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ABSTRACT 

Mesoscopic modeling of intracellular kinetics is usually performed on the premise that diffusion is so fast 

that all concentrations are homogenous in space. However, this supposition is not necessarily valid even for 

small prokaryotic cells, as indicated by recent experimental data on intracellular diffusion constants. When 

diffusion and spatial heterogeneity are taken into account, stochastic simulation of chemical reactions in 

single cells is computationally demanding. We present an efficient Monte Carlo algorithm for simulation of 

mesoscopic reaction-diffusion kinetics in single cells. The total system (e.g. a single prokaryotic cell) is 

divided into N subvolumes (SVs), chosen so small that the concentrations of reactants in a SV are near-

homogeneous in space. The molecules in a SV can either undergo chemical reactions or diffuse to a 

neighboring SV. The expected time for the next chemical reaction or diffusion event is only recalculated for 

those SVs that were involved in the previous event. The time for the next event in each SV is ordered in an 

event queue, which makes the computation time linear in log N, rather then in N.
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1. INTRODUCTION 

Recent experiments have shown that the stochastic nature of intracellular kinetics must be taken into 

account in the description of biologically important reactions1-5. Mesoscopic modeling of gene expression 

and other intracellular reactions has been carried out6-13. The need for stochastic descriptions of gene 

expression is in line with intuition, since the numbers of individual genes and mRNAs per cell are small. 

However, fluctuations can play important roles also in systems with many copies of molecules. This has 

been demonstrated for microtubule formation14, ultrasensitive modification and de-modification reactions15,

plasmid copy number control16, noise-induced oscillations17 and metabolite concentrations18.

Common to most mesoscopic approaches is the assumption of a spatially homogenous mixture of all 

reactants, so that the chemical master equation19 can be applied. However, recent experimental results on 

protein mobility in the cytoplasm of E. col 20 suggest that this assumption might not be valid even in small 

bacterial cells. When diffusion of chemical reactants is comparatively slow, the standard master equation 

must be replaced by a state description that accounts for local concentrations19,21.

                                                          

 ehrenberg@xray.bmc.uu.se; phone +46 18 4714213; fax +46 18 4714262; www.icm.molbio.uu.se 

Invited Paper

Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems, Sergey M. Bezrukov, Hans Frauenfelder,
Frank Moss, Editors, Proceedings of SPIE Vol. 5110 (2003) © 2003 SPIE · 0277-786X/03/$15.00

114



2. THE REACTION-DIFFUSION MASTER EQUATION

To obtain a master equation formulation of chemical reactions in systems with non-uniformly distributed

concentrations due to finite diffusion constants (D), we divide the total system volume  in N cubic

subvolumes
†

(SVs) of volume and side length . Diffusion is treated as a memoryless random walk, in

that molecules jump between neighboring SVs with elementary rate constants given by 2D . The SVs

must be chosen sufficiently small, so that the probability distributions of their reactants can be treated as 

uniform. This means that the rate by which two molecules in a SV react should not depend on their initial

locations. This condition is fulfilled when
2

R
Dt  for all reactants, where tR as the mean time between two 

reactions for a single molecule19. The current numbers of molecules of all reactants in all individual cells

define the state of the system. The set of reactions that change the state of the system is extended in relation

to the master equation for homogenous systems by the inclusion of all diffusion jumps that bring a 

molecule from a SV to a neighboring one. The following example with five elementary chemical reactions

will be used to illustrate the approach:

  (1)

1

1

2

A
A

B
B

A+B

k

k

k

Molecules (A and B) are synthesized randomly (rate constants k1), and disappear when they react with each

other (second order rate constant k2) or when they are degraded (first order rate constant µ). This common

kinetic motif has interesting mesoscopic properties in parameter regions with near-critical system

behavior18. When diffusion is very fast, the concentrations of the reactants in Eq. (1) will be uniform in

space. In this limit, the state of the system is fully described by the numbers of A and B molecules.

