by the functional combinators (e.g. to
formalize the linking process, the scoping rules, etc.) while relying on the concept
of name which is central in many coarse-grained composition mechanisms (like class
inheritance, module composition, link editing, message passing, remote procedure
call, applet downloading, etc.).

We provide a formal foundation for the system notion. More precisely, we define
a semantics of systems in the natural semantics style for three basic operators: the
amalgamation operator “{}” which creates systems, the merge operator “#” and
the selection operator “�”. A notion of name is defined, called a reference, which
can either be bound or free. Two syntactically equal [40] references refer to the
same object. An element of a system is a pair (identifier , expression) where the
expression involves references and the three operators. References are explicitly
annotated so that they may refer to redefined definitions. Finally, a mechanism
of propagation of definitions to bound references is defined, allowing the dynamic
completion of open expressions. This mechanism, together with the operators are
called amalgams.
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We give in the next two sections an intuitive definition of amalgams and how
the entities it defines are handled. We define in section 4 a formal semantics of
the amalgams. Section 5 is dealing with examples of amalgams. We first show
the emulation of arithmetical functions in the pure amalgams and then the use of
amalgams in a declarative language to allow an object-oriented programming style.
We discuss the relation between amalgams and other formalisms and languages
that do address the same problems in section 6. We conclude in section 7 with the
current status of this work and its integration into a declarative language.

2. An Intuitive Presentation of the Amalgams

We first describe amalgams through an intuitive presentation to give a flavor of the
formalism. Amalgams try to capture the three following features:

1. specify a set of definitions,

2. build a new set of definitions through the merge of two existing sets,

3. evaluate an expression using a set of definitions.

We remark that:

• a definition associates a name with an expression,

• the evaluation of an expression using a set of definitions means, from the amal-
gam point of view, that names involved in the expression have to be substituted
by their definition.

We are going to focus on those three mechanisms without introducing any ad-
ditional object or control structure. We get the “pure calculus of the amalgams”,
which consists of three operators: the n-ary amalgamation operator “{ . . . }” (point
1), the binary merge operator “ # ” (point 2) and the binary selection operator “ � ”
(point 3).

2.1. Introduction : Systems, Equations and References

2.1.1. Definition of a System. The result of an amalgamation is a system. A
system is a set of definitions where a definition is a pair:

identifier = expression

For example, the expression {a = 1, b = 2 + 3} denotes a system gathering two
definitions: a = 1 and b = 2 + 3.We also call these definitions equations. When an
identifier appears immediately at the right of an equal sign, it is called a reference.
We suppose that all left hand-sides (l.h.s.) of a system are different. The right
hand-sides (r.h.s.) of a system are expressions. We may define nested systems. In
this example:

{a = 1, B = {c = d, e = a}}
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we find: four definitions a = 1, B = {c = d, e = a}, c = d and e = a; four identifiers
a (the outermost one), B, c and e; two references d and (the innermost) a. The
references can be bound or free, whether they correspond or not to the identifier of
a r.h.s. of an equation (here, reference d is free while reference a is bound).

2.1.2. Free and Bound References. The binding mechanism associates the ex-
pression e in the r.h.s. of equation id = e to a reference id. For example, in the
following expression, the reference b in the r.h.s. of the first equation refers to the
second equation and is therefore a bound reference (we indicate with an arrow
which definition is referred to):

{a = b, b = 2} (1)

The order of the equations is not significant. The expression {b = 2, a = b} defines
the same system. Circular references are allowed:

{x = y, y = x} (2)

The scope of definitions does not extend outside their system. For example, in the
expression:

{a = x, B = {x = 1, y = 2}}

the reference x in the r.h.s. of the first equation cannot be bound to the definition
of x in the enclosed system defined by B. A system defines a notion of scope.
The scoping rules follow the usual rules defined for block structures (like in the C

language for example).
The nesting of systems allows redefinitions. Therefore, the problem of accessing

redefinitions arises. A simple rule is to shadow all previously defined expressions
with the same identifier (as does C). But allowing access to redefined equations
leads to interesting features: for instance, in an object-oriented programming style,
allowing the access to redefined methods gives access to methods of a super-class.
Consequently, we choose to allow the access to redefined equations by introducing
an explicit scope escaping operator1 : idn is a reference that is looking for the
definition of id in the mth enclosing scope, such that m ≥ n. For example, in the
expression:

{a = 1, B = {a = 2, x = a1}}

the reference to a in the r.h.s. of the definition of x refers to the equation a = 1
through the escaping operator “ 1”. Such a reference is said to be bound.

A reference that is not bound to a definition is a free reference, as for example for x
in the system {a = x}. An expression involving a free reference is an open expression
and an expression with no free references is closed. Following the “escaping of scope”
operator, it should be useful to be able to “jump over definitions”. We therefore use
the same operator for free references. For example, in the system:

{A = {x = 1, y = x 1}} (3)
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the reference x, in the r.h.s. of the equation defined by y, is not bound to the
equation x = 1 because the “ 1” operators specifies a binding one scope away
from the current scope where the reference appears.

Since the reference id0 leads to the same behavior as id, we define by convention
that a reference with no explicit escaping operator corresponds to id0, thus all
references are of the form idn where n ∈ N and id is an identifier.

2.1.3. Evaluation of an amalgam expression. The evaluation process roughly
corresponds to the substitution of bound references by their corresponding defini-
tion and to the simplification of the three operators, whenever possible (see below).
We formalize that in section 4.

2.2. A Data flow Representation.

There are many ways to look upon amalgams. We emphasize here on a data flow
interpretation because of its intuitive graphical representation.

There is a simple data flow representation of a system as an incomplete graph.
Every operator in an expression is a node. Nodes are linked together by edges. A
definition id = op(..., ...) is a node op with output edges named id. The input edges
correspond to identifiers appearing as arguments of the operator. A pending input
edge corresponds to a free reference. Output edges are simply identifiers defined by
the system (Cf. Fig. 1).

There are several ways in which data flow graphs can be composed. System com-
position corresponds graphically to connect some output edges with some pending
input edges.

In the applicative [23] or functional [4] style, the pending input edge and the
output edges of a graph are linearly ordered and connected on this basis, without
considering their identifiers. One drawback is that the management of links (like
forking, forgiving, etc.) must be explicitly done. The connection itself can be of
several kind: parallel composition, serial composition, feedback, etc., Cf. Fig. 2.

a b

2

yx yx

1

x

A

Figure 1. System (1) is pictured at the left as a data flow graph. The graph in the middle
represents system (2). The graph at the right corresponds to the definition of A in the system (3).
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C = A || B C = A ; B
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Figure 2. Parallel functional composition (at left) and serial functional composition of two data
flow graphs A and B.

In some calculi for concurrent systems (CCS [36] for example), there is another
way of describing a composition. It is based upon the names of the edges. So, if we
want to use the same kind of system in two different places, we have to rename one of
the instances. However, one advantage of the approach is the explicit identification
of the system parameters and outputs.

2.3. System Composition

2.3.1. Merging Systems. We have seen that an expression may involve free ref-
erences. The merging of two systems combines the equations and binds the free
references whenever possible. For example, the following expression:

{a = 1, b = c0}# {c = 2, d = a0} (4)

is evaluated to the expression {a = 1, b = c0, c = 2, d = a0} and then to {a = 1, b =
2, c = 2, d = 1}. To be merged together, both operands of a merge operator have
to be systems. As we can see, the merge of two systems is more complicated than
just packing together two sets of expressions. The binding of free references allow
the completion of open expressions with definitions coming from other expressions.

The data flow representation of the merge operator is very simple (Fig. 3): just
connect the pending input edges of one graph to the output edges of the other graph,
and vice-versa. This process is based on the name of the edges and is symmetric
(we insist in the assumption that expressions leading to the definition of systems
with two equations for the same identifier are rejected).

