
Int. Journ. of Unconventional Computing, Vol. 0, pp. 1–25 ©2012 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group.

Unconventional and Nested Computations in
Spatial Computing

JEAN-LOUIS GIAVITTO1, OLIVIER MICHEL2 AND ANTOINE SPICHER2

1UMR 9912 STMS, IRCAM - CNRS - UPMC - Inria, Paris, France
E-mail: jean-louis.giavitto@ircam.fr

2LACL, Université Paris-Est Créteil, France
E-mail: olivier.michel@u-pec.fr, antoine.spicher@u-pec.fr

Received: July 16, 2012. Accepted: November 28, 2012.

Modern programming languages allow the definition and the use of ar-
bitrary nested data structures but this is not generally considered in un-
conventional programming models. In this paper, we present arbitrary
nested topological collections in MGS, a spatial computing language.
By considering different classes of neighborhood relationships, MGS

can emulate several unconventional computing models from a program-
ming point of view. The use of arbitrary nested spatial structures allows
a hierarchical form of coupling between them. Furthermore, we propose
an extension of the MGS pattern-matching facilities to handle nesting
explicitly. This makes possible the emulation of a larger class of uncon-
ventional programming models.

Keywords: MGS, topological collection, transformation, topological rewrit-
ing, nested data structure, chemical computation, Lindenmayer systems, cel-
lular automata, data field, GBF, fraglet.

Modern programming languages allow data structure to be nested so that a
valid element of a structure can also be another structure. Generally, this is not
considered in unconventional programming models. For instance, the state of
a cell in a cellular automaton is not (the state of) another cellular automaton.
Another example: the value labeling a symbol in parametric Lindenmayer
systems is not (a string representing a derivation in) another Lindenmayer
system.

In chemical computing, as exemplified in Gamma [3], chemical solutions
are abstracted as multisets (a generalization of the notion of set in which

1

IJUC˙JDL˙04˙GIAVITTO˙V1 1

2 JEAN-LOUIS GIAVITTO

members are allowed to appear more than once) and a molecule corresponds
to an elementary data and not another chemical solution. Nested multisets
are considered in membrane systems∗ [41] but are studied as a completely
different computational model. Indeed, the management of the nesting entails
the introduction of new mechanisms (transport rules in the case of membrane
systems).

In this paper, we consider arbitrary nested structures and their manage-
ment in MGS, a spatial computing language† . Spatial computing relies on
neighborhood relationships to represent physical (spatial distribution, local-
ization of the resources) or logical constraints (inherent to the problem to be
solved) in a computation.

By considering different classes of neighborhood relationships, MGS can
emulate several unconventional computing models from the point of view
of the programming. The use of arbitrary nested spatial structures allows a
hierarchical form of coupling between them. Furthermore, we propose an ex-
tension of the MGS pattern-matching facilities to handle nesting explicitly.
This makes possible the emulation of a larger class of unconventional pro-
gramming models.

Outline of the Paper. This paper is organized as follows. The next section
introduces the emerging field of spatial computing and the notion of nesting
in this context. Section 2 introduces topological collection and transformation
developed in MGS , along with the required syntax to understand the examples
given in the next sections. Section 3 illustrates MGS through the encoding
of three simple but paradigmatic examples in unconventional computational
models. We stress the fact that this encoding is useful from a programming
perspective. Calculability and complexity of the underlying models are not
considered in this paper. Section 4 exemplifies the use of nested spaces with
three direct applications. The first encodes terms used to represent boolean
formulae with nested sets. The computation of a disjunctive normal form on
this representation is explained. The second example computes quadtrees, a
recursive data structure for partitioning a two dimensional space. The last one
is dedicated to the informal translation of the fraglets computation model into
MGS . Related and future work concludes this article.

∗ Nested multisets are also considered in High Order Chemical Language [4]. In Structured
Gamma [16], elements of the multiset are linked by relations defined by a graph grammar. It is then
theoretically possible to encode a given static nest of multisets using relations specified by a specific
graph grammar to implement membership test and to make a distinction between elements and nested
multisets.
† The MGS environment can be downloaded from the MGS home page at mgs.
spatial-computing.org where numerous other examples are developed. All the presented
examples are actual MGS programs.

IJUC˙JDL˙04˙GIAVITTO˙V1 2

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 3

1 MOTIVATIONS

1.1 Computing in Space, Space in Computation and
Spatial Computing

Spatial Computing is an emerging field of research [12] where the computa-
tion is structured in term of spatial relationships: only “neighbor” elements
may interact.

For example, the elements of a physical computing system are spatially
localized and when a locality property holds, only elements that are neighbor
in space can interact directly. So the interactions between parts are structured
by the spatial relationships of the parts.

Even for non physical systems, usually an element does not interact with
all other elements in the system. For instance, from a given element in a
data structure, only a limited number of other elements can be accessed [19]:
in a simply linked list, the elements are accessed linearly (the second after
the first, the third after the second, etc.); from a node in a tree, we can access
the father or the sons; in arrays, the accessibility relationships are left implicit
and implemented through incrementing or decrementing indices (called “Von
Neumann” or “Moore” neighborhoods if one or several changes are allowed).

More generally, if an element e in a system interacts during a computation
with a subset E = {e1, . . . , en} of other elements, it also interacts with any
subset E ′ included in E . This closure property induces a topological organi-
zation: the set of elements can be organized as an abstract simplicial com-
plex [22] which is a spatial representation of the interactions in the compu-
tation. This abstract space instantiates a neighborhood relationship that rep-
resents physical (spatial distribution, localization of the resources) or logical
(inherent to the problem to be solved) constraints.

As an example, consider parallel computing. Parallel computing deals
with both logical and physical constraints: computations are distributed on
physical distinct computing resources but the distribution of the computation
is a parameter of the execution, a choice done at a logical level to minimize
the computation time, and does not depend on some imposed physical local-
izations induced solely by the problem to be solved.

In addition, space can be an input to computation or a key part of the
desired result of the computation, e.g. in computational geometry applica-
tions, amorphous computing [1], claytronics [2], distributed robotics or pro-
grammable matter... to cite a few examples where notions like position and
shape are at the core of the application domain.

1.2 Nested Spaces
A distinctive feature of spatial computing with respect to distributed com-
puting is the emphasis put on the explicit representation of spatial relations

IJUC˙JDL˙04˙GIAVITTO˙V1 3

4 JEAN-LOUIS GIAVITTO

and objects: space is seen as a data-structure on which the program is acting
rather than the container of parallel computations. The direct consequence is
that in spatial programming languages like Proto [7] and MGS , space is han-
dled as fields. In physics, a field is the assignment of a quantity at each point
of a spatial domain [34].

In classical physics, a field can be classified as a scalar field or a vector
field according to whether the value of the field at each point is a scalar or a
vector. It is not common to consider “field-valued fields” in contrast to clas-
sical data structures where such a feature corresponds to nesting. Nesting is
relevant and valuable in at least three situations: for the representation of, and
the computation on, hierarchical or inductive data structures; in the modeling
and the simulation of multiscale systems; and in the emulation of “stratified”
computational models.