Furthermore,  the transitions between states {A,B} are confined to the following elementary reactions
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The state dependent intensity of each transition is written over each arrow. The constants k1 and k2 have the

units Ms-1 and M-1s-1 and the corresponding intensities are proportional to  or , respectively. The

master equation for the homogeneous system is

1,0 0, 1 1 1,1 1,0 0,1

1 1 21 1 1 1
dP

k P k P k ABP AP
dt

1 BP (3)

Here, and the step operator, ,P P A B t 19  is defined from , , ,i j f A B f A i B j , where f is 

a function of the state variables A and B.

When diffusion is slow, the spatial distribution of A and B molecules will not be uniform and local

concentrations must be accounted for. To do this, we use a state space consisting of the numbers (Ai, Bi) of

A and B molecules in each of the N subvolumes (SVs) of the system. The state of the system changes when

a chemical reaction takes place in a SV or when a molecule diffuses from one SV to a neighboring one. The

diffusion of an A molecule from SV to SV is described as

.., ,.., .. .., 1,.., 1,..
AA d

A A A A

† In the physics literature subvolumes are often called cells, which can be misleading in a biological context.
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and the same type of scheme describes the diffusion of B molecules.

The rate constants for jumps between neighboring SVs are A Ad d = 2D and otherwise zero. With this

choice of d , the random walk approximates the diffusion equation,

2
,

,
p t

D p t
t

r
r ,

for the probability density  that a particle is at position r at time t,p tr
22. The discrete random-walk

treatment of diffusion is exact in the limit of infinitely small SVs, and it approximates correct reaction-

diffusion behavior when jumps between SVs occur much more frequently than the chemical reactions.

In this model, the reaction-diffusion master equation for the time dependent probability

distribution  for the number of A and B molecules in the system’s

subvolumes is given by

1 1, ,.., , ,.., , ,N NP P A B A B A B t

1,0 0, 1 1 1,1 1,0 0,1

1 1 2

1,0 1,0 0, 1 0,1

1 1 1 1 1

1 1A B

dP
k P k P k A B P A P B P

dt

d A P d B P

(4)

The step operator ,i j  is defined as above for changes confined to the state of the subvolume . The

reaction-diffusion master equation and its range of validity have previously been discussed

,i j

19,21,23.

The reaction-diffusion master equation has a much larger state space than its homogeneous counterpart. It

keeps track of the M different molecular species in the N different subvolumes that participate in R different

types of chemical reactions. Since one subvolume has six neighbors, the number of elementary reactions

that can change the state of the system is N(6M+R) instead of R as in the homogeneous case. Since N-

values larger than 105 often are required for realistic system descriptions, the number of elementary

reactions is dramatically increased when reaction-diffusion is taken into account.

Furthermore, the number of states in the reaction-diffusion formulation of the master equation increases

exponentially with N. This is because all combinations of copy numbers in all subvolumes have to be

considered. For a system with M species in N subvolumes with a maximum of Amax molecules of each 

species in a subvolume the number of states is max

M NA . If, to give an example, M=2, N=50 and Amax=10,

there are 10100 states. Therefore, the state vector for most realistic systems cannot be stored in any computer

memory, which rules out direct numerical solutions of the reaction-diffusion master equation.

An alternative approach is to use Monte Carlo (MC) simulations of reaction-diffusion systems.  In this

work, we have shown how application of an efficient version 24 of the Gillespie algorithm 25 to reaction-

diffusion systems as defined by Eq. (4) can significantly reduce the computation times.
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3.THE SPATIAL NEXT REACTION ALGORITHM

3.1 GILLESPIE’S DIRECT METHOD 

Gillespie’s direct method 25 is an algorithm for Monte Carlo simulations of mesoscopic kinetics in spatially

homogeneous systems. Trajectories, statistically correct according to the homogeneous master equation Eq.

(3), are generated by the execution of one elementary reaction at the time. The time for the next reaction is

sampled from an exponential distribution with a mean time equal to the inverse of the sum of all reaction

intensities. Which reaction to execute is chosen randomly with a probability determined by its normalized

intensity.  Iteration number n of the algorithm has the following steps

1. Calculate the intensities ai(xn) [unit  “per second”] of all possible elementary reactions i=1,2,…R

for the state xn, a vector that specifies the copy numbers of the different molecular species in the

system in iteration number n.