2.3.2. Extracting a Definition from a System. If a system is a set of definitions,
there must be an operator to “extract” the value of some definition. This operator
is called a selection. We generalize this operator to handle the evaluation of any
expression in the environment defined by the system. For example, the expression:

{e = a0, r = {a = 1, b = 2} � (e1 + b0)}
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Figure 3. Merging of two systems. The picture illustrates expression (4).

evaluates the r.h.s. of the selection using the definitions provided first by the
l.h.s. and then by the including systems. The expression is first be evaluated to
{e = a0, r = {a = 1, b = 2} � (a0 + 2)}, and then to {e = a0, r = {a = 1, b =
2} � (1 + 2)} and finally to {e = a0, r = 3}. To allow the evaluation of the r.h.s. of
a selection, the l.h.s. has to be a system. If it is not the case, the l.h.s. is evaluated,
until it becomes a system; then, the r.h.s. can be evaluated using the l.h.s. defini-
tions. As we can see, the system as first operand of a selection plays the role of
an environment providing definitions to the expressions that have to be evaluated.
Note that the l.h.s. of a selection constitutes a scope for the r.h.s.

As a first approximation, the selection operates like an extensible let rec ...

in ... : the r.h.s. expression is evaluated according to the definitions of the l.h.s.
Unlike the let rec construction and because of the reflexive nature of the systems,
the definitions are denotable, that is: the set of the definitions is computable (in
let rec only the value of the definitions are computed but the set of the definitions
is statically known).

ax

. b

d e u

u

a u

c

B

A

Figure 4. The selection A � B. The outputs of the selection are the outputs of B. The input of
the selection are the inputs of B that are not fed by A (eventually augmented by the inputs of A

that are needed for the evaluation of the outputs of A used by the inputs of B).
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The data flow representation of the selection operator is very simple too (Cf. Fig.
4): just connect the outputs of the l.h.s. of the operator with the inputs of the
r.h.s., and retain in the result only the outputs of the r.h.s. This is reminiscent of
the serial composition.

A more complete example of amalgams shown as a high-order data-flow graph is
given in Fig. 5.
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Figure 5. Merge and select can be seen as high-order data flow operator. They are then pictured as
“macro-nodes” in gray. The operational semantics of a data flow graph is based on the circulation
of tokens labeled with a value. Thus, tokens representing entire data flow graphs are flowing
through the edges linking the macro-nodes.
The high-order data flow graph represents the expression ({b = x, a = b} � {u = a, v = z}) # {x =
2, z = x} and some of the intermediate data flow graph produced during the evaluation process.

3. Difficulties in the Evaluation of an Expression

Before going into the details of the formalization of the amalgams, we want to show
first some examples of the subtleties involved by the evaluation of an expression to
its normal form (the normal form of an expression is defined in section 4.6).

The evaluation process roughly corresponds to a propagation of definitions to
bound references and to the simplification of operators, whenever possible. How-
ever, this propagation cannot be done in any order. For example, in the following
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expression

{y = 2, x = y0, a = {b = x 1, y = 1}}

if the definition of x is propagated in a before being totally evaluated, b in a

evaluates to 1. On the contrary, if the definition of x is evaluated before propagation,
the value of b in a is 2. Remember that the order of the definitions in a system is
irrelevant. We cannot therefore rely on it for the propagation order.

Our strategy is to fully evaluate a definition before substitution. However, the
meaning of “fully evaluated” is not obvious. In the following expression

{b = {x = 1} � (y0 � x 0)}

the reference x cannot be substituted by the definition x = 1 because the free ref-
erence y0 may be substituted in some other context by a system providing another
definition for x.

In an expression l � r, l is the immediate enclosing scope for r. This is not the
case for an expression l# r where l and r are bound in the enclosing scope before
being merged together. For instance

{a = 1, c = {b = a0}# {a = 2}}

is evaluated to {a = 1, c = {b = 1, a = 2}}. This strategy is coherent with the fact
that the enclosing definitions have to be used to evaluate l and r in l# r as long as
l and r are not both systems.

The interested reader may refer to [32, ch. 8] for more details. We describe in
the following sections a semantics for the amalgams along these lines.

4. Formal Semantics

In the next sections, we define an evaluation process for core amalgams expressions
(no constants or arithematical operators), that is, reducing a term to its normal
form.

We use in the next sections the following notations: List(X) represents the set
of lists of elements of X; [ ] is the empty list; h:: l is the concatenation of an element
h and a list l; l@l′ is the concatenation of l and l′; nth(n, l) gives access to the
nth element of a list; tl(l) is the list without its first element. By convention,
tl([ ]) = [ ], tl(h :: t) = t and the iterates of tl are defined by: tl0(l) = l,
tl1(l) = tl(l) and tln(l) = tl(n−1)(tl(l)). We manipulate pairs in the ML-style,
with projection functions fst and snd. P(E) is the powerset of the set E. The
function map applies its first functional argument to the elements of its second
argument which is a list or a set; flatten flattens its argument, a list of lists (or
a set of sets), by concatenating the first level of lists (or sets).
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4.1. Set of Amalgam Terms

Definition 1 (Id,Ref, Sys and Bool). The set Id is the set of identifiers x. The
set Ref is the set of identifiers with references xn. The set Sys is the set of terms
with {...} as head-operator. Bool is the set of boolean values true, false.

Definition 2 (Σ). The set of amalgam terms Σ is the smallest set such that:

1. a reference xn is an element of Σ,

2. if e1, ..., en are elements of Σ and x1, ..., xn are n distinct identifiers, then a
system {x1 = e1, ..., xn = en} is an element of Σ,

3. if e and e′ are elements of Σ, then e♦e′ with ♦ ∈ {# , � } is an element of Σ.

We take the following conventions: i, j, n range over N; x, y, z, x′, . . . , x1, . . . range
over Id; e, u, v, e′, . . . , e1, . . . ,M and N range over Σ; p ranges over Ref; s ranges
over Sys. We use ≡ for the (syntactical) equality of elements of Id and Σ.

For convenience, we abbreviate a system {x1 = e1, . . . , xn = en} by {−−−−→x = e }.
The notation {−→x } stands for the set {x1, . . . , xn}. In these notations, the number
n of elements is left implicit and we always assume that xi 6≡ xj if i 6= j. Beware

that two different abbreviations {−−−−→x = e } and {
−−−−−→
x′ = e′ } stand for different systems,

respectively {x1 = e1, . . . , xn = en} and {x′1 = e′1, . . . , x
′
m = e′m}. The notation

{−−−−→x = e ,
−−−−−→
x′ = e′ } abbreviates {x1 = e1, . . . , xn = en, x

′
1 = e′1, . . . , x

′
m = e′m} and

we always assumes that {−→x } ∩ {
−→
x′ } = ∅.

As stated in section 2.1.2, we identify (if required) an element of Id (say x) with
the “same” element of Ref with 0 as escaping value (x 0), and conversely.

Definition 3 (Defined Identifiers). The total function id : Σ 7→ Id ∪ {⋆} (where
⋆ 6∈ Id) giving the set of defined identifiers in a system is specified by induction on
the structure of a term u of Σ:

id({−−−−→x = e }) = {−→x }
id(u) = ⋆ for u not in Sys.

4.2. Bound References

We define the set of bound occurences of references in a term.

4.2.1. Paths and Occurences of Terms. We first proceed by the definition of an
occurence of a term at a given path.

Definition 4 (Path and Occurence of a Term).
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A path is an element of Π = List({1, 2} ∪ Id) which locates a specific subterm
of a term (see [13] for a standard definition of what they call a position).

The partial function | : Σ × Π → Σ giving the term at path π within a term u,
noted u|π is defined as:

1. u|[ ] = u,

2. {−−−−→x = e }|xi::π = ei|π if xi ∈ {−→x },

3. (e1♦e2)|i::π = ei|π for i ∈ {1, 2} and ♦ ∈ {# , � }.

We speak of path π being above path π′ in some term u if π is a prefix of π′, that
is, u|π′ is within u|π. We say that an occurence of a term v is at path π in u if
u|π = v.

For example, if M ≡ {a = b0, d = e0, c = {a = d0} � {c = a0; e = a1}}
then the term b0 is found at M |[a]; term {a = d0} is found at M |[c,1] and term
{c = a0; e = a1} is found at M |[c,2].