Inductive Data Structures. The possibility to nest arbitrarily data struc-
tures is now pervasive in modern programming languages. Its usefulness to
represent hierarchical data (e.g., XML) or inductive structures (e.g., lists,
trees) is well established. We give an example of the use of nested spaces
in an algorithmic application relying on nested sets in section 4.2.

Multiscale Systems. The modeling of a natural system often implies enti-
ties appearing on distinct temporal and spatial scales: each level addresses a
phenomenon over a specific window of length and time. These scales appear
for logical reasons (at a particular scale, the system exhibits uniform prop-
erties and can be modeled by homogeneous rules acting on objects relevant
at this scale) or for efficiency reasons (e.g., the reductionist simulation of the
whole system from first principles is computationally not tractable while we
are only interested in coarse-grained description).

Multiscale models and simulations arise when interactions between scales
must be considered. For spatial scales, it means that simultaneous spatial rep-
resentations must be managed as in adaptive mesh refinement [8]. This meth-
ods relies on a sequence of “nested rectangular grids” on which a PDE is dis-
cretized. It is important to realize that these subgrids are not patched into the
coarse grid but overlaid to track the feature of interest. A simplistic example
is presented in section 4.3. Another example, in the area of discrete model-
ing, is the complex automata framework [30] corresponding to a “graph of
cellular automata”.

Sometimes scales can be separated, meaning that the coupling between
scales can be localized at some isolated interaction points in space and time.
Then, the resulting computation corresponds to a hierarchical process with a
directed flow of information. This is not always the case and we will intro-
duce a dedicated pattern-matching mechanism in section 4 to ease the refer-
ence between scales.

IJUC˙JDL˙04˙GIAVITTO˙V1 4

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 5

Stratified Computational Models. Some models of computation exhibit
naturally an inductive structure. For instance, the state of a membrane systems
is a multiset of symbols and (inductively) membrane systems. This structure
leads directly to a nested organization of “multiset of symbols and multisets”.

Some computational models are also best described as a combination of
two paradigms: the second being substituted for some generic parts in the
first. We list a few examples issued from various compartmentalization de-
vices introduced over a basic chemical framework. In membrane systems,
strings have been considered instead of symbols [11]. This leads obviously
to “multiset of sequences of symbols and multisets”. Nested multisets are re-
stricted to the description of membranes organized by inclusion only. Tissue
P systems [37] arrange the membranes and their interactions following an ar-
bitrary graph, calling for a “graph of multisets”. Spatial P systems [6] are a
variant of P systems which embodies the concept of space and position inside
a membrane. Membranes and objects are positioned in a two-dimensional
discrete space. Hence, we have to consider “grids of symbols, multisets and
grids”.

In section 4.4, we will sketch the encoding of fraglets, a molecular bio-
inspired execution model for computer communications leading to “graphs
of multisets of sequences”.

2 THE MGS APPROACH TO SPATIAL COMPUTING

The MGS project recognizes that space is not an issue to abstract away but
that computation is performed distributed across space and that space, either
physical or logical, serves as a mean, a resource, an input and an output of
a computation. The MGS language represents spatial structures and their re-
lationships through topological collections and relies on transformations for
their manipulations.

MGS embeds the idea of topological collections and their transformations
into the framework of a functional language. Collections are new kinds of
values and transformations are functions acting on collections and defined by
a specific syntax using rules.

2.1 Topological Collections
MGS handles spatial domains defined by abstract cellular complexes [51].
An abstract cellular complex is a formal construction that builds a space in
a combinatorial way through more simple objects called topological cells.
Each topological cell abstractly represents a part of the whole space: points
are cells with dimension 0, lines are cells with dimension 1, surfaces are
2 dimensional cells, etc. The structure of the whole space, corresponding
to the partition into topological cells, is considered through the incidence
relationships, relating a cell and the cells in its boundary.

IJUC˙JDL˙04˙GIAVITTO˙V1 5

6 JEAN-LOUIS GIAVITTO

In this approach a field is a finite labeling of a cellular complex: a cellular
complex may count an infinite number of cells but MGS restricts itself on
fields labeling only a finite number of these cells. Such fields are called topo-
logical collections to stress the importance of the neighborhood relationships
induced by the incidence relationships. Topological collections are a weak-
ening of the notion of topological chain developed in algebraic topology [40]
and have been introduced in [25] to describe arbitrary complex spatial struc-
tures that appear in biological systems [21] and other dynamical systems with
a time varying structure [17, 27]. They generalize fields because they asso-
ciate a quantity with 0-cells (points in space) but also with arbitrary n-cells.

Graphs (that are made of only 0- and 1-cells) are examples of one dimen-
sional cellular complex. In this paper, we will stick with topological collec-
tions whose underlying complex is a graph. In [19] it has been showed how
usual data structures can be seen as topological collections of this kind: the
elements in a data structure are the quantities assigned by the field to the
nodes of a graph.

We sketch here informally the collection types we use in the examples
below.

Monoidal Collections. Sets, multisets and sequences are called monoidal
collections because they can be built as a monoid with operator join: a se-
quence corresponds to a join that has no special property except associativity;
multisets are obtained with an associative and commutative join; sets when
the join operator is associative, commutative and idempotent. The join oper-
ator with its properties induces the topology of the collection and the neigh-
borhood relationship: a linear graph for sequences and a complete graph for
sets and multisets.

We write a::m to add a value a in a monoidal collection m ; the notations
seq:() , bag:() and set:() refer to the empty sequence, the empty multiset
and the empty set respectively. This must not be confused with the expression
x:set which checks if value x is a set.

Records. An MGS record is a map that associates a value with a name
called slot. The value can be of any type, including records or other col-
lections. Accessing the value of a slot in a record is achieved with the dot
notation: expression { a=1, b="red" }.b evaluates to the string "red" . New
types of record can be defined using a specific syntax; for instance, record T

= { a:int, b:string } defines the type T of records having slots a and b
respectively labeled by an integer and a string.

The topology associated with records is the “totally disconnected” ones:
slots in records are isolated points (they have no neighbor).

GBF. Topological collections can be defined as Group Based Fields (GBF),
that can be considered as associative arrays whose indices are elements in a

IJUC˙JDL˙04˙GIAVITTO˙V1 6

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 7

e

2 · n

n

2 · n + e

0 · n = 0 · e

nnw

2 · n

e

2 · n + e

0 · n =
0 · e

0
FIGURE 1
Left: a GBF defining a NEWS grid, with two generators e and n. Right: a GBF defining an
hexagonal grid with three generators e, n and nw, and a constraint n − nw = e.

group [28]. The latter is defined by a finite presentation: a set of generators
together with some constraints on their combinations. Thus a GBF can be
pictured as a labeled graph where the underlying graph is the Cayley graph of
the finite presentation. The labels are the values associated with the vertices
and the generators are associated with the edges.