2. Calculate the total reaction intensity, ( ) ( )n ii
r a nx x .

3. Sample the time interval t between a previous event (n) and the next one (n+1) according to 

t=-ln(rand)/r , where rand is a random number uniformly distributed between 0 and 1.

4. Sample the next reaction i according to the probability P(i)=ai/r.

5. Update the state vector xn to account for the reaction.

This direct use of the Gillespie technique is feasible for spatially homogenous systems. However, when

spatial coordinates must be taken into account, the method becomes far too slow, as noted by Gillespie25.

One way to speed up MC simulations of trajectories in reaction-diffusion systems is to take advantage of

the fact that reaction intensities only change in those particular subvolumes where a reaction or diffusion

event has occurred. In each iteration it is therefore sufficient to recalculate only those intensities that belong

to the subvolume, where an event has occurred. This reduces the number of recalculated intensities from

N(M+R) to maximally 2(M+R). In addition, the time to search through all subvolumes to find where the

next event occurs can be significantly reduced by using an indexed event queue for the reaction times, as 

described by Gibson and Bruck 24. With this method, one can store the subvolumes where an event has

occurred in a time that increases logarithmically, rather than linearly, with the number of subvolumes in the

system. We will explain this method, here applied to reaction-diffusion systems for the first time, by giving 

an outline of the iteration steps followed by more detailed descriptions of selected items.
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SV #A #B #C r [s-1] d [s-1] r+d [s-1] Q

1 2 1 3 1 5 1 10 2 0 2.2 10 12.2 5

2 2 1 4 2 6 2 9 1 3 4.2 11.3 15.5 7

3 4 3 3 1 7 3 5 0 2 2.3 5.4 7.3 2

4 4 3 4 2 8 4 7 1 1 1.4 6.4 7.8 1

5 6 5 7 5 5 1 4 0 2 0.4 4.3 4.7 6

6 6 5 8 6 6 2 7 1 3 0.5 10.3 10.8 9

7 8 7 7 5 7 3 8 2 4 1.0 13.3 14.3 4

8 8 7 8 6 8 4 5 0 2 5.3 5.4 10.7 3

  Connectivity matrix   Configuration   Rate matrix  Q-array

Q SV t [s]

1 4 10.2

2 3 11.2

3 8 10.3

4 7 12.2

5 1 13.3

6 5 10.5

7 2 11.3

8 6 13.0

Q: 2 

t=11.2s

SV : 3

Q: 3 

t=10.3s

SV: 8

Q: 4 

t=12.2s

SV: 7 

Q: 5 

t=12.3s

SV : 1

Q: 6 

t=10.5s

SV: 5 

Q: 7 

t=11.3s

SV: 2

Q: 8 

t=13.0s

SV: 6 

Q: 9 

t=

SV:-

Event Queue
Q: 1 

t=10.2s

SV: 4

  Event Queue array

Figure 1: Data structures The structures within solid borders are arrays used in the algorithm.

For each SV the connectivity matrix (N 6) stores the neighbors’ indices. This defines the geometry and

boundary conditions for the system, as illustrated for 2 2 2 subvolumes (top left).

The configuration matrix (N M) stores the current number of molecules of each species in each SV.

The rate matrix (N 3) stores the sum of reaction rate constants (r) and the sum of diffusion rate constants

(d).

The Q-array specifies the position of each SV in the event queue.

In the event queue, the elements are ordered such that, in each branch of the binary tree, a subvolume with

an earlier event time (t) is higher up. The event times (t) depend on the time for the previous event in the

same SV; and on the SV’s reaction and diffusion rates (r+d) through a random number.

The queue can be represented in an array (N 2), as seen to the right.
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3.2 THE SPATIAL NEXT REACTION METHOD 

Initialization

1. Generate a connectivity matrix (see Fig.1, legend)

2. Distribute the initial numbers of molecules between the subvolumes and store them in the

configuration matrix (see Fig.1, legend).

