
Spatial Organization of the Chemical Paradigm
and the Specification of Autonomic Systems

Jean-Louis Giavitto1, Olivier Michel1,2, and Antoine Spicher2,3

1 IBISC FRE 3190 CNRS, Université d’Evry, Genopole,
523 place des Terrasses de l’Agora, 91000 Evry, France

{giavitto,michel}@ibisc.univ-evry.fr
http://mgs.ibisc.univ-evry.fr

2 LACL EA 4213 Université Paris 12 (Paris Est),
61 Av. du Géneral de Gaulle, 94010, Créteil, France

{michel,spicher}@univ-paris12.fr
3 LORIA UMR 7503 INRIA, CNRS, INPL, UHP, Nancy 2,

Campus Scientifique - BP 239, 54506 Vandoeuvre-lès-Nancy Cedex, France
Antoine.Spicher@loria.fr

Abstract. The chemical paradigm is an unconventional programming
paradigm well fitted to the high-level specification of parallel systems.
Based on the fixed point iterations of local rules, its use has been advo-
cated for the programming of autonomic and amorphous systems. How-
ever, this model lacks an explicit handling of spatial relationships.

In this contribution, we first show how the chemical paradigm can
be extended beyond multisets to arbitrary topological collections. Topo-
logical collections handle in a uniform way sophisticated data structures
required in algorithmics as well as distributed data structures needed for
the programming of autonomic or amorphous systems. Then we adapt a
well-known result on multiset ordering to the more general case of topo-
logical collections. Well-founded ordering on topological collection can be
used to prove the termination of the fixed point iteration of local rules.

1 Introduction

1.1 Gamma and the Chemical Paradigm

Introduced by the Gamma language, the chemical reaction metaphor [BCM88]
describes computations in terms of reactions between molecules representing
data, in a chemical solution represented as a multiset. A multiset is a generaliza-
tion of a set that allows several occurrences of the same element. Computation
proceeds by rewriting elements of a multiset according to conditions and trans-
formation rules. The result of a chemical program is obtained when a stable
solution is reached, i.e. when no reaction can take place anymore. For example,
the reaction

convex hull = replace x, y, z, u by x, y, z if inside(u; x, y, z)

M. Wirsing et al. (Eds.): Software-Intensive Systems, LNCS 5380, pp. 235–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



236 J.-L. Giavitto, O. Michel, and A. Spicher

replaces four points x, y, z and u by the first three points (i.e. u is removed) if u is
inside the triangle x, y, z [BL90]. These replacements are repeated until a stable
state is reached, that is to say, when no quadruple (x, y, z, u) can be found. The
final stable solution contains exactly the elements defining the convex hull of the
multiset of points specified in the initial solution.

1.2 Gamma and the Autonomic Computing Challenge

The goal of Autonomic Computing [Hor01] is to realize self-managing computer
and software relying on properties of:

– self-organization: autonomous configuration of the components into a dy-
namic architecture dedicated to the satisfaction of the defined requirements;

– self-healing: autonomous detection and correction of hardware and software
faults; and

– self-optimization: autonomous monitoring, control of resources and reconfig-
uration to ensure an optimal functioning.

The chemical paradigm has been claimed well suited to express autonomic prop-
erties: the reaction rules correspond to the local actions to be taken to react to
a perturbation. Several convincing examples have been developed [BRF04].

We believe that the relevance of the chemical paradigm for the specification
and the high-level programming of large autonomic and parallel/distributed sys-
tems comes from two fundamental characteristics:

1. the multiset data structure and the multiset rewriting device suitably rep-
resent the orderless interactions (reactions) between elements that occur in
large parallel or open systems;

2. the computation of a stable state such that self-* behaviors can been seen as
the stabilization of the system on a fixed point after a transient perturbation.

However, these two general statements must be refined:

– The direct interactions of arbitrary elements in a system are not always al-
lowed nor desirable. The system may exhibit some data organization and
only “neighbor” elements may interact. The neighborhood relationship may
represent physical (spatial distribution, localization of the resources) or log-
ical constraints (inherent to the problem to be solved).

– A multiset stable w.r.t. the reactions represents a solution computed by the
program or an admissible state of an autonomic system. This state is best
characterized by global properties (e.g. the extremal points in a multiset of
points in the convex hull computation) while the reactions represent local
changes (e.g. the removal of one point fulfilling some conditions). Therefore,
the real difficulty of chemical programming lies in the relation between the
local changes and the desired global property.

In this paper, we present some concepts and tools in the field of algebraic topol-
ogy that can be used to build more structured chemical solutions (section 2). For



Spatial Organization of the Chemical Paradigm 237

the second point, we adapt a well-known result on multiset ordering that can
be used to establish the convergence of local iterations of reactions (section 3).
This result is a first step in the development of a toolbox of theoretical tools
that can be used to link the local changes of elements to the global behavior of
a system.