For instance, in order to define a NEWS grid, we may use two generators
e (east) and n (north), supporting addition, difference and multiplication by
an integer. This is illustrated in the left part of Figure 1.

Similarly, an hexagonal grid (6 neighbors for each vertex) can be defined
by means of three generators n, e and nw (north-west) and a constraint n −
nw = e, as illustrated in the right part of Figure 1. Notice that such graph is
adequate to represent a tiling with a hexagonal shape, since the grid can be
paved with hexagons centered at the positions in the grid. As shown by the
dashed path, we have 2 · n + e = 2 · e + n + nw, which can be also checked
in an algebraic way, by substituting nw with n − e in this equality as allowed
by the constraint.

The GBF structure is thus adequate to define the arrangement of a regular
grid, in any number of dimensions. A GBF type is specified by the presenta-
tion of the underlying group: a list of generators and a list of equations. For
example, for the hexagonal grid:

gbf H = < n, e, nw; nw + e = n >

2.2 Transformations
Usually in physics, fields and their evolution are specified using differen-
tial operators. MGS generalizes these operators in a rewriting mechanism,
called transformation. A transformation is the application of some local rules

IJUC˙JDL˙04˙GIAVITTO˙V1 7

8 JEAN-LOUIS GIAVITTO

following some strategy. The application of a local rule pattern =⇒ expres-
sion in a collection C : (1) selects a subcollection A that matches the pattern;
(2) computes a new subcollection B as the result of the evaluation of the ex-
pression instantiated with the collection A; and (3) and substitutes B for A
in C .

A local rule specifies a local evolution of the field: the left hand side (lhs)
of the rule typically matches elements in interaction and the right hand side
(rhs) computes local updates of the field. A transformation T is a function
specified by a set of local rules:

trans T = { . . . rule; . . . }

When there is only one rule in the transformation, the enclosing braces
can be dropped.

Transformations are a powerful means to define functions on topologi-
cal collections complying with the underlying spatial structure. For instance,
a discrete analog of differential operators can be defined using transfor-
mations [27]. For multisets, transformations reduce simply to associative-
commutative rewriting [13] also called multiset rewriting.

Patterns
We present here a subset of the MGS pattern language. These expressions
have a generic meaning, that is, they can be interpreted in any collection
kind. The grammar of these pattern expressions is:

pat := x
∣
∣ {...} ∣

∣ pat, pat ′ ∣
∣ pat: P

∣
∣ pat/exp

∣
∣ pat as x

∣
∣ pat*

where pat, pat ′ are patterns, x ranges over the pattern variables, P is a predi-
cate and exp is an expression evaluating to a boolean value. The explanations
below give an informal semantics for these patterns.

variable: a pattern variable x matches exactly one element. The variable x
can then occur elsewhere in the rest of the rule. The construction
pat as x is used to introduce a fresh variable x that refers to the
subcollection matched by pat .

record pattern: { . . . } are used to match a record. The content of the braces
can be used to match records with or without a specific slot (even-
tually constrained to a given slot type or slot value). For instance,
{ a, b:string, c=3 } is a pattern that matches a record with slots
a, b of type string and c with value 3 .

neighbor: pat, pat ′ is a pattern that matches two connected subcollections
matched by pat and pat ′. For example, x, y matches two connected

IJUC˙JDL˙04˙GIAVITTO˙V1 8

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 9

elements (i.e., y must be a neighbor of x). The connection relation-
ship depends on the collection kind.

guard: pat/exp matches the subcollections matched by pat verifying exp.
Pattern pat: P is a syntactic sugar for (pat as x) / P(x). For in-
stance, y / y > 3 matches an element y provided that y > 3 holds
and x:int matches an element x provided that x is an integer.

repetition: pattern pat* matches (a possibly empty) subcollection of ele-
ments matched by pat .

Rule and Application Strategy

A transformation is a set of rules. When a transformation is applied to a col-
lection, the default strategy is to apply the first rule as many times as possible
in parallel (a rule can be applied if its pattern matches a subcollection). In
the remaining collection, the second rule is applied as many times as possi-
ble in parallel with the first, and so on. This strategy is the maximal parallel
application strategy used in L systems or P systems. Several other strategies
are available in MGS like the Gillespie application strategy [45] based on
Gillespie Stochastic Simulation Algorithm used in the modeling of chemical
reactions. Strategies provide a fine control over the choice of the rules applied
within a transformation. They are often non-deterministic, i.e., applied on a
collection, only one of the possible outcomes (randomly chosen) is returned
by the transformation.

A transformation T is a function like any other function and a first-class
value. It allows to compose transformations very easily in a higher order func-
tional programming style. The expression T (c) denotes the application of one
transformation step to the collection c. A transformation step consists of the
application of the rules following the rule application strategy. A transforma-
tion step can be effortlessly iterated:

T [n] (c) denotes the application of n transformation steps to c

T [fix] (c) application of the transformation T until a fixpoint

3 ENCODING THREE UNCONVENTIONAL MODELS

In this section, we illustrate the spatial approach instantiated in MGS with the
encoding of three unconventional models of computation: Gamma (chemical
computing) [3], L systems [44], cellular automata (CA) and related models
of crystalline computing [36, 48]. We assume that the reader is familiar with
the main features of these formalisms.

IJUC˙JDL˙04˙GIAVITTO˙V1 9

10 JEAN-LOUIS GIAVITTO

By “encoding”, we mean that it is easy to express these unconventional
programming styles using specific organizations of the underlying collec-
tions. We advocate that few notions and a single syntax can be consistently
used to unify these formalisms for programming purposes.

The notion of programming style or expressiveness remains difficult to
formalize: for instance, since nearly all programming languages are Turing
complete, it is irrelevant to consider their set of computable functions as a
measure of expressiveness. As far as we know, there are only a few attempts
to formalize this notion [15, 38]. These works mainly rely on the idea of
translating a language into another, using a limited and predefined form of
translation (if any translation is allowed, a universal language can be the tar-
get of the translation of any other one).

The rest of this section gives some examples that show the MGS ability
to mimic some paradigmatic constructions of the mentioned three computing
models.

Chemical Computing. The chemical reaction model was originally pro-
posed in 1986 as a formalism for the definition of programs without artificial
sequentiality [3]. The computation proceeds by non deterministic rewriting
of a multiset, until a stable state is reached. We give below the MGS version
of the computation of the Fibonacci numbers in Gamma implying a change
in the number of elements in the multiset:

fun Fib(n) = Add[fix](Dec[fix](n:: bag:()))
and trans Add = { x,y =⇒ x + y }
and trans Dec = { 0 =⇒ 1; x/ (x>1) =⇒ (x-1), (x-2) }

The initial value n is decomposed into 1 s by the iteration of the Dec

transformation until a fixpoint is reached. These 1 s are then summed up by
transformation Add . The successive applications of Dec correspond to the
recursive descent of the usual recursive definition of the Fibonacci function
while the iterations of Add correspond the recursive ascent.