4.2.2. Bound Occurences. At first sight, the occurence of xn at path π = [π1, ..., πm]
in u is bound if a definition of x can be found amongst the terms u|[π1,...,πp] where
m− p ≥ n.

However, such a definition at path π′ may be hidden to the occurence at π be-
cause there may exist a term below π′ and above π that may introduce in further
computations some additional bindings. This is the case for the selection operator
where its l.h.s. is not a system. For instance, in a term u � x 0 (with u 6∈ Sys), x 0

cannot be bound because u might provide, in the course of its reduction, a defini-
tion of x closer to x 0 than any other definition provided by an enclosing term. This
prevents the immediate reduction of x 0 until u becomes a system. This motivates
the use of a flag to freeze the binding process in the stack of environments.

An binding environment is an element of Edef = List(P(Id) ∪ {⋆}). It is used
to store the identifiers introduced by the enclosing terms at a given path. The
constant ⋆ is the flag used to “stop” the process of looking for a definition in an
upper term. ǫ ranges over Edef.

Definition 5 (Set of Bound Occurences). The total predicate lookup : Ref ×
Edef 7→ Bool holds if a definition for a reference is found in an environment specified
by the second argument of the function. The recursive search stops if a constant ⋆
is encountered and the predicate does not hold. The definition of lookup is:

lookup(xn, [ ]) = false

lookup(xn, ⋆ :: t) = false

lookup(x 0, h :: t) = (x ∈ h) ∨ lookup(x 0, t)
lookup(xn, h :: t) = lookup(xn−1, t)
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The total function boundocc : Σ 7→ List(Π) computes the set of bound occurences
in a term:

boundocc(u) = boundocc′(u, [ ], [ ])

where boundocc′ is the total function from Σ × Π × Edef to P(Π) specified as:

boundocc′(xn, π, ǫ) = if lookup(x, ǫ) then {π} else ∅
boundocc′({−−−−→x = e }, π, ǫ) =

⋃

i boundocc
′(ei, π@[xi], {

−→
x } :: ǫ)

boundocc′(e1 # e2, π, ǫ) = boundocc′(e1, π@[1], ǫ) ∪ boundocc′(e2, π@[2], ǫ)
boundocc′(e1 � e2, π, ǫ) = boundocc′(e1, π@[1], ǫ) ∪

boundocc′(e2, π@[2], id(e1) :: ǫ)

For example, the set of bound occurences of the term M given in page 11 is
{[c, 1, a], [c, 2, c], [c, 2, e]}.

4.3. Clear Form and Stable Form

A term u is in a clear form relative to an environment ǫ, if there is no bound
occurence in u relative to ǫ. Being free from any bound occurence, does not means
that some “computation” cannot occur : an additional property is needed, being
in stable form. Section 4.6 states the relationships between clear form, stable form
and the evaluation process described in section 4.5.

Definition 6 (ǫ-Clear Form). A term u is said to be in ǫ-clear form (ǫ ∈ Edef) iff its
set of bound occurences with respect to ǫ is empty, that is iff boundocc′(u, [ ], ǫ) = ∅.
We say that a term u is in clear form if it is in [ ]-clear form, i.e.: boundocc(u) = ∅.

Definition 7 (Stable Form). A term u is in stable form if stable(u) is true, where
the syntactic predicate stable is defined by :

stable(xn) = true

stable({−−−−→x = e }) =
∧

i stable(ei)
stable(e1 # e2) =

(

(e1 6∈ Sys) ∨ (e2 6∈ Sys)
)

∧ stable(e1) ∧ stable(e2)
stable(e1 � e2) = (e1 6∈ Sys) ∧ stable(e1) ∧ stable(e2)

4.4. Evaluating a Term

We now define the evaluation process of reducing a Σ-term. When a term cannot be
further reduced, we say that it is in its normal form. The reduction process consists
in the substitution of bound occurences with their definitions and the simplification
(whenever possible) of subterms involving merge and selection operators. One of the
remarkable properties of the amalgams is that the set of bound occurences evolves
once substitutions of definitions to their bound occurences have been performed.
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Indeed, the substitution of a definition to its bound occurence creates some new
bound occurences, and requires consequently further substitutions (as consequences
of the new bound occurences) and simplification.

4.4.1. Reduction Environment. The reduction of a subterm has to take into ac-
count the definitions appearing in an enclosing term. We define a reduction en-
vironment to keep track of this information. Since terms might be nested, a list
structure is used for the environment, where each element is a simple environment,
that is, a partial function which associates a name to its definition in the term.

Definition 8 (Simple Environment E). A simple environment is a partial function
σ ∈ E = Id → Σ. The formula [x1 7→ e1, . . . , xn 7→ en] is the function which
associates the term ei to the identifier xi (i ∈ [1, n]), and which is undefined for
any other identifier. For convenience, we use the notation [

−−−−→
x 7→ e ]. The domain of

the environment σ is noted Def(σ). By convention, σ ranges over E .

Definition 9 (Reduction Environment EE). A reduction environment ρ is a list of
E environments: EE = List(E).

We define the augmentation {−−−−→x = e } ⊎ ρ of an environment ρ by the definitions
of a system {−−−−→x = e }, as the concatenation [

−−−−→
x 7→ e ]:: ρ. By convention, ρ ranges

over EE.
A non empty reduction environment σ:: ρ can be applied to an identifier x ∈ Id:

(σ:: ρ)(x) = if (x ∈ Def(σ)) then σ(x) else ρ(x)

and [ ](x) is undefined. We extend the application of an environment to an identifier
to references:

ρ(xn) =
(

tln(ρ)
)

(x)

We remark that the constant ⋆ is not used any more. The operational semantics
defined in the next section handles the problem raised by a selection operator
directly.

Note also that given a reduction environment ρ the expression tln(ρ) retrieves
the reduction environment of the definition of x which binds xn. The expression
tln(ρ)(x) denotes the r.h.s. of the definition x = e that binds xn in ρ. The
reduction environment tln(ρ) is the reduction environment that applies for the
reduction of e at its point of definition.

Definition 10 (Bound Predicate). The total predicate bound : EE × Ref 7→ Bool
specifies when a reference is bound or not with respect to a reduction environment:

bound(ρ, xn) = rbound(tln(ρ), x)
rbound([ ], x) = false

rbound(σ:: t, x) = if (x ∈ Def(σ)) then true else rbound(t, x)
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4.5. Operational Semantics

An operational semantics for the amalgams, following Kahn’s natural semantics [24]
style, is given through the specification of a reduction relation ։⊆ EE × Σ × Σ.
The relation ։ is the least relation satisfying the rules given in Fig. 6. The next
section gives some properties of the semantics and the section 4.7 comments all the
reduction rules.

The formula ρ ⊢ u ։ u′ means that expression u is reduced in u′ in a single step
in the ρ environment (big-steps semantics). We say that a term u evaluates to u′

if [ ] ⊢ u ։ u′. For simplicity, we write u ։ u′ for [ ] ⊢ u ։ u′) and equivalently we
say that the value of u is u′.

xn
1

ρ′ = tln(ρ) ρ′ ⊢ ρ′(xn) ։ e ρ ⊢ e ։ e′

ρ ⊢ xn ։ e′
bound(ρ, xn)

xn
2 ρ ⊢ xn ։ xn

¬ bound(ρ, xn)

{}
{−−−−→x = e } ⊎ ρ ⊢ e1 ։ e′1 . . . {−−−−→x = e } ⊎ ρ ⊢ en ։ e′n

ρ ⊢ {−−−−→x = e } ։ {
−−−−→
x = e′ }

#1
ρ ⊢ u ։ u′ ρ ⊢ v ։ v′

ρ ⊢ u#v ։ u′#v′
(u′ 6∈ Sys) ∨ (v′ 6∈ Sys)

#2
ρ ⊢ u ։ {−−−−→x = e } ρ ⊢ v ։ {

−−−−−→
x′ = e′ } ρ ⊢ {−−−−→x = e ,

−−−−−→
x′ = e′ } ։ w

ρ ⊢ u# v ։ w

when {−→x } ∩ {
−→
x′ } = ∅

�1
ρ ⊢ u ։ u′

ρ ⊢ u � v ։ u′ � v
u′ 6∈ Sys

�2
ρ ⊢ u ։ u′ u′ ⊎ ρ ⊢ v ։ v′

ρ ⊢ u � v ։ v′
u′ ∈ Sys

Figure 6. A big-step semantics of the amalgams through the specification of a reduction ։.