2 Introducing Space in the Chemical Paradigm

2.1 From Multisets to Sequences and Beyond

Multisets are a “loose organization” where more structured data require some
encoding to be represented. For example, a sequence of elements can be encoded
into a multiset M of pairs [i, x] where i is the index of the value x. With this
encoding, the reaction

sort bag = replace [i, x], [j, y] by [i, y], [j, x] if (j = i + 1) ∧ (x > y)

replaces a couple of consecutive out-of-order pairs by the couple of consecutive

ordered ones. These replacements go on until a stable state is reached, that is to
say, when no orderless couple remains. Thus, the final stable solution corresponds
to the sorting of the sequence encoded in M .

A more straightforward approach is desirable and possible. A multiset of val-
ues in V can be formalized as an element of the free associative and commutative
monoid (V ∗, +) where + is the operation that merges two multisets. Then, a mul-
tiset is a formal sum and a reaction rule is a rewriting rule on a term in (V ∗, +)
modulo associativity and commutativity [DJ90]. In this framework, the comma
between multiset elements in the pattern of the rule1 is another notation for the
+ operator.

From this point of view, it is easy to adapt the chemical paradigm to handle
sequences: a sequence is an element of a monoid which is only associative. We can
use term rewriting modulo associativity to formalize reaction rules on sequences.
Thus, reaction:

sort sequence = replace x, y by y, x if x > y

applied on a sequence S directly corresponds to a kind of bubble sort. In this
rule, the comma in the pattern represents the associative operator of the monoid
and is interpreted as the concatenation of sequences. The rule is at the same
time more readable because there is no artificial encoding of the sequence data
structure into a multiset of pairs, and potentially more efficient because only
consecutive elements are matched.

The path followed to extend the chemical paradigm on sequence cannot be
easily generalized: rewriting modulo some theory is usually hard and needs ad
hoc developments. For instance, at this point there is no satisfactory theory
1 The pattern of the rule is the term between replace and by.



238 J.-L. Giavitto, O. Michel, and A. Spicher

for rewriting on arrays. However, an alternative framework, focusing on the
topological relationships in the data structure, can be developed. This framework
encompasses multisets and sequences to include arbitrary data structures.

A Topological Approach. The idea is to consider the comma that appears
in the pattern of a rule, not as a data structure constructor, but as a neigh-
borhood relationship that depends on the data structure on which the rule is
applied [GM02a]. In a multiset, all elements are neighbor, which accounts for
the associativity and commutativity that enables arbitrary rearrangements of
the term that represents the multiset. All other data organizations arise as a
restriction of this “universal neighborhood relationship”. For instance, in a se-
quence, the neighborhood relationships are restricted to a linear graph.

By considering various topologies, one may recover well-known computation
models: nested multisets correspond to membrane systems [Pău02], constraining
the universal topology provided by multisets to nested sequences leads to Lin-
denmayer systems [RS92]; restriction to discrete lattice corresponds to cellular
automata and more general crystalline computations [TM87]. And topologies
with higher dimensions can be used to give a direct finite formulation of field
equations in classical physical theories [Ton01] with obvious interests for numer-
ical applications [PS93].

2.2 A Short MGS Presentation

The MGS project [GM02b, Gia03] is based on the previous idea: data structures
are defined relying on topological notions to specify their neighborhood relation-
ships. In the rest of this section, we show how the notion of data structure can
be identified with the notion of field on some underlying space. Such objects can
be rewritten, leading to a novel form of case-based definition of function. These
notions are illustrated through some simple but informative examples.

Data Structures as Discrete Fields. In MGS, a data structure is handled as
a field that associates a scalar value to each point of an underlying space [GS08].
The structure of this underlying space is of interest for the computation at hand.
For example, a multiset of n elements is a field over a space composed of n points.
More specifically, the underlying space may represent some meaningful entity
for the problem. For instance, in a simulation of the temperature distribution
throughout a room, the underlying space is the room. In a distributed compu-
tation, the underlying space represents the connectivity between the processing
elements.

The spatial structure of the underlying space is used to record the neighbor-
hood relationships needed by the computation. If the computation of the value
v associated with a point σ requires the value v′ associated with an other point
σ′, then σ and σ′ must be, somehow, neighbors in the underlying space. For
example, in a simply linked list, the elements are linearly accessed: the second
after the first, the third after the second, etc., inducing an oriented linear space.