Lindenmayer Systems. An L system is a parallel string rewriting system
(every production rule that might be used at each derivation state are triggered
simultaneously) developed by A. Lindenmayer in the sixties [35]. It has since
become a formalism used in a wide range of applications from the description
of cellular interactions [35] to a model of parallel computation [42].

We will encode the seminal example of D0L systems in MGS . Formally,
a D0L system is a triple G = (�, h, ω) where � is an alphabet, h is a finite
substitution on � (into the set of subsets of �∗) and ω, referred to as the
axiom, is an element of �+. The D letter stands for deterministic, which
means there exists at most a single production rule for each element of �.

IJUC˙JDL˙04˙GIAVITTO˙V1 10

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 11

FIGURE 2
Model of the development of Anabaena catenula by a L system and the first derivations of the
axiom ω = br .

The numerical argument of the L system gives the number of interactions
in the rewriting process; therefore a 0L system is a context free L system
(whereas an nL system is context sensitive with n interactions).

Lindenmayer considered the development states of a one-dimensional or-
ganism (i.e., a filamentous organism) [35]: each derivation step represents a
state of development of the organism. The production rules allow each cell to
remain in the same state, to change its state, to divide into several cells or to
disappear. Consider an organism where each cell can be in one of two states
a and b. The a state consists in dividing itself whereas the b state is a waiting
state of one division step. In addition, a cell is polarized to the left or to the
right which is denoted by the use of the l and r indices. The fate of each cell
is specified by the rule in figure 2. A derivation tree of the process is detailed
in the right of the figure. The polarity changing rules of this example are very
close to those found in the blue-green bacterium Anabaena catenula [33,39].

The implementation of the production rules in MGS is straightforward.
MGS symbols are used for L systems symbols. The production rules directly
translates to MGS rules. So the grammar in figure 2 leads to the following
MGS program:

trans Anabaena = { ‘ar =⇒ ‘al, ‘br
‘al =⇒ ‘bl, ‘ar
‘br =⇒ ‘ar
‘bl =⇒ ‘al }

The default application strategy of MGS is the relevant one to emulate L
systems. The evaluation of Anabaena[n](ar) for n from 1 to 5 returns the
sequence listed at right of figure 2. More generally, it is possible to describe
the whole class of D0L systems in MGS .

Cellular Automata. To illustrate the encoding of a cellular automaton in
MGS , we consider the growth of a snowflake on the hexagonal grid specified
in figure 1.

IJUC˙JDL˙04˙GIAVITTO˙V1 11

12 JEAN-LOUIS GIAVITTO

FIGURE 3
Formation of a snowflake. The pictured states are the step at time steps 1, 4, 8, 12, 16, 18, 20
and 23.

Ice forms when the water is cooled below its freezing point. Crystals start
from a seed and then grows by progressively adding more molecules to their
surface. As an idealization, the molecules of a snowflake lie on an hexagonal
grid and when a piece of ice is added to the snowflake, the heat released by
this process inhibits the addition of ice nearby. This phenomenon leads to
the following cellular automaton rule [52]: a black cell (value 1) represents a
place of the crystal filled with ice and a white cell (value 0) is an empty place.
A white cell becomes black if it has exactly one black neighbor, otherwise it
remains white. The corresponding MGS transformation is:

trans SnowFlake =
x / (NeighborFold(+, 0, x)==1) =⇒ 1

The construct NeighborFold is not a function but an operator available
only within a rule: it enables to fold a function on the defined neighbors of an
element matched in the lhs. Here, this operator is used to compute the number
of black cells by summing the 1 s in the neighborhood (the accumulating
function is the sum and the initial value is 0). Some iterations starting from
an initial grid with only one cell set to 1 are illustrated in figure 3.

4 COMPUTING WITH NESTED SPACES

The use of nested spaces does not require a priori new control structures. For
example, if the reactions between symbols of a P Systems are coded by a
transformation EvalRule, then we can define a function Apply and an auxil-
iary transformation ApplyNested to thread EvalRule over the nested structure:

fun Apply(x) = EvalRule(ApplyNested(x))
and trans ApplyNested = x:bag =⇒ Apply(x)

IJUC˙JDL˙04˙GIAVITTO˙V1 12

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 13

This piece of code is enough to trigger the chemical rules specified by the
transformation EvalRule through the entire structure. But the transport rules,
used for example to expel one molecule from a membrane to the enclos-
ing one, are a little bit heavier to write because they imply the simultaneous
matching of two levels in the nested structure.

In this section, we extend MGS to deal more easily with nested spaces,
then we give examples of the three uses of nested spaces we have identified
in section 1.2.

4.1 Nested Spaces in MGS

The handling of space in MGS faces two kinds of problems:

1. Often, nesting necessitates the handling of heterogeneous values (e.g.,
in membrane systems, a membrane may contain atoms and sub-mem-
branes). Dynamic types can be used to facilitate the management of
heterogeneity.

2. The pattern constructions presented in section 2.2 are “flat”: the pattern
variables of a transformation T refer to elements of the collection on
which T is applied. The pattern language can be enhanced to allow a
direct access to elements in nested collections.

User-Defined Subtypes. MGS is a dynamically typed language: no static
type checking occurs but type errors are detected at run-time during evalua-
tion. Although dynamically typed, the set of values has a rich type structure
used in the definition of patterns.

In addition to scalar values like integers, floats, strings, lambda-
expressions, etc., MGS handles several kinds of collections. The elements
in a collection can be of any kind, thus achieving complex objects in the
sense of [10].

Often there is a need to distinguish collections of the same kind (e.g.,
several multisets nested in another multiset). Various ways can be used to
achieve the distinction. We choose to distinguish between collections of the
same kind by subtyping. The subtype of a collection must be thought as a
“color” that does not change the kind of the collection. Collection subtype
declarations look like:

collection MySet = set
and collection AnotherSet = set
and collection AnotherMySet = MySet[int]

This declaration specifies a hierarchy of three subtypes. Type MySet is
a subtype of set and a supertype of AnotherMySet . The type AnotherSet

is also a subtype of set but is not comparable with MySet . Note that the

IJUC˙JDL˙04˙GIAVITTO˙V1 13

14 JEAN-LOUIS GIAVITTO

declaration allows the restriction of the types of the elements: an AnotherSet

only contains integers. For each type T , there is an associated predicate with
the same name that can be used to check if a value has type T . For example,
the expression MySet("this is a string") returns false .

No restriction takes place on type definitions: they can be recursive to
handle complex nesting situations. For example, membranes containing both
atomic symbols and membranes may be defined as follows:

collection Membrane = set[Atoms | Membrane]
and type Atoms = symbols

Nesting Pattern. To make easier the handling of nested collections, we ex-
tend the current pattern language with a new construction allowing references
to elements of a nested collection. The pattern

[pat |x]

matches a collection C nested within the current one. The pattern pat must
match a subcollection C ′ in C and the variable x is bound to the collection
C ′′ obtained by removing the elements of C ′ from C .