3. Calculate the sum,
1

R

j

j

r a , of intensities (aj ,) for chemical reactions (j ) in the

subvolume  and store it in the rate matrix (Fig. 1, legend). The reaction intensities are 

calculated by using the volume  of the SV and the number of molecules in the SV to obtain

the current concentrations.

4. Calculate the sum,
1

M

j j

j

s d X of diffusion intensities j jd X  in the subvolume  and 

store it in the rate matrix. The parameter dj =Dj/  is the rate constant for jumps between

neighboring subvolumes for species j, as defined above.

2

jX is the number of molecules of

species j in subvolume  and M is the number of different molecular species in the system.

5. Calculate the sum, r  + s , for each subvolume and generate a random number, rand,
uniformly distributed in [0,1]. This number samples the time for the first reaction-diffusion

event in each subvolume as t  =–ln(rand)/( r  + s ).

6. Store the t  in the event queue array, in such a way that all branches of the event queue are

sorted with increasing event time. (Fig. 1, legend)

Iterations

7. The next reaction-diffusion event will occur at time t  in the subvolume, = ,  that is at the

top of the event queue. The event will be a chemical reaction if a newly generated

rand< r /(r  + s and otherwise a jump out from the volume by diffusion.

8. Chemical reaction event (rand< r /(r  + s

a. Rescale rand to [0,1], by dividing it with r , and use the updated rand to sample

which chemical reaction, i, that has occurred in subvolume  according to the

probability P(i)=ai /r .

b. Update the elements in the configuration matrix that belong to the subvolume where

the chemical event occurred.

c. Recalculate the sum, r  + s , in this subvolume and generate a new rand in [0,1] to

obtain the time of the next reaction-diffusion event in this subvolume

lnnextt t rand r s .

d. Reorder the branch of the event queue with subvolume  according to the value of

(see below). nextt

9.  Diffusion event (rand> r /(r  + s

a. Rescale rand from paragraph 7. above according to (rand- r /(1- r ) and use the

rescaled rand to sample which species, i, that diffused out from the subvolume

according to the probability distribution ( ) /i iP i d X s .

b. The neighboring subvolume, , to which the diffusion event is targeted is sampled by

randomly choosing one of the six columns in the connectivity matrix.

c. Update the states of these SVs by removing a molecule of species i from SV  and 

adding it to SV . Recalculate the sums, r  + s  and r  + s , for the SV and its 

neighbor where events have occurred. Generate two new random numbers, rand1

and rand2, and sample the times when the next reaction or diffusion events occurs in

the subvolumes, ln 1nextt t rand r s  and ln 2next rand r st t .

d. Reorder the event queue according to the values of t and t  (see below).next next

10.    Return to 7 for the next iteration.
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The event queue and its representation in an array

The event queue allows the subvolume, where the next reaction-diffusion event will occur in the system, to

be found without a search through all subvolumes. The event queue is created as a binary tree (Fig.1). The 

element positions in the queue are denoted Q=1,..,N. Each element stores the index of one subvolume and

the time for the next event in that subvolume. Each branch of the queue is ordered from early to late event

times, with the earliest time at the top There are several ways to achieve an ordering according to this

principle. When the time for the next event has changed for one subvolume, the corresponding element in

the queue swaps positions in the branch until correct order is restored.

A convenient way to store the event queue is in an event queue array (Fig. 1). Each row in the array

corresponds to one element of the queue, where the Q-number for the element is used as row index. By

using this ordering, the element over element Q=k in the branched queue is placed in the array row with

index Q=(k/2) truncated to an integer. The elements below Q=k in the branch queue have the row indices

Q=2k and Q=2k+1.

In addition to the event queue array there is a Q-array

(Fig. 1) that stores the position, Q, in the event queue

array for each SV. The Q-array is necessary to find the 

element in the queue that corresponds to the neighbor of

the active cell. 

 Figure 2: An example of indexing n3 SVs.

The connectivity matrix and boundary conditions
In order to rapidly find the index of a neighboring SV,

we generate a lookup table; the connectivity matrix.