Spatial Organization of the Chemical Paradigm 239

In the context of a programming language, the topology of the underlying
space must be algebraically defined to avoid the handling of untractable contin-
uous objects. For technical reasons, it is more convenient and more general to
associate values with some subspaces of the underlying space rather than with
points only (a point being an elementary subspace). Moreover, in this paper
we are only interested in the topological properties of the underlying space: the
properties related to a metric will not be considered here.

These constraints can be satisfied using abstract cellular complexes to specify
the underlying space. Abstract cellular complexes are a variant of cellular com-
plexes developed in algebraic topology [Hen94]: a particular class of topological
spaces that are partitioned into pieces of elementary space called topological cells.
Each cell is homeomorphic to an open ball in R

d. By the term abstract, we mean
here that only the combinatorial structure of cellular complexes is preserved
while the geometric characteristic functions mapping cells to open balls are left
apart [Kov01].

The corresponding notion of data structure is called topological collection in
MGS. Topological collections are formalized by topological chains, a notion de-
veloped in homology theory [Mun84]. Chains are functions that associate values
with the cells of abstract cellular complexes. In the following, we will often drop
the term “abstract”: we only consider abstract cellular complexes and abstract
topological cells.

Transformations of Topological Collection. In the chemical paradigm,
multiset transformations are defined using rules and can be formalized by
associative-commutative rewriting [DJ90]. This schema can be extended to topo-
logical collections, relying on the notion of chain rewriting defined in [GS08].

The global transformation of a topological collection C consists in the parallel
application of a set of local transformations. A local transformation is speci-
fied by a rewriting rule that specifies the changes of a subcollection. An MGS
transformation T is accordingly specified by a set of rules:

trans T = { ... ; rule; ... }

A rule is a basic transformation that takes the following form:

pattern ⇒ expression

where pattern in the left hand side (lhs) of the rule matches a subcollection B
of the collection A on which the transformation is applied. The subcollection B
is substituted in A by the collection C computed by the evaluation of the right
hand side (rhs) expression of the rule.

The Pattern Language. Several pattern languages have been developed in MGS.
In this paper, we only consider a subset of the path patterns. The grammar of
this fragment of pattern expressions is:

β ::= x | p, p′ | p ∗ | p as x | p/exp



240 J.-L. Giavitto, O. Michel, and A. Spicher

where p, p′ are patterns, x ranges over the pattern variables and exp is an expres-
sion evaluating to a boolean value. Such patterns can be used to match a path:
a finite sequence of elements ei where ei+1 is a neighbor of ei. The explanations
below give an informal semantics for these patterns.

variable: a pattern variable x matches exactly one element of the topological
collection, that is, a cell σ and its associated value v. A variable can only be
defined once in a pattern (patterns are linear) but it may be used elsewhere
in the expressions of the rule where it denotes the value v.

neighbor: p, p′ is a pattern that matches two connected paths p and p′. The
connection relationship depends on the topology of the collection. For ex-
ample, x, y matches two elements such that y is a neighbor of x.

repetition: pattern p∗ matches a subcollection of connected elements matched
by p.

binding: a binding p as x gives the name x to the path matched by p. This name
can be used anywhere in the rest of the rule. E.g., the pattern (x, y) as d
matches two connected elements and the corresponding sequence of two el-
ements can be referred through the variable d.

guard: p/exp matches the collections matched by p such that exp holds. For
instance, y / y > 3 matches an element y whose associated value is greater
than 3.

The Right Hand Side of a Rule. In a rewriting rule, the lhs and the rhs of the
rule denote objects of the same type. For instance, in multiset rewriting, the lhs
matches a multiset which is replaced by the multiset computed in the rhs. In
term rewriting, the lhs matches a tree which is replaced by the tree computed
by the rhs. In graph rewriting, the lhs of a rule matches a graph and the rhs
computes a graph to be inserted in place of the matched one. Etc.

Sophisticated data structure make harder the definition of the the rhs and
of the associated replacement operation. However, the structure of a path pat-
tern can be used to drastically simplify the rhs of an MGS rule. A path pattern
matches a path, that is, a sequence. Therefore, the rhs of the rule can evaluate
to a sequence, no matter how complex the considered data structure is. The
substitution of the matched path by the sequence computed in the rhs is done
element-wise. Having a matched path and a rhs sequence of the same length
is a constraint that can be relaxed for some collection types. For example, if a
transformation is applied on a monoidal collection (i.e. a set, a multiset or a
sequence), the rhs can be of arbitrary length. From now on, the expression in
the rhs of a rule must be interpreted as a sequence construction.

2.3 The MGS Programming Language

MGS is an experimental programming language that embeds the idea of topo-
logical collections and their transformations into the framework of a functional
language. Collections are just new kinds of values and transformations are func-
tions acting on collections and defined by a specific syntax using rules. The set



Spatial Organization of the Chemical Paradigm 241

of values has a rich type structure used in the definition of pattern-matching,
rule and transformations. The collection types in MGS range from totally un-
structured with sets and multisets to more structured with sequences, trees,
Voronöı diagrams, Cayley graphs, arbitrary graphs, Generalized Maps [Lie94]. . .
and abstract cellular complexes which subsume all other collection types.