For sets or multisets, C ′′ is the complement of C ′ in C . For sequences, C ′′

cannot be described as an interval of C . For instance, against the sequence
(0, (1, 2, 3, 4), 5) , the pattern

x, ([2, 3| z] as y)

leads to the following unique matching:

� x is bound to 0 ,
� y is bound to (1, 2, 3, 4) ,
� z is bound to (1, 4) , that is, the sequence y where the sub-sequence
(2, 3) has been removed.

Note that the second part of the nesting operator has to be a variable (it is not
a pattern). The notation [pat | ...] can be used to spare a variable if the
rest of the subcollection is not used elsewhere.

4.2 Disjunctive Normal Form
Since the logical conjunction and disjunction operators are associative, com-
mutative and idempotent, a logical formula can be encoded by nested sets.
Let consider the following type declaration:

collection formula = string | Not | And | Or
and record Not = { neg:formula }

IJUC˙JDL˙04˙GIAVITTO˙V1 14

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 15

and collection And = set[formula]
and collection Or = set[formula]

In this declaration, formula is a sum type: a formula is either a boolean
variable (represented by a string value), or the negation of a formula nested in
a record with one slot neg , or the conjunction (resp. disjunction) of formulas
nested in a set with subtype And (resp. Or). With these types, the formula
¬(p ∧ q) ∨ r can be represented as follows:

{ neg = "p"::"q":: And:() }::"r":: Or:()

The computation of the disjunctive normal form can be achieved by iter-
ating until a fixpoint is reached, the transformation DNF:

trans DNF = {
(* Simplifying unaries *)
[[x |...]:Not|...]:Not =⇒ x (* ¬¬x = x *)
x:And / size(x)=1 =⇒ hd(x)
x:Or / size(x)=1 =⇒ hd(x)

(* Flattening nested ops *)
[f :And| g]:And =⇒ join(f ,g)
[f :Or| g]:Or =⇒ join(f ,g)

(* De Morgan’s laws *)
[x:Or|...]:Not =⇒ fold(::, And:(), map(Negate,x))
[x:And|...]:Not =⇒ fold(::, Or:(), map(Negate,x))

(* Distributivity *)
[x:Or| s]:And =⇒ map(λy � y::s, x)

(* Induction *)
x:And =⇒ DNF(x)
x:Or =⇒ DNF(x)
x:Not =⇒ DNF(x)

}

fun Negate(x) = { neg = x }
fun Dnf(x) = if x:Or then DNF[fix](x)

else DNF[fix](x:: Or:())

Each rule is a straightforward translation in MGS of a well known trans-
formation of a boolean formula into an equivalent one. In this program, the
map and fold are the usual map and fold functions: map(f ,s) applies the
function f to each elements of the collection s and returns the collection of
results; fold(f ,z,s) reduces the elements of the collection s using the bi-
nary function f and starting from z. The function join is used to join two
monoidal collections and hd is used to pick-up one element in a collection.
The expression λy � y::s is a lambda expression that appends its argument to
the collection s.

IJUC˙JDL˙04˙GIAVITTO˙V1 15

16 JEAN-LOUIS GIAVITTO

Named functions are introduced with the fun keyword. The function Dnf
ensures that the formula to normalize is a conjunction and then iterates the
transformation DNF until a fixpoint. The transformation DNF itself is recur-
sive, but on the substructure of its argument: the recursion of a transformation
is always primitive because the rules are applied on proper parts of the argu-
ment.

4.3 A Simple Space Subdivisions Scheme
This example shows the building of a quadtree that partitions a set of points in
2D space. Quadtrees recursively subdivide a rectangular spatial domain into
four regions. The subdivision is recursively iterated until there is less than
n points in each region (we take n = 2 in the following). Figure 4 gives an
example.

This adaptive mesh is described by the following type definitions:

collection quadTree = G22[quadTree | cloud]
and gbf G22 = < n, s, e,w; n+s=0,w+e=0,2e=0,2n=0>
and collection cloud = set[point2D]
and record point2D = { x:float, y:float }

FIGURE 4
Left: Adaptive mesh refinement using quadtrees on a set of 100 points. Right: The corresponding
nested structure pictured as an inclusion tree.

IJUC˙JDL˙04˙GIAVITTO˙V1 16

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 17

The GBF G22 specifies a 2 × 2 torus with two directions n and e with
inverses s and w respectively. The recursive subdivision is computed by the
transformation MakeQuadTree:

trans MakeQuadTree =
c:cloud / size(c)>2 =⇒ MakeQuadTree(SplitCloud(c))

The function SplitCloud makes the real work:

fun SplitCloud(c:cloud) =
let g = barycenter(c) in
let c0, c1 = split(λp � p.x<g.x, c) in
let c00, c01 = split(λp � p.y<g.y, c0) in
let c10, c11 = split(λp � p.y<g.y, c1) in

G22:(c00@0, c01@e, c10@n, c11@(n+e))

Function SplitCloud divides a cloud of points c into four subclouds ci j
depending on the positions of the points compared to the barycenter (above
or below, on the left or on the right). Then it builds a new G22 collection
where the four cells are labeled by the clouds ci j . Function barycenter

computes the center of mass of a cloud of points (it is easily expressed using
a fold over the elements of the set.) The function split takes a predicate
and a collection, and returns two collections: the elements of the first one
satisfy the predicate and the second one gathers the remaining elements. The
syntactic construction T:(. . . vi@ci . . .) builds a collection of type T where the
value vi is associated with the cell ci . The process is illustrated on figure 4.

4.4 Fraglet
Fraglets are active messages: tiny computation fragments that flow and react
through a computer network. Each fraglet is a sequence of symbols, some
of them representing actions, some of them representing data. Following its
head symbol, a fraglet may evolve to restructure the rest of its content or
interact with another fraglet presenting some specific structure. The result of
the interaction can be the creation of new fraglets or the transmission of the
reactants into another part of the network.

Fraglets have been introduced in [50] as an execution model for computer
communications inspired by molecular biology. They have been designed to
lay the ground for automatic network adaption and optimization processes
as well as the synthesis and evolution of protocol implementations. Table 1
sketches the core instructions.