Each row in the matrix corresponds to one SV so that 

SV and row indices are the same. The indices for each 

of the six neighbors to a SV are stored in six different

columns, which determine the geometry of the system.

(Fig. 1) 

Closed (reflecting) boundaries prevent diffusion of

molecules out of the total volume; and is implemented

by assigning the same index to SVs at and outside the 

boundary. This is illustrated for a 2 2 2 volume in Fig.

1.

3.3 PERFORMANCE ISSUES

Reaction intensities have to be recalculated for one or two subvolumes per iteration among a total of N

subvolumes in the system. The event queue makes the time required per iteration proportional to log(N),
rather than to N as with the direct Gillespie approach25. These improvements make mesoscopic simulations

of reaction-diffusion systems feasible, since one iteration will not take much more time than for a spatially

uniform system. However, diffusion can only be approximated as jumps between subvolumes of finite size,

conditional on that these jumps occur much more frequently than the chemical reactions. This is the

necessary and sufficient condition for the concentrations of reactants to be near uniformly distributed

within a subvolume and smoothly varying between subvolumes. If the algorithm is arranged so that the

frequency of diffusion events is hundred times that of chemical reaction events, there will be approximately

hundred times more iterations in an MC simulation of a system with reaction-diffusion (Eq. 4) than in the

corresponding homogeneous system (Eq. 2).

During the simulation of a reaction-diffusion system, at least N(M+8) integers must be stored for the

connectivity-, configuration-, Q-, and event queue-arrays  (see fig. 1) as well as N real numbers for the

times in the event queue.  If the memory of the computer allows, storage also of the N(R+3) real numbers

for the individual reaction intensities ( a r, , ,i s r s ) can be used to decrease the computation times.
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3.4 IMPLEMENTATION AND PERFORMANCE

The algorithm has been implemented in C/C++, using the Intel C++ 7.0 compiler. Simulations were run on

a Pentium 4 2.53GHz with 512Mb PC800 RAM. The chemical system used to illustrate the method is 

defined by Eq. (1) and the corresponding reaction-diffusion master equation Eq. (4). The parameters were 

k1=1 s-1, k2=106 -1s-1 and =0.001s-1 18. With these parameter choices there were on the average about

600 molecules of each species in a total volume m3

How the average computation time per iteration depends on the system volume, , for fixed subvolume

size ( 3 1 m3 ) and diffusion constant (D=10-6cm2s-1) is shown in Fig. 3A. For this choice of diffusion

constant and SV size, the ratio between frequencies of reaction and diffusion events was 0.015. The

computation time was approximately proportional to log(N), with a deviation that could be ascribed to an

increasing memory usage as N increases.

The computation time to simulate one second of a stochastic reaction-diffusion system for different

diffusion constants is shown in Fig. 3B. The system volume was 8 µm3 and the ratio between the

frequencies of chemical reaction and diffusion events was always kept close to 0.015 by tuning of the size

of subvolumes in relation to the value of the diffusion constant. The computation time to simulate the

reaction-diffusion system was about a thousand times longer than the time to simulate the homogenous

system. This is explained by that: (i) There was about 67 times more diffusion events than chemical

reaction events in the reaction-diffusion system and each diffusion event leads to changes in two 

subvolumes. This makes the reaction-diffusion simulation 134=67 2 times slower than the homogenous

simulation. (ii) For each event in the reaction-diffusion simulation, one or two branches of the event queue

has to be reordered. This makes every iteration a few times longer, depending on the number of

subvolumes.