4.6. Properties of the Semantics

Definition 11 (Normal Form and Stuck Term). We say that a term u is in ρ-normal
form iff ρ ⊢ u ։ u′ implies that u ≡ u′, i.e. when a term only reduces to itself. A
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term is in normal form if it is in [ ]-normal form. A term is ρ-stuck there is no term
u′ such that ρ ⊢ u ։ u′; it is stuck iff it is [ ]-stuck.

Definition 12 (Term equivalence modulo a system permutation). Let α be a permu-
tation of {1, . . . , n}. We define the permutation of a system {x1 = e1, . . . , xn = en}
by:

α
(

{x1 = e1, . . . , xn = en}
)

≡ {xα1 = eα1, . . . , xαn = eαn}

We note s ≡p s
′ if there exists a permutation α such that s ≡ α(s′).

The semantics described in Fig. 6 ensures the following properties (see the ap-
pendix for the proofs):

Theorem 1 (Determinism of the Semantics) The reduction relation is deter-
ministic, that is, if u ։ u′ and u ։ u′′ then u′ ≡ u′′.

Theorem 2 (Semantics Reduces to Normal Form) The reduction relation re-
duces a term to normal form, that is, if u ։ u′ then u′ is in normal form.

Theorem 3 (Clear, stable form and normal form) Term u is in normal
form iff u is clear and stable

Theorem 4 (Commutativity in a system) If u ∈ Sys and ρ ⊢ u ։ u′ then
ρ ⊢ α(u) ։ α(u′).

Theorem 5 (Commutativity of the Merge) Let terms u and v such that ρ ⊢
u ։ u′ and ρ ⊢ v ։ v′ and u′, v′ ∈ Sys, and ρ ⊢ u# v ։ w and ρ ⊢ v#u ։ w′.
Then w ≡p w

′ .

Together, these results tell us that:

1. ։ is really a partial function,

2. normal forms are fixed points of this function,

3. reducing a term results in a normal form (if one exists),

4. the merge is symmetric and the ordering of equations in a system does not
matter.

4.7. Reduction Rules

The reduction rules of Fig. 6 are of four different kinds: two rules for the reduction
of a reference, a merge or a selection operator and one rule for the reduction of a
system.
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4.7.1. Substitution of a Bound Reference. Rules “xn
_” are the substitution rules

of the semantics. The first rule states that a reference xn in an environment ρ that
is bound in to a definition in an environment ρ′ = tln(ρ) has its definition:

1. first reduced to a term e in ρ′-normal form and then,

2. term e is reduced in ρ-normal form.

In other words: a definition is first totally reduced in the environment at the point
of definition before substitution and further reduction at the point of reference.

The second rule states that a free reference remains unchanged.

4.7.2. Reduction of a System. The reduction of a system is defined by the rule
“{}”. It consists in the reduction of the r.h.s. of every equation, in the environ-
ment augmented with the definitions of the current system. The semantics that is
proposed here is strict.

We remark that the rule, by definition, does not allow the same identifier to
appear more than once in the l.h.s. of a definition in a system. Indeed, given a
term u ∈ Σ all subterms v of u which belong to Sys satisfy this property (because
the definition of Sys). In addition, the only reduction rule that creates a new
system during the reduction process is rule “#2” which can be trigerred only if the
the new system assumes this property.

4.7.3. Reduction of a Merge. The reduction of a term having a merge operator
is handled by rules “#1” and “#2”. The reduction of e ≡ u# v in an environment
ρ depends whether the ρ-normal form of u and v are both systems or not. Let u′

(respectively v′) be the ρ-normal form of u (respectively v):

• If u′ and v′ are both elements of Sys, then rule “#2” applies and the result of
e in ρ is the system s consisting of all the equations coming from u′ and v′,
provided that no identifer appears at the same time in u′ and v′.

• If u′ or v′ is not a system, then rule “#1” applies and the result of e in ρ is
u′ # v′.

We remark that rule “#2” may only be applied to a term e if no identical identifiers
appear at the same time in u and v. If this condition does not hold, the reduction
process is stuck.

4.7.4. Reduction of a Selection. The reduction of a term having a selection oper-
ator is handled by rules “ �1” and “ �2”. The reduction of e ≡ u � v in an environment ρ
depends whether the ρ-normal form of u is a system or not. Let u′ be the ρ-normal
form of u:

• If u′ is an elements of Sys, then rule “ �2” applies and the result of e in ρ is the
result of the (u′ ⊎ ρ)-normal form of v, that is, the result of the reduction of v
in the definitions brought by the system u′.
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• If u′ is not a system, then rule “ �1” applies and the result of e in ρ is u′ � v.

4.8. Examples of Stuck Terms and of Reductions

4.8.1. Examples of Stuck Terms. We gives here three examples of stuck terms:

1. {a = x 0}# {a = y0} is a stuck term because rule “#2” cannot be applied
because the sets of defined identifiers of each sub-term of # are not disjoint.
And no other rule applies.

2. {x = {a = x 0}} is stuck because it cannot be reduced to a finite term.

3. {x = x 0} is stuck because the relation ։ is the least relation satisfying the rules
in Fig. 6. As a matter of fact, bound(

[

[x 7→ x 0]
]

, x 0) holds and then we can only

try to apply rule “xn
1 ”. The application of this rule has conclusion

[

[x 7→ x 0]
]

⊢

x 0 ։ x 0 but can be applied only if we prove hypothesis
[

[x 7→ x 0]
]

⊢ x 0 ։ x 0.

Because the minimality of ։, we cannot derive
[

[x 7→ x 0]
]

⊢ x 0 ։ x 0 and then

x 0 is
[

[x 7→ x 0]
]

-stuck. As a consequence {x = x 0} is stuck.

4.8.2. Examples of Reductions. We now give some examples of succesful reduc-
tions.

The reduction of {a = b, b = c, c = d} gives {a = d, b = d, c = d}. Indeed, let
ρ denotes the environment

[

[a 7→ b, b 7→ c, c 7→ d]
]

. Then ρ ⊢ d0 ։ d0 by rules
xn

2 . We have ρ(c0) = d0 and then ρ ⊢ c0 ։ d0 by rule xn
1 . In addition, we have

ρ(a0) = b0 and ρ ⊢ b0 ։ d0 because ρ(b0) = c0 and we have seen that ρ ⊢ c0 ։ d0.
In consequence, application of rule {} ensures this result. The proof tree is:

A B C
[ ] ⊢ {a = b0, b = c0, c = d0} ։ {a = d0, b = d0, c = d0}

{}

Let σ denotes the function [a 7→ b0, b 7→ c0, c 7→ d0], then A is the following
proof-tree (remark that we always have [σ] as environment because tl0([σ]) = [σ]):

[σ] ⊢ σ(c0) ։ d0
xn

2
[σ] ⊢ d0 ։ d0

xn
2

[σ] ⊢ σ(b0) ։ d0
xn

1
[σ] ⊢ d0 ։ d0

xn
2

[σ] ⊢ b0 ։ d0
xn

1

We remark that σ(b0) = c0 and σ(c0) = d0. We have B:

[σ] ⊢ σ(c0) ։ d0
xn

2
[σ] ⊢ d0 ։ d0

xn
2

[σ] ⊢ c0 ։ d0
xn

1

and C is:

[σ] ⊢ d0 ։ d0
xn

2
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Here is a more complex example, involving the nesting of systems. For the sake
of brievety, in the following explanations the statement “u is in [[x1 7→ e1, x2 7→
e2, x3 7→ e3, . . . ], [x

′
1 7→ e′1, x

′
2 7→ e′2, . . . ], . . . ]-normal form” is shortened as “u is in

[[x1, x2, x3, . . . ], [x
′
1, x

′
2, . . . ], . . . ]-normal form”.