For example the six following fraglets

(1) [counter 0]
(2) [matchp length empty stop cnt]

IJUC˙JDL˙04˙GIAVITTO˙V1 17

18 JEAN-LOUIS GIAVITTO

Op Input Output

nul [nul tail] []
destroy a fraglet
[‘null@0|tail]:fraglet =⇒ fraglet:()

dup [dup t a tail] [t a a tail]
duplicate a single symbol
[‘dup@0,t,a|tail]:fraglet =⇒ t::a::a::tail

exch [exch t a b tail] [t b a tail]
swap two tags
[‘exch@0,t,a,b|tail]:fraglet =⇒ t::b::a::tail

split [split s1 × s2] [s1] [s2]
break a fraglet into two at the first occurrence of ×
[‘split@0,(x/x!=‘time)* as s1,‘time|s2]:fraglet

=⇒ s1, s2
fork [fork a b tail] [a tail] [b tail]

copy a fraglet and prepend different header symbols
[‘fork@0,a,b|tail]:fraglet =⇒ a::tail, b::tail

pop [pop h a tail] [h tail]
pop the “head” element of the list “a, tail”
[‘pop@0,h,a|tail]:fraglet =⇒ h::tail

empty [empty yes no tail] [yes] or [no tail]
test for empty tail
[‘empty@0,y,n|tail]:fraglet =⇒
if size(tail)==0 then y:: fraglet:() else n::tail

sum [sum t n1 n2 tail] [t (n1 + n2) tail]
arithmetic addition
[‘sum@0,t,n1,n2|tail]:fraglet

=⇒ t::(n1+n2)::tail
match [match a tail1],[a tail2] [tail1 tail2]

two fraglets react, their tails are concatenated
[‘matchp@0,a|t1]:fraglet, [b@0|t2]:fraglet

/ a = b =⇒ join(t1,t2)
matchP [matchP a tail1],[a tail2] [tail1 tail2]

idem as match but the rule persists
[‘matchp@0,a|t1]:fraglet as f, [b@0|t2]:fraglet

/ a = b =⇒ f, join(t1,t2)

TABLE 1
Subset of the fraglets core instructions (from [50]) and their MGS translations.

(3) [matchp stop match counter total]
(4) [matchp cnt pop cnt1]
(5) [matchp cnt1 split match counter incr counter × length]
(6) [matchp incr exch sum 1]

located together with a fraglet [length tail] on the same node of the
network, will compute the length of tail by generating the fraglet [total
n] (where n is the size of tail). In this program, the fraglets can be inter-
preted as follows: fraglet [counter 0] defines a local variable with initial

IJUC˙JDL˙04˙GIAVITTO˙V1 18

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 19

value 0; fraglets starting with matchp define functions; finally fraglet
[length tail] is the application of function length on the list tail .

We detail a simple run: on the fraglet [length a] only fraglet (2) apply
and the former is replaced by [empty stop cnt a] which self-evaluates to
[cnt a] . Fraglet (4) reacts and the result is [pop cnt1 a] which in turn
results in [cnt1] . This last one interacts with (5) and gives [split match

counter incr counter × length] . It self-evaluates into the two fraglets
[match counter incr counter] and [length] . The former reacts with
(1) and the two are replaced by [counter 1] . The latter reacts with (2) and
produces [empty stop cnt] which reduces to [stop] . Then, with (3), the
fraglet [match counter total] is produced and combines with [counter

1] to gives the final [total 1] . No remaining fraglets may interact further-
more.

MGS encoding. In the following we encode the fraglet formalism by im-
plementing a fraglet interpreter in MGS . For the sake of simplicity, we do not
consider here the localization of the fraglets on the nodes of a communica-
tion network and the communication rules between nodes‡ . Let consider the
following MGS type declaration:

type inst = int | ‘nul | ‘exch | ‘matchp | ...
and collection fraglet = seq[inst]
and collection state = bag[fraglet]

The state of the system is represented by a multiset inhabited by a popu-
lation of fraglets; fraglets are sequences of tokens (symbols or integers). For
each fraglet operator, Table 1 gives the fraglet instruction, its informal se-
mantics and its translation into an MGS transformation rule. These rules are
part of the transformation EvalFraglets:

trans EvalFraglets = {
. . . rules from table 1. . .

}

which implements the evaluator of the MGS fraglet interpreter. Note that
this evaluator is very simple: one rule implements one fraglet instruction.

For example, the split instruction consists in extracting the subsequence
of tokens in the fraglet located between the operator (first element) and the
first occurrence of the special token × (the symbol ‘times in MGS). This
operation is straightforwardly translated in MGS : the pattern matches in a

‡ Nevertheless the reader is invited to pay attention that this restriction is done to keep the presentation
simple: the whole formalism can be specified in MGS by using an additional level of nesting considering
a graph labeled by multisets of fraglets.

IJUC˙JDL˙04˙GIAVITTO˙V1 19

20 JEAN-LOUIS GIAVITTO

fraglet the operator ‘split (the syntactic construction @0 checks that the
operator is located at the first position in the sequence) followed by a sub-
sequence terminated by the special token ‘time . The subsequence is speci-
fied by (x/x!=‘time)* that matches a repetition of elements different from
‘time .

5 RELATED AND FUTURE WORK

In this paper, we have presented the advantages of nesting in a spatial model
of computation, the MGS experimental language. The MGS language, has
been used in the context of P systems [25] and in several large modeling
projects in systems biology [5, 21, 47].

One interest of the spatial paradigm à la MGS is its ability to subsume
several computational models in a single uniform formalism, as long as one
focuses on programming, cf. section 3. We showed the benefits of consider-
ing nested spatial computing through three kind of examples: in algorithmic,
in simulation of multiscale phenomena and in the emulation of other pro-
gramming models.

The management of nested collections is achieved through three kinds of
devices:

� collections are first-citizen values and can be used as the values of an-
other collection;

� a specific pattern construction [p | . . .] makes possible, within the
current pattern, to refer to the elements matched by a pattern p in a
nested collection;

� recursive type declarations generate predicates used to constrain the
nesting and to control the pattern matching facilities.

Together these features enable a very concise and readable programming
style, as exemplified in section 4.

5.1 Related Work
Topological collections are reminiscent of Data Fields studied e.g., by B.
Lisper [29]. Data fields are a generalization of the array data structure where
the set of indices is extended to all Zn (see also [18]). We have introduced the
concept of group based fields, or GBF [23, 24], to extend data fields towards
more general regular data structures. Topological collections include GBF
and also irregular data structures. They share with data fields the emphasis
on data structure as a set of places independently of their occupation by val-
ues. This approach is also shared by the theory of species of structures [9].

IJUC˙JDL˙04˙GIAVITTO˙V1 20

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 21

Motivated by the development of enumeration techniques for labeled struc-
tures, the emphasis is put on the transport of structures along bijections while
spatial computing focuses on topological relationships.

Disentangling the elements in a data structure from their organization has
several advantages. In [31], C. B. Jay develops a concept of shape polymor-
phism where a data structure is also a pair (shape, set of data). The shape
describes the organization of the data structure (restricted to tabular organi-
zations) and the set of data describes the content of the data structure. This
separation allows the development of shape-polymorphic functions and their
typing: the shape of the result of a shape-polymorphic function application
depends only on the shape of the argument, not of its content. The same line is
developed in the field of polytypic programming for algebraic data type [32].
MGS transformations are naturally polytypic and extend far beyond arrays
and algebraic data type. Polytypism in MGS relies on a generic implementa-
tion of pattern matching [20] not on overloading.

Nested data structure are now widespread in programming languages. The
importance of organizing the accesses to the element in a complex struc-
ture trough primitive operations related to the type constructor is stressed
in [10]. In MGS , accesses rely on pattern matching, and the pattern match-
ing constructs reflect the spatial structure underlying a collection. Structural
recursion, advocated in [10], is still possible, as showed by the programs in
sections 4.2 and 4.3.