Figure 3: Scaling properties. A. x-axis: The time required for 106 iterations for different number of cells (y-axis). The

reaction-diffusion ratio is kept at 0.015 (D=10-6cm2s-1 and 1 m ). B. y-axis: The time required to simulate the

chemical system for 1 second at different diffusion constants (x-axis). The volume is constant at 8 m3. The reaction-

diffusion ratio is kept at 0.015 by varying the number of subvolumes. {8, 216, 8000, 64000, 125000} subvolumes for 

D={10-6, 10-7, 10-8, 3.10-9, 2.10-9}cm2s-1, respectively. The time required to simulate the corresponding homogenous

system without diffusion is 0.40ms.
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4. DISCUSSION

Stochastic simulations of intracellular chemical reactions are typically carried out in model systems with 

reactants that are uniformly distributed in space. This means that a molecule is assumed to have the same

probability to interact with any of its reaction partners, irrespective of how these are located in space. That

is, each molecule will diffuse throughout the whole cell volume with high probability before it participates

in a chemical reaction. This condition of fast (global) diffusion compared to the (local) rate of chemical

reactions is, however, often violated. Spatially non-uniform systems will therefore arise in many different

types of cells, and accurate descriptions of their properties will require the design of fast computer

algorithms of a new type.

In this work, we have developed an efficient Monte Carlo method for simulation of reaction-diffusion

systems in single cells. The algorithm is a combination of the reaction-diffusion master equation 19,21,23 and 

the efficient MC method suggested by Gibson and Bruck24. The algorithm allows for simulation of 

mesoscopic reaction-diffusion in realistic systems, by making the computation time logarithmic, rather than

linear, in the number of subvolumes of the system.

Many homogeneous master equations converge to the same deterministic equation in the macroscopic

limit19. Similarly, there is a multitude of mesoscopic reaction-diffusion systems with very different

properties, that all converge to the same homogenous master equation in the limit of very fast diffusion.

This is illustrated by the snap-shots of stationary distributions of molecules in the “AB-system” from Eq.

(1) shown in Figs. 4A and B. Molecules of type A are synthesized in one corner and B molecules in the

opposite corner of the cubic volume of the system. Fig. 4A illustrates a situation with relatively slow and

Fig. 4B a situation with relatively fast diffusion. In the former case, the spatial origins of synthesis of A and

B molecules clearly shape their distributions. In the latter, the A and B molecules have almost uniform

distributions as described by Eq. (3).

A B

Figure 4: Snap-shot of systems with 50x50x50 subvolumes.  The size of the dots is proportional to the number of

molecules in the subvolumes. All A molecules (gray) are synthesizes in one corner and the B molecules (black) in the

other. In A D=1.5.10-9cm2s-1 and in B D=10-7cm2s-1. In B the system approaches the limit where the homogenous master 

equation applies.

Some biological systems have been designed to control events that occur at distinct locations in space.

Examples from bacteria are reviewed in 26. In all such cases, reaction-diffusion couplings must be taken

into account to obtain an understanding of system behavior. However, reaction-diffusion approaches will

be necessary to analyze chemical networks also of other types.  One such case is provided by systems with

multiple steady states. These can be in different attractors in different regions in space, and this has

profound effects on their kinetics (J. Elf, manuscript in preparation).  Accurate modeling of the dynamic

behavior of such systems, which is beyond reach for theories based on spatial uniformity, will be crucial to 

understand the switching between functionally distinct states in -phage kinetics 27 and signal cascades 28.
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COMPLEMENTARY INFORMATION AFTER PRINT 
 
It has recently come to our attention that the present work (Elf et al. SPIE, 2003) is not the first application 
of the Next Reaction Method (NRM) to reaction-diffusion problems, since the NRM had already been 
applied to such problems in the SmartCell project (1,2,3). This project was not quoted, due to a failure on 
our part to recognize the connection between the present work and the algorithm embedded in project work 
reports available to us at the time (2, 3).   
There are, at the same time, considerable differences between the two approaches: While we use the NRM 
only to keep track of in which sub-volume the next event (reaction or diffusion) occurs, the SmartCell uses 
the NRM to order all events. We order the binary tree once or twice per event, whereas SmartCell uses a 
dependency-graph to keep track of which and how many events that are needed to be reordered. In 
SmartCell, the geometry of the system is described in the dependency-graph, whereas we use a separate 
geometry matrix. In addition, SmartCell, as described in (2, 3), has a large number of other features of no 
relevance for the comparison. The differences between the two approaches make them complementary, and 
we foresee that different types of problems will motivate different choices of algorithm.  
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