We start from system:

{a = b0, b = c0, r = {c = z 0, b = y0, v = a1}}

the reduction of the bound reference a1 at occurence [r, v] to its [[c, b, v], [a, b, r]]-
normal form requires the reduction of b0 (the definition of the bound reference) in
[[a, b, r]]-normal form, which itself requires the reduction of c0 in [[a, b, r]]-normal
form. Since c0 is already in [[a, b, r]]-normal form, the value of c0 is c0; the value
of b0 in [[a, b, r]]-normal form is also c0, that cannot be further reduced. Finally,
the value of a1 in [a, b, r]-normal form is c0. But c0 is not in [[c, b, v], [a, b, r]]-
normal form. In this environment, it is a bound reference, with z 0 as definition.
Consequently, the reduction of c0 requires the reduction of z 0 in [[c, b, v], [a, b, r]]-
normal form, which is z 0 which is already in [[c, b, v], [a, b, r]]-normal form.

Then, the final result of the reduction of a1 at occurence [r, v] to its [[c, b, v], [a, b, r]]-
normal form is z 0

5. Expressive Power of the Amalgams

We illustrate the expressive power of the amalgams through expressions of the
amalgams. In the next section, we describe a naïve coding of boolean functions;
in section 5.3, we add to the core formalism a conditional operator and describe a
coding of recursive functions; then, in section 5.5 we describe how the amalgams
can be integrated into a declarative framework and show how an object-oriented
programming style can be achieved.

5.1. Coding Boolean Functions in Amalgams

As a first example, we show how a boolean function can be coded using amalgams
(inspired by [10, pp 66]). We consider the example of the negation of a boolean
value. Boolean values are coded as the references true0 and false0.

The computation of the negation is done in two steps. First, The boolean value
is translated, using a selection, into a free reference: true0 becomes f 0 and false0

becomes t0. The translated value is accessible through first. Then the previously
computed value is translated back, using again a selection: t0 becomes true0 and
f 0 becomes false0. The translated value is accessible through second.
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The program corresponding to the coding of the boolean values in amalgams,
where pboolq corresponds to the free reference coding the boolean value, is:

{value = pboolq,

not = {first = {true = f 0, false = t0} � value2,

second = {t = true0, f = false0} � first1

} � second0

}

The result of the negated value, defined through value, is accessible through the
definition of not. The reader interested in the translation scheme should refer to [35]
for other connectors. The result of the evaluation of pnot(true)q is, as expected:

{value = true0,not = false0}

5.2. Adding a Conditional Operator

We introduce a conditional operator if(c, t, f) to the set of amalgam terms Σ. The
condition is a boolean in the style just introduced.

Definition 13 (Σif). The set Σif of amalgam terms extended with a conditional
operator, is the smallest set satisfying the three rules of definition 2 (where Σ is
replaced by Σif) with the additional rule:

4. if e1, e2 and e3 are elements of Σif, then if(e1, e2, e3) is an element of Σif.

All the functions previously defined on Σ are naturally lifted to Σif.

The semantics of the new operator is given in Fig. 7. The treatment of the
conditional is lazy (we only require that the branch selected by the conditional to
have a ρ-normal form).

iftrue
ρ ⊢ c ։ true0 ρ ⊢ t ։ t′

ρ ⊢ if(c, t, f) ։ t′

iffalse
ρ ⊢ c ։ false0 ρ ⊢ f ։ f ′

ρ ⊢ if(c, t, f) ։ f ′

if
ρ ⊢ c ։ c′

ρ ⊢ if(c, t, f) ։ if(c′, t, f)
c 6∈ {true0, false0}

Figure 7. The semantic rules of the reduction of the conditional operator.

One may wonder whether such a conditional form could be implemented using
only the core formalism of the amalgams or not. The definition of the semantics
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given here does not allow such a form because it requires a term to be fully reduced
to get its value (big-step semantics). One of the expression of the conditional may
not have a normal form and therefore the computation would not terminate.

However, we have given in [35] a small-step semantics which accommodates partial
terms. For instance, in this semantics, the following expression

{a = {b = a1, c = d0} � c0}

has the value {a = d0}. In the semantics presented in this paper this term has no
normal form. In the small-steps semantics of [35], a conditional form can be defined
in the amalgams but the semantics is intricate and complicates unnecessarily the
presentation of the formalism.

5.3. Coding the Arithmetic in Amalgams

We describe how numeric recursive functions can be translated in Σif. This example
shows the formal expressive power of the amalgams. We restrict ourselves to the
class of total functions. Indeed, the translation scheme that we propose doesn’t
ensure the non-termination of the computation of the amalgam associated with the
application of a function on arguments that do not belong to the definition domain.
The definition of the primitive recursion that we use is slightly different from the
one usually used, but is equivalent. The definition adopted here is easy to translate.
The function Up

iU
p
iU
p
i represents the ith projection, SSS the successor function and ZZZ the

function that returns zero.

5.3.1. Definability using Amalgams. Definition 14 (Representation of integers
in Σif). For each n ∈ N, a term pnq ∈ Σif is defined in the following way:

p0q ≡ {b = true0}
pn+ 1q ≡ {p = pnq, b = false0}

Definition 15 (Definability using amalgams). Let ϕ be a numerical function of
arity p. We say that ϕ is definable using amalgams, or a-definable, if there exists a
system s such that:

∀~n, {a1 = pn1q, . . . , ap = pnpq} � s ։ {value = pϕ(~n)q, . . . }

In this expression, we have abbreviated n1, . . . , np by ~n; the “ . . . ” in the result
means that s is a system that must have at least a definition for value and that can
have additional definitions if necessary. The names a1, a2, . . . are, by convention,
names given to the arguments for ϕ and that are not used elsewhere (s may depend
on those names).

5.3.2. Coding of Numeric Functions. The basic numeric functions are a-definable,
using the following terms:

U
p
iU
p
iU
p
i ≡ {value = ai}
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SSS ≡ {value = {p = a1, b = false0}}
ZZZ ≡ {value = p0q}

The numerical function P such that P (n+ 1) = n is a-definable:

PPP ≡ {value = a1 � p}

The functions a-definable are closed under composition. Indeed, let φ, ψ1, . . . , ψm

be a-defined respectively by the terms G,H1, . . . ,Hm, then:

ϕ(~n) = φ(ψ1(~n), . . . , ψm(~n))

is defined by:

{value = args � G,

args = {a1 = H1 � value, . . . , am = Hm � value}}

We are now able to prove that the a-definable functions are closed under primitive
recursion. The intuition behind the definition of a recursive calling scheme is to
create an expression corresponding to the term resulting from the translation of the
function, but with no bound reference. Afterwards, definitions are given to the free
references, at the moment of the function-call.

We detail the scheme for a function ϕ of two variables, using the conditional
and the recursive scheme. Let ϕ be the function defined by ϕ(0, y) = φ(y) and
ϕ(x + 1, y) = ψ(x, ϕ(x, ψ1(y))) with φ a-defined by F , ψ a-defined by G and ψ1

a-defined by H. Then ϕ is a-defined by (x and y are the names of the arguments
used for ϕ):

{parameter = {x = px 0, y = py0},
px = x 1 � p0,

py = {x = y2} � H,

fct = if(x 0 � b0,

{x = a0 1} � F,

{x = x 1, y = arg0 � fct0} � G),

value = ({arg = parameter0} � ({x = x 3, y = y3} � fct0))}

The way that we have defined the translation of the primitive recursion, it should
be obvious to the reader that it does not matter if we increment or decrement x in
the scheme of the primitive recursion: this leads naturally to an implementation of
the minimization.