Transformations are a kind of rewriting that differs in many ways from
graph rewriting. Their formalization in [46] is not based on the usual graph
morphisms and pushouts like in [14] but is inspired by the approach of J.-C.
Raoult [43] where graph rewriting based on a multiset point of view is de-
veloped. The proposed model is close to term rewriting modulo associativity
and commutativity (where the left hand side of a rule is removed and the right
hand side is added). This kind of approach also allows to extend results from
term rewriting to topological rewriting (as we did for termination in [26]).
Note that the notions of topological collection and topological rewriting are
more general and may handle higher dimensional objects, a feature relevant
in a lot of application areas [49].

5.2 Perspectives
The work presented in this paper may be enriched and extended in several
directions. The pattern matching we have presented can be seen as operating
at an “horizontal level” on the elements of a collection and at a “vertical
level” when descending to match some elements of a nested collection. The
constructions dedicated to the horizontal level are very expressive, allowing
for example the matching of an unknown number of elements. The handling
of the vertical level is actually restricted to the [pat | . . .] operator. Other

IJUC˙JDL˙04˙GIAVITTO˙V1 21

22 JEAN-LOUIS GIAVITTO

vertical construction can be designed, in parallelism with the horizontal level.
For example, an operator to allow references through an unknown number of
nesting, in a manner analog to the iteration operator * , would be interesting
to mimic path queries in XML. Note however that the distinction between
horizontal and vertical levels is questionable. Another approach would be to
unify the nested collection by looking for the spatial relationships holding in
the whole structure, irrespectively of the horizontal or the vertical view. The
topology of this “flat whole structure” can be build as the topology of a fiber
space over the top collection. The investigation of this framework remains to
be done.

ACKNOWLEDGMENTS

The authors would like to thanks the anonymous reviewers for their com-
ments on a first version of this paper. We are grateful to H. Klaudel, F. Pom-
mereau, F. Delaplace and J. Cohen for many questions, encouragements and
sweet cookies. This research is supported in part by the ANR projects Syn-
BioTIC.

REFERENCES

[1] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T.F. Knight Jr, R. Nagpal, E. Rauch,
G.J. Sussman, and R. Weiss. (2000). Amorphous computing. Communications of the ACM,
43(5):74–82.

[2] B. Aksak, P. S. Bhat, J. Campbell, M. De Rosa, S. Funiak, P. B. Gibbons, S. C. Goldstein, et
al. (2005). Claytronics: highly scalable communications, sensing, and actuation networks.
In Proceedings of the 3rd International Conference on Embedded Networked Sensor Sys-
tems, SenSys 2005, San Diego, California, USA, November 2-4, 2005, page 299. ACM.

[3] J.P. Banâtre, P. Fradet, and D. Le Métayer. (2001). Gamma and the chemical reaction
model: Fifteen years after. In Multiset processing: mathematical, computer science, and
molecular computing points of view, volume 2235 of LNCS, pages 17–44. Springer.

[4] J.P. Banâtre, P. Fradet, and Y. Radenac. (2007). Programming self-organizing systems with
the higher-order chemical language. International Journal of Unconventional Computing,
3(3):161.

[5] P. Barbier de Reuille, I. Bohn-Courseau, K. Ljung, H. Morin, N. Carraro, C. Godin, and J.
Traas. (2006). Computer simulations reveal properties of the cell-cell signaling network at
the shoot apex in Arabidopsis. PNAS, 103(5):1627–1632.

[6] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, G. Pardini, and L. Tesei. (2011). Spatial p
systems. Natural Computing, 10(1):3–16.

[7] J. Beal and J. Bachrach. (2006). Infrastructure for engineered emergence on sensor/actuator
networks. Intelligent Systems, IEEE, 21(2):10–19.

[8] M.J. Berger and J. Oliger. (1984). Adaptive mesh refinement for hyperbolic partial differ-
ential equations. Journal of computational Physics, 53(3):484–512.

IJUC˙JDL˙04˙GIAVITTO˙V1 22

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 23

[9] F. Bergeron, G. Labelle, and P. Leroux. (1997). Combinatorial species and tree-like struc-
tures, volume 67 of Encyclopedia of mathematics and its applications. Cambridge Univer-
sity Press. isbn 0-521-57323-8.

[10] P. Buneman, S. Naqvi, V. Tannen, and L. Wong. (18 September 1995). Principles of
programming with complex objects and collection types. Theoretical Computer Science,
149(1):3–48.

[11] J. Castellanos, G. Paun, and A. Rodriguez-Paton. (2000). Computing with membranes: P
systems with worm-objects. In String Processing and Information Retrieval, 2000. SPIRE
2000. Proceedings. Seventh International Symposium on, pages 65–74. IEEE.

[12] A. De Hon, J.-L.Giavitto, and F. Gruau, editors. (3-8 sptember 2006). Computing Me-
dia and Languages for Space-Oriented Computation, number 06361 in Dagsthul Seminar
Proceedings. Dagsthul, http://www.dagstuhl.de/en/program/calendar/
semhp/?semnr=2006361.

[13] N. Dershowitz, J. Hsiang, N.A. Josephson, and D.A. Plaisted. (1983). Associative-
commutative rewriting. In Proceedings of the Eighth international joint conference on
Artificial intelligence-Volume 2, pages 940–944. Morgan Kaufmann Publishers Inc.

[14] H. Ehrig, M. Pfender, and H. J. Schneider. (1973). Graph-grammars: An algebraic ap-
proach. In Proceedings of the 14th Annual Symposium on Switching and Automata Theory
(swat 1973)-Volume 00, pages 167–180. IEEE Computer Society.

[15] M. Felleisen. (December 1991). On the expressive power of programming languages. Sci-
ence of Computer Programming, 17(1-3):35–75.

[16] P. Fradet and D. Le Métayer. (1998). Structured gamma. Science of Computer Program-
ming, 31(2-3):263–289.

[17] J.-L. Giavitto. (June 2003). Topological collections, transformations and their application
to the modeling and the simulation of dynamical systems. In 14th International Conference
on Rewriting Technics and Applications (RTA’03), volume 2706 of LNCS, pages 208–233,
Valencia (Spain). Springer.

[18] J.-L. Giavitto, D. De Vito, and J.-P. Sansonnet. (September 1998). A data parallel Java
client-server architecture for data field computations over ZZn . In Euro-Par’98 Parallel Pro-
cessing, volume 1470 of LNCS, pages 742–745, Southampton (UK). Springer.

[19] J.-L. Giavitto and O. Michel. (October 2002). Data structure as topological spaces. In Pro-
ceedings of the 3nd International Conference on Unconventional Models of Computation
UMC02, volume 2509 of LNCS, pages 137–150, Himeji (Japan). Springer.