A transformation T is a function on collections and a first-class value. For
instance, a transformation can be passed as an argument to another function or
be returned as a result. This feature allows to sequence and compose transfor-
mations very easily.

The expression T (c) denotes the application of one transformation step to the
collection c. As said above, a transformation step consists in the application of
the rules (modulo the rule application’s strategy). A transformation step can be
easily iterated:

T [n] (c) denotes n iterations of the application of T on c

T [fixpoint] (c) denotes the application of T until a fixpoint is reached

Several rule application strategies and transformation application strategies have
been defined, including asynchronous and stochastic ones [SMC+08]. Synchronous
rule application strategies (several rules are applied in parallel in one application
of a transformation) are non-deterministic: only non-intersecting paths are rewrit-
ten and these paths are non-deterministically chosen (priorities or probabilities
can be used to have a finer control). For example, the maximal parallel applica-
tion strategy apply as many rules as possible in parallel that is, when rewriting
occurs, there is no path in the remaining elements that can be matched by the lhs
of a rule. This strategy is similar to the one used in Lindenmayer systems [RS92].

2.4 A Few Examples

Obviously, all Gamma chemical programs can be translated easily in MGS. We
give below some examples that take advantage of the spatial structure of the
topological collection. After two simple examples on sequences, we focus on
computations on a regular grid and on a graph because such data structures
are not algebraic data structures, and therefore the usual approach based on
term rewriting is not applicable.

MGS has been involved in sophisticated simulation applications in biology,
like neurulation [SM07], cell mobility [SM05], growth of plant meristem at a cel-
lular level [BdR+06], or simulations at various scales of a synthetic multicellular
bacterium [IGE07]. Classical algorithms (various sorting procedures, graph al-
gorithmics, optimization processes, mesh refinement algorithms, etc.) have also
been easily developed, see [Mic07].

Bubble Sort. In the MGS syntax, the sort sequence program in section 2.1 is
specified by the following transformation:

trans sort sequence = { x, y / x>y ⇒ y, x }



242 J.-L. Giavitto, O. Michel, and A. Spicher

As mentioned above, the rhs of the rule is a sequence construction: the comma
is then interpreted as the sequence constructor. The transformation must be
iterated until a fixed point is reached. Note that the fixed point is reached re-
gardless the rule application strategy. This result can be established by the tools
presented in section 3.

Duplicate Removal. It is easy to remove the contiguous duplicated elements in
a list using the iteration of the transformation:

trans remove duplicate = { x, y / x=y ⇒ x }

The pattern x, y / x=y selects two contiguous elements labeled by the same
value. Such occurrences are replaced by only one element. Note that the rhs
must be interpreted as a sequence of only one element. The conversion between
an element and the corresponding singleton is implicit.

Bead Sort. Various meshes can be described in MGS. For example, the NEWS
lattice is specified by the following type declaration:

gbf NEWS =
〈North,East ,West ,South;North + South = 0,East + West = 0〉

This declaration introduces a “group based data-field” or GBF [GM01]. The
underlying space of a GBF is the Cayley graph of the abelian group presentation
specified by the right hand side of the declaration. The vertices of the Cayley
graph are linked by edges labeled by the group generators North, East , etc.

The bead-sort is an original way to sort positive integers proposed by [ACD02].
This sorting algorithm considers a column of numbers written in unary basis.
The first schema below pictures the numbers 3, 2, 4 and 2 where the beads stand
for the digits. The sorting is done by letting the beads fall down as shown on the
second schema. The numbers can be implemented by a regular grid of booleans
where true stands for a digit and false for the absence of digit as shown on the
third and fourth schema.

(3)

(2)

(4)

(2)

(2)

(2)

(3)

(4)

t t

t t

f

ff

t t t t

t t f f

t t

t t

f

ff

t t t

t t

t f

t t

f

The bead-sort is achieved by iterating the application of the following transfor-
mation until a fixpoint is reached:

trans bead sort = {x/(x = false) |North> y/(y = true) ⇒ y, x}

The construction |North> refines the comma operator, constraining the element
y to be a North-neighbor of x.



Spatial Organization of the Chemical Paradigm 243

Hamiltonian Path. A graph is an MGS topological collection. Expressing in MGS
the search of an Hamiltonian path in a graph is straightforward:

exception Not Found , Found ; ;
trans H = { x∗ as path/size(path) = size(self) ⇒ raise Found(path) }; ;