5.3.3. Example of the Addition. The definition of the addition:

add(0, n) = n

add(n+ 1,m) = add(n, S(m))

takes the form of a primitive recursion where we have φ = UUU1
1, ψ = UUU2

2, ψ1 = SSS.
The translation of add(2, 1) is the term defined in figure 8. The identifiers A and
F are meta-variables used to describe the terms in pieces; they are not elements of
Id.
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A ≡ {x = {b = false0, p = {b = false0, p = {b = true0}}},
y = {b = false0, p = {b = true0}}}

F ≡ {parameter = {a5 = px 0, a4 = py0},
px = (a5 1 � p0),

py = ({a6 = a4 2} � {b = false0, p = a6 1}),
fct = if((a5 0 � b0), a4 0, (arg0 � fct0)),

value = ({arg = parameter0} � ({a5 = x 0, a4 = y0} � fct0))}

add(2, 1) ≡ A � F

Figure 8. The term corresponding to the addition of 2 to 1 in the arithmetic coded using amalgams.
These terms have been slightly modified to improve readability.

5.4. Adding Constants and Operations on Constants

We extend the language Σif of the amalgams to allow the manipulation of integers
and operations on integers.

Definition 16 (Σif,N). The set Σif,N of amalgam terms extended with conditional,
integers and operations on integers is the smallest set satisfying the four rules of
definition 13 (where Σif is replaced by Σif,N) with the additional rules:

5. a constant n (element of N) is an element of Σif,N,

6. if e1, ..., en are elements of Σif,N and f is an n-ary functional symbol, then the
application of f to the e1, ..., en, noted f(e1, ..., en) is an element of Σif,N.

and nothing else is an element of Σif,N. All the functions previously defined on Σif

are naturally lifted to Σif,N.

By convention, c ranges over the set of constants and f ranges over the set of
functional operators. We abbreviates f(e1, ..., en) by f(

−→
e ).

We add to the set of rules defined in Fig. 6 and Fig. 7 three rules:

• a rule for the reduction of a constant,

• two rules, similar to the δ-rule of the λ-calculus, for the reduction of any n-ary
functional symbol.

These two new rules allow us to manipulate constants and arithmetical operators
with domain and codomain in N rather than having to code them explicitly in the
amalgams. The reduction rules are given in Fig. 9.

5.4.1. Reduction of a Constant. The rule defining the value of a constant is
straightforward: the value of a constant is the constant itself.
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N
ρ ⊢ c ։ c

c ∈ N

δN
ρ ⊢ e1 ։ c1 . . . ρ ⊢ en ։ cn f(c1, ..., cn) = c′

ρ ⊢ f(
−→
e ) ։ c′

∀i, ci ∈ N

δ¬N
ρ ⊢ e1 ։ c1 . . . ρ ⊢ en ։ cn

ρ ⊢ f(
−→
e ) ։ c′

∃i ∈ [1, n], e′i 6∈ N

Figure 9. The semantic rules of the reduction of constants and any n-ary functional symbol.

5.4.2. reduction of an n-ary Functional Symbol. The reduction of an expression
u ≡ f(e1, ..., en) involving an n-ary operator f requires first to reduce each operand
ei to its ρ-normal form e′i. If each ei is reduced to a constant, then rule “δN” is
applied and the result of reducing u in ρ is the result of the application of the
function fN (with signature Nn 7→ N) to the constants. If one of the terms e′i is
not a constant, rule “δ¬N” applies and the result of reducing u in ρ is the term
f(e′1, ..., e

′
n).

5.5. Object-Oriented Programming Style

Amalgams have been initially developed to structure 81/2 programs [19, 30]. 81/2 is
a declarative language defining streams by equations (each variable, defined by an
equation, represents a succession of values in time). With the features of the amal-
gams, it is possible to adopt an object-oriented programming style by considering
fragments of programs and their composition. We detail in this section an example
of such a programming style.

The notion of system allows the definition of environments. The composition of
systems by merging enables the definition of extensible environments. Moreover,
open expressions and the ability to complete these expressions with definitions,
allow the design of a programming style similar to the one found in object-oriented
languages. It is possible to design and compose fragments of programs following a
class structure and using a mechanism similar to the class instantiation mechanism
found in those languages. We describe, through an example, how to “emulate” a
programming style close to that of object-oriented languages.

A system represents both the notions of class and class constructor that are used
to create an instance of a class. The arguments required by the constructor are
the free variables of the system. The instantiation of a class corresponds to the
merge of the system with the arguments required by the constructor. Additional
definitions may be added to an object, through the use of the merge operator, and
corresponds to the inheritance mechanism.
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A closed system (with no free references) corresponds to an object, as in object-
oriented languages. The object model that we are defining is the embedding based
model, where all the information about an object is in the object itself. It is obvious
that our “model” lacks all the high-level mechanism of protection and encapsulation
proposed by classical object-oriented languages.

To illustrate this programming style in 81/2, we define, following an object-
oriented programming style, a model of the trajectory of a planet in a circular
uniform movement around a star. The star itself is following a rectilinear uniform
movement. First, we define a class Mobile of moving objects. The Mobile class is
represented by a system with two free references: initial which represents the initial
position of the object, and dp which represents the elementary movements of the
object. With these free references, which are vectors of two elements corresponding
to the Ox and Oy axis, the system Mobile defines a position:

Mobile = {position = initial0 fby $Mobile � position + dp0},

The position field of a Mobile is a stream of values representing the trajectory of the
mobile along time. The $ operator gives access to the previous value in a stream;
fby is the analog for infinite streams of the cons operator on lists.

Once Mobile is defined, we can define a new class of objects: mobile objects with
a uniform speed. The class U−Trajectory awaits an initial position (required by the
Mobile class from which it inherits) and a vector speed to instance itself:

U−Trajectory = Mobile # {dp = speed0}

The system U−Trajectory is a system with all the definitions of the Mobile system
because it is a system extended by the definitions of dp used to compute the el-
ementary movements with a uniform trajectory (we suppose that speed will be a
constant equal to the difference between two successive values of the stream). The
merge operation combines these two systems and binds the free reference dp of the
anonymous system with the definition of U−Trajectory .

We follow with this example by using Mobile to represent the circular trajectory
of a planet around a star which follows a uniform trajectory. The class C−Trajectory

awaits a radius, a center and an angular speed:

C−Trajectory =

Mobile # {initial = {center0 � 0, angle0 + center0 � 1},
dp = {dx, dy},
t = $t+ angular_speed,
dx = . . . formula involving sin and cos of t . . .

dy = . . . }

Now, we just have to instantiate the classes to describe the movement of a planet
around a star in a uniform translation:

Star = U−Trajectory # {speed = {1.0, 1.0}, initial = {0.0, 0.0}},

P lanet = C−Trajectory # {angle = 1.0, center = Star � position}
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6. Related Works

6.1. Environments as First-class Values.

The notion of binding is essential in the approach taken by the Pebble language [7]
to design modules and interfaces. A binding is an association (name, value), the
binding itself being a value. The scope of the bindings is limited by the classical
LET, IN and WHERE operators. An environment is defined as a set of bindings. Sets
of bindings may be combined using the “ ;” construction such that B1;B2 defines
the set of bindings appearing in B1 and B2.

Pebble bindings do not allow the definition of “recursive” sets of binding, like the
expression: {a = 1, b = c0}# {c = a0, d = b0} where each free reference in an
environment is solved by the definitions of another environment. Furthermore, re-
definitions of bindings overlap previous definitions, whereas they are still reachable
in the amalgams. Pebble bindings are similar to the data parameters of [26] but
suffer from the same restrictions (see below).

Symmetric Lisp [22] is a concurrent language allowing the definition of environ-
ments through the explicit operator ALPHA. It is possible to extend these environ-
ments but the extension can only take place between an open environment (defined
using the OPEN-ALPHA form). After this first step towards the gathering of defini-
tions into environments, Jagannathan defines the two explicit operators reflect

and reify to translate a data structure into an environment and an environment
into a data structure.

These operators are reminiscent of the reflexive languages. In these languages,
it is possible to access to the interpreter of a program, using reflect and reify,
to modify the interpreter’s structures of the running program. In this approach,
the environments are not denotable [14, 45]. They are now first-class values (an
environment is denotated by a closure and reified into a record) but, unlike the ap-
proach followed by Pebble and the amalgams, they are distinguished from other data
structures. Operators defined on data structures cannot operate on environments.
Therefore they require two explicit operators that we keep implicit. Furthermore,
redefinitions of bindings in an environment cannot be accessed.