[20] J.-L. Giavitto and O. Michel. (October 2002). Pattern-matching and rewriting rules for
group indexed data structures. In ACM Sigplan Workshop RULE’02, pages 55–66, Pitts-
burgh. ACM.

[21] J.-L. Giavitto and O. Michel. (2003). Modeling the topological organization of cellular
processes. BioSystems, 70:149–163.

[22] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher. (September 2005). Computation in
space and space in computation. In Unconventional Programming Paradigms (UPP’04),
volume 3566 of LNCS, pages 137–152, Le Mont Saint-Michel (France). Springer.

[23] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. (2–4 October 1995). Group based fields.
In Parallel Symbolic Languages and Systems (International Workshop PSLS’95), volume
1068 of LNCS, pages 209–215, Beaune (France). Springer.

[24] J.-L.Giavitto, (May 1998). The 81/2 Project. Scientific Report for the “habilitation”
(roughly docentur). University of Paris-Sud. http://goo.gl/nVkpw (accessed in
November 2012).

IJUC˙JDL˙04˙GIAVITTO˙V1 23

24 JEAN-LOUIS GIAVITTO

[25] J.-L.Giavitto and O. Michel. (2002). The topological structures of membrane computing.
Fundamenta Informaticae, 49:107–129.

[26] J.-L.Giavitto, O. Michel, and A. Spicher. (november 2008). Software-Intensive Systems
and New Computing Paradigms, volume 5380 of LNCS, chapter Spatial Organization
of the Chemical Paradigm and the Specification of Autonomic Systems, pages 235–254.
Springer.

[27] J.-L.Giavitto and A. Spicher. (jully 2008). Topological rewriting and the geometrization of
programming. Physica D, 237(9):1302–1314.

[28] J.L. Giavitto and O. Michel. (2001). Declarative definition of group indexed data structures
and approximation of their domains. In Proceedings of the 3rd ACM SIGPLAN interna-
tional conference on Principles and practice of declarative programming, pages 150–161.
ACM.

[29] P. Hammarlund and B. Lisper. (June 1993). On the relation between functional and data
parallel programming languages. In Proceedings of the conference on Functional program-
ming languages and computer architecture, pages 210–219. ACM.

[30] A. Hoekstra, E. Lorenz, J.L. Falcone, and B. Chopard. (2007). Towards a complex au-
tomata framework for multi-scale modeling: Formalism and the scale separation map.
In Computational Science–ICCS 2007, volume 4487 of LNCS, pages 922–930, Beijing
(China). Springer.

[31] C. B. Jay. (1995). A semantics for shape. Science of Computer Programming, 25(2–
3):251–283.

[32] J. Jeuring and P. Jansson. (1996). Polytypic programming. In Advanced Functional Pro-
gramming, volume 1129 of LNCS, pages 68–114. Springer.

[33] C. G. Koster and A. Lindenmayer. (1987). Discrete and continuous models for heterocyst
differentiation in growing filaments of blue-green bacteria. Acta Biotheoretica, 36:249–
273.

[34] G. T. Leavens. (May 1994). Fields in physics are like curried functions or physics for
functional programmers. Technical Report TR94-06b, Iowa State University, Department
of Computer Science.

[35] A. Lindenmayer. (1968). Mathematical models for cellular interaction in development,
Parts I and II. Journal of Theoretical Biology, 18:280–315.

[36] N. Margolus. (April 1998). Crystalline computing. In Proc. Conf. on High Speed Comput-
ing LANL * LLNL, pages 249–255, Gleneden Beach, OR. LANL. LA-13474-C Confer-
ence, UC-705.

[37] C. Martı́n-Vide, G. Paun, J. Pazos, and A. Rodrı́guez-Patón. (2003). Tissue P systems.
Theoretical Computer Science, 296(2):295–326.

[38] J. C. Mitchell. (1993). On abstraction and the expressive power of programming languages.
In TACS’91: Selected papers of the conference on Theoretical aspects of computer soft-
ware, pages 141–163, Amsterdam, The Netherlands, The Netherlands. Elsevier Science
Publishers B. V.

[39] G. J. Mitchinson and M. Wilcox. (1972). Rule governing cell division in anaeba. Nature,
239:110–11.

[40] J. Munkres. (1984). Elements of Algebraic Topology. Addison-Wesley.

[41] G. Paun. (2000). Computing with membranes. Journal of Computer and System Sciences,
1(61):108–143.

[42] P. Prusinkiewicz and J. Hanan. (February 1992). L systems: from formalism to program-
ming languages. In G. Ronzenberg and A. Salomaa, editors, Lindenmayer Systems, Impacts

IJUC˙JDL˙04˙GIAVITTO˙V1 24

UNCONVENTIONAL AND NESTED COMPUTATIONS IN SPATIAL COMPUTING 25

on Theoretical Computer Science, Computer Graphics and Developmental Biology, pages
193–211. Springer Verlag.

[43] J.-C. Raoult and F. Voisin. (1994). Set-theoretic graph rewriting. In Proceedings of the
International Workshop on Graph Transformations in Computer Science, pages 312–325,
London, UK. Springer-Verlag.

[44] G. Ronzenberg and A. Salomaa, editors. (February 1992). L systems: from formalism to
programming languages. Springer Verlag.

[45] A. Spicher, O. Michel, Mikolaj Cieslak, J.-L.Giavitto, and Przemyslaw Prusinkiewicz.
(March 2008). Stochastic p systems and the simulation of biochemical processes with dy-
namic compartments. BioSystems, 91(3):458–472.

[46] A. Spicher, O. Michel, and J.-L.Giavitto. (September 2010). Declarative mesh subdivision
using topological rewriting in mgs. In Int. Conf. on Graph Transformations (ICGT) 2010,
volume 6372 of LNCS, pages 298–313, Twente, Enschede (Netherlands). Springer.

[47] A. Spicher, O. Michel, and J.-L.Giavitto. (February 2011). Understanding the Dynam-
ics of Biological Systems: Lessons Learned from Integrative Systems Biology, chapter
Interaction-Based Simulations for Integrative Spatial Systems Biology. Springer.

[48] T. Toffoli. (2004). A pedestrian’s introduction to spacetime crystallography. IBM Journal
of Research and Development, 48(1):13–30.

[49] E. Tonti. (Jan. 1972). On the mathematical structure of a large class of physicial theo-
ries. Rendidiconti della Academia Nazionale dei Lincei, 52(fasc. 1):48–56. Scienze fisiche,
matematiche et naturali, Serie VIII.

[50] C. Tschudin. (2003). Fraglets-a metabolistic execution model for communication proto-
cols. In Proc. 2nd Annual Symposium on Autonomous Intelligent Networks and Systems
(AINS), Menlo Park, USA, pages 1–6.

[51] A.W. Tucker. (1933). An abstract approach to manifolds. The Annals of Mathematics,
34(2):191–243.

[52] S. Wolfram. (2002). A new kind of science. Wolfram Media.

IJUC˙JDL˙04˙GIAVITTO˙V1 25