6.2. Formalization of Incremental Computation.

Lamping initiated the work on parameterization [26]. A system (in its common
definition) is parameterized when the value of the outputs depends from one or
several of its inputs. Lamping proposes, in addition to the classical lexical binding,
an environment based binding, using a special form of variables: data parameters.
A data parameter is declared with the explicit operator data: x and the value of
x is given by a supply operation. The composition of environments is possible
through the ◦ operator.

No difference between lexical and dynamic binding is made by the amalgams.
Their late lexical binding strategy allows the binding of lexical references and the
dynamic resolution of free references. Furthermore, redefinitions are accessible in
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the amalgams whereas the composition of environments in Lamping’s system over-
laps redefinitions.

In [27] a new kind of variable is introduced: a quasi-static variable. The special
form qs-lambda is used to define a quasi-static procedure that represents a piece
of parameterized code. The special form resolve1 is used to bind a quasi-static
variable of a quasi-static procedure to a definition. Actually, a quasi-static variable
is a pair (name, variable), the variable being subject to α-conversion whereas the
name is not.

Our approach is simpler: a system is implicitly parameterized by its free refer-
ences. No distinction is made between two different types of variables, only ref-
erences are manipulated and resolution of free references is implicitly done by a
capture mechanism.

The λ-calculus is a well known formalism and is heavily used to model features
of todays programming languages. The λC-calculus [28] is a tentative step towards
the formalization of the incremental construction of programs. To reach this goal,
the notion of name (a context) is introduced in the λ-calculus. Nevertheless, this
introduction is not trivial: the interaction between β-substitution and hole filling
(the name capture mechanism defined to substitute a name with an expression)
is not straightforward. A solution to the problems encountered is found in the
separation of the domains of β-substitution and hole-filling. Therefore, contexts
and λ-terms do not share the same name-space. Another solution to the same
problem can be found in [20] using an explicit typing system.

The approach followed by the amalgams is different. Since we rely on a uniform
system (we only have a single kind of reference, and a single kind of substitution
policy), we do not have to solve the problem of interactions between β-substitution
and hole-filling. Besides technical matters, our resolution of the problem is also
different: we rely on an implicit approach where free references are implicitly ab-
stracted when appearing into the scope of a definition whereas for the λC-calculus,
contexts need to be explicitly abstracted and solved.

6.3. Mixins and Modularity.

After its first introduction in the LISP community [25, 39] to represent an abstract
subclass, the notion of mixin has been widespread in the object-oriented community
to denote a class where some components of different nature (types, exceptions,
methods, slots, ...) are not defined. The definition of such component is deferred
and can effectively be used for instantiation only when combined with some other
class which provides the missing definitions [6, 29, 15]. This general definition can
be seen as independent of the object-oriented framework and can be formulated in
the more general context of module composition [5, 15].

The mixin approach put the emphasis on the composition of mixins (rather than
on the instantiation of deferred components). In the field of module construction,
the main operator is the binary merge operator: if M1 and M2 are two mixins, then
M1+M2 is a mixin where some definitions ofM1 are associated with the correspond-
ing declarations in M2 and conversely. This operator is commutative and is defined
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whenever no components are defined on both sides [2]. Note that this approach en-
ables the recursive definition of components split over several modules [15], which
is not possible with regular modules (like in Standard ML for example). Additional
operators (restrict, hide, freeze, rename, functional composition, ...) are defined to
manage name clashes, redefinitions, access to a component, etc.

A mixin module is very close to a system: deferred components are free references
in the amalgams; the merge operator corresponds to the # operator; functional
composition M1 ◦M2, where definitions in M1 are used in M2 and not conversely
(this is a one-way merge) is similar to the selection operator. Moreover, the freeze
operator (that allows the building of a module independently of the redefinition
of some components) is not required in the amalgams since binding cannot be
redefined: once a reference is bound, it is substituted by its definition. Operators
like hide and restrict that are used to manage name clashes are not considered in
the core definition of the amalgams.

To our knowledge, the approach followed by Ancona and Zucca [3] is the only
one that defines a formal semantics of mixins independently of the semantics of
the embedding language. Thus, this approach, like ours, concentrates on the pure
notion of system composition, independently of the nature of the system elements.
However, the semantic developed by Ancona and Zucca relies on the concept of
function to represent a system with deferred components (deferred components are
argument of the function). Since our approach does not rely on the concept of
function, we believe that our proposition provides a more primitive formalization
of system composition.

7. Conclusion

We believe that amalgams are orthogonal to the notion of function in declarative
languages. Indeed, open expressions are allowed, which serves as incomplete pieces
of code that can be completed later in several places. Our proposition is not to
replace the use of functions by amalgams, but rather to use amalgams to structure
and parameterize coarse pieces of code and to compute new programs from already
existing ones. As far as distributed incremental program construction is concerned,
a major advantage of the amalgams over the classical λ-calculus relies on the in-
trinsic incremental property of the amalgams: the free references together with
the merge operation naturally allow dynamic extensions of programs, whereas the
λ-calculus needs to be deeply improved to allow the same behavior (cf. section 6
and the works of [12, 17, 20, 28]).

However, amalgams lack a typing system: actually they are an untyped formalism.
The evaluation of an expression, using the semantics defined in this paper, may not
terminate (consider {a = {x = a, b = 1} � b} for example that exhibits a cycle
through the definition of x even if only b is necessary for the resolution of the
selection).

From the semantics described in Fig. 6, an environment (called Mercure) has
been developped in ML allowing the evaluation of expressions of the amalgams2.
With this first evaluator, amalgams are currently being embedded into the declar-
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ative data-parallel language 81/2 [19, 30]. The 81/2 language manipulates inten-
sionally [34] the notions of stream [44] and collection [42]. Since the notions of
stream and collection are orthogonal to the definition of amalgams, they are natu-
rally added as a ground type in the amalgams formalism. Amalgams are the key to
the definition of parameterized expressions allowing programs to be incrementally
constructed at run-time through the free references of the expressions.

The integration of amalgams in 81/2 consists in the definition of an evaluator of
streams of amalgams enabling the definition of incremental computations, symbolic
computation and an object oriented programming style (see examples in [31, 33,
32, 35]).

We are working on an extension of the core formalism presented here with a notion
of location and distributed operators for the modeling of distributed incremental
compulations.
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Appendix

We give in the following sections a sketch the proofs of the properties given in
section 4.6 concerning the relation ։.

A.1. Determinism of the Semantics

Proof: We want to prove that if u ։ u′ and u ։ u′′ then u′ ≡ u′′. To establish
this result, it is sufficient to check that at most one rule can apply to a given term
(because then there is at most only one possible proof tree for ρ ⊢ u ։ u′).

The four set of rules {xn
1 , x

n
2}, {#1,#2}, {�1, �2} and {{}} are mutually exclusive

because they do not apply to the same terms. The rules in the three first sets are
mutually exclusive because of their side condition (the side condition of rule xn

2 is
the negation of the side condition of rule xn

1 , etc.). So at most one rule can apply
to a term.

A.2. Semantics Reduces to Normal Form

Proof:

We want to prove that if u ։ u′ then u′ is in normal form, that is: u′ ։ u′. The
proof is by establishing the following property (P ): for any u and ρ, if ρ ⊢ u ։ u′

then ρ ⊢ u′ ։ u′, by induction on the height of the reduction tree of u.
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If the reduction tree of u is of height one, then only rule xn
2 can be used and we

have u ≡ xn and ρ ⊢ xn ։ xn which satisfies (P ).
Suppose by induction hypothesis that (P ) is true for any term u′ when the height

of the reduction tree of u′ is less than d and let a term u such that the height of
the reduction tree of u is d+ 1. We prove that (P ) holds for u by inspection of the
term u ; we present here only two cases, the other ones are similar:

1. if u ≡ xn, then, because the height of the reduction tree of u is d+1 only rule xn
1

can apply. Let u′ ≡ ρ(xn) and e, e′ such that tln(ρ) ⊢ u′ ։ e and ρ ⊢ e ։ e′.
The height of the reduction tree of e′ is necessarily less or equal to d because it
is a sub-tree of the reduction tree of u. Then property (P ) is true for e′ and we
have ρ ⊢ e′ ։ e′. That is, property (P ) holds also for u.

2. if u ≡ {−−−−→x = e } and ρ ⊢ u ։ {
−−−−→
x = e′ }, then the reduction tree of ei is less

or equal to d and then u ⊎ ρ ⊢ e′i ։ e′i by rule {}. Therefor, ρ ⊢ {
−−−−→
x = e′ } ։

{
−−−−→
x = e′ }.

A.3. Clear, stable form and normal form

Proof:

We begin by generalizing the definition of clear form. Let ρ ∈ EE, we say that a
term u is in ρ-clear form if it is in def (ρ)-clear form, where the function def : EE →
Edef is defined by:

def (∅) = ∅
def (σ :: ρ) = Def(σ) :: (def ρ)

We want to prove the more general statement:

u is in ρ-normal form ⇔ u is in a ρ-clear and stable form

We first establish that if u is in a ρ-clear and stable form, then u is in ρ-normal
form. The proof is by induction on the structure of u:

1. Base case. We have u ≡ xn. Because u is in ρ-clear form, only rule xn
2 can

apply and we have ρ ⊢ u ։ u.

2. Induction step.

(A) Let u ≡ {−−−−→x = e } and ρ′ = {−−−−→x = e } ⊎ ρ. It is easy to see that each ei

is in ρ′-clear and stable form because u is in ρ-clear and stable form. The
induction hypothesis can be applied to each ei to conclude that each ei is
in ρ′-clear and stable form, that is : ρ′ ⊢ ei ։ ei. Then ρ ⊢ u ։ u, that is
u is in ρ-normal form.
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(B) Let u ≡ v1 # v2. v1 and v2 are in ρ-clear and stable form because u is.
Then we habe by the induction hypothesis: ρ ⊢ v1 ։ v1 and ρ ⊢ v2 ։ v2.
Because u is in stable form, only rule #1 may apply, and thus ρ ⊢ u ։ u,
that is, u is in ρ-normal form

(C) Let u ≡ v1 � v2. We have v1 in ρ-clear and stable form and then, by
induction hypothesis, v1 is in ρ-normal form. Then because u is in stable
form, v1 6∈ Sys and only rule �1 may apply and thus ρ ⊢ v1 � v2 ։ v1 � v2.
In order word, u is in ρ-normal form.

In the opposite direction, we first establish that if u is not in ρ-clear form, then
u cannot be in ρ-normal form by induction on the structure of u.

1. Base case. We have u ≡ xn. Because u is not in ρ-clear form, rule xn
1 applies

and we have ρ ⊢ e′ with tln(ρ) ⊢ ρ(xn) ։ e and ρ ⊢ e ։ e′. If e′ 6≡ xn, u is
not in ρ-normal form and we have the result. If e′ ≡ xn, then the height of the
reduction tree cannot be finite (that is, xn is ρ-stuck: this is a variant of the
example 3 in section 4.8.1).

We argue by contradiction, suppose that the height of the reduction tree of xn

is finite, say d. By hypothesis we have ρ ⊢ e ։ xn. This can be the case only if
e is of form yn1

1 or v � yn1

1 with y1 ∈ Id, v ∈ Σ and n1 ∈ N. In either case, we
have to prove ρ1 ⊢ yn1

1 ։ xn for some ρ1. That is, the proof tree of ρ ⊢ xn ։ xn

strictly includes a proof tree of ρ1 ⊢ yn1

1 ։ xn. Note that ρ is a suffix of ρ1 (if
e is of form yn1

1 then ρ1 = ρ, in the other case ρ1 = σ :: ρ for some σ).

We may apply to yn1

1 the same reasoning and we obtain that the proof tree of
ρ ⊢ xn ։ xn must contain a proof tree of ρ2 ⊢ yn2

2 ։ xn with ρ a suffix of
ρ2. We may continue in this way, but because the proof tree of ρ ⊢ xn ։ xn is
finite, we obtain that for some j: yj ≡ x. Then we have just established that
the proof tree of ρ ⊢ xn ։ xn strictly contains a proof tree of ρj ⊢ xn ։ xn

with ρ a suffix of ρj .

We distinguish two cases:

(A) If ρj = ρ, then the proof tree of ρ ⊢ xn ։ xn strictly contains itself. So it
cannot be finite.

(B) Let ρ(1) = ρj . If ρ(1) 6= ρ, then xn cannot be in ρ(1)-clear form because
xn is not in ρ-clear form and ρ is a suffix of ρ(1). We may apply the
same reasoning as before and we have in the proof tree the statements:
ρ(2) ⊢ xn ։ xn, ρ(3) ⊢ xn ։ xn, . . . We cannot iterate this procedure
indefinitely because the length |ρ′| of an environment ρ in a proof tree is
bounded by the height of the proof tree (more precisely: |ρ′| ≤ d + |ρ| for
any environment ρ′ in the proof tree of ρ ⊢ xn ։ xn). Then the number of
possible environments with suffix ρ is bounded and we must have ρ(k) = ρ

for some k. Then we conclude as in the case (A).

2. Induction step. We suppose the property true for any sub-term of u.
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(A) Let u ≡ {−−−−→x = e }, ρ′ = {−−−−→x = e } ⊎ ρ and e′j such that: ρ′ ⊢ ej ։ e′j .
u is not in ρ-clear form, thus there is a i such that ei is not in ρ′-clear
form. Then ei is not in ρ′-normal form by induction hypothesis, that is:

ρ′ ⊢ ei ։ e′i with ei 6≡ e′i. But then, {−−−−→x = e } 6≡ {
−−−−→
x = e′ }, or in other

word, u is not in ρ-normal form

(B) Let u ≡ v1 # v2. The proof is similar to the previous case, using only
environment ρ and one of v1 or v2 instead of ei.

(C) Let u ≡ v1 � v2. The proof is similar to the previous case.

Lastly, we have to establish that if u is not in a stable form, then u cannot be in a
normal form. The proof is simple: if u is not in stable form, there exists a subterm
of u of form s � e2 with s ∈ Sys or of form s# s′ with s, s′ ∈ Sys. For these terms,
the rules that can be applied are �2 and #2 respectively. The second rule relates a
merge with a system. The first one cannot relate s � e2 to s � e2 by an argument
similar to the base case of the previous proof (it implies an infinite proof tree).

A.4. Commutativity in a system

Proof: Obviously, if s ∈ Sys then s ⊎ ρ = α(s) ⊎ ρ. Then, the ordering of the
equations in a system is used nowhere in the reduction rules and the assertion is
obvious.

A.5. Commutativity of the Merge

Proof: If ρ ⊢ u ։ {−−−−→x = e } and ρ ⊢ v ։ {
−−−−−→
x′ = e′ } and ρ ⊢ u# v ։ w,

then we have ρ ⊢ {−−−−→x = e ,
−−−−−→
x′ = e′ } ։ w and if ρ ⊢ v#u ։ w′, then ρ ⊢

{
−−−−−→
x′ = e′ ,

−−−−→
x = e } ։ w′. But, by use of the previous proposition, we have: w ≡

α(w′) with α the permutation such that {−−−−→x = e ,
−−−−−→
x′ = e′ } = α({

−−−−−→
x′ = e′ ,

−−−−→
x = e }).

The result follows.

Notes

1. The reader, which is probably acquainted with the de Bruijn representation of λ-terms may
think of such a feature. But great care should be taken here: the escape operator defined in
the amalgams does not behave like de Bruijn indexes. Even if we use the same syntactic
construction to express a scope escaping mechanism, its semantics is totally different. Where
de Bruijn indexes require the lift of λ-terms for substitution, the amalgams require not to lift

the free references in the substitution process (see section 4.7.1) so that name capture may
happen. In the λ-calculus, name capture has to be avoided while it is the central computation
mechanism of the amalgams.

2. All examples given in this paper have been processed using this evaluator. The current version
is available at ftp://ftp.lami.univ-evry.fr/pub/archi/michel/Research/amald.tar.gz.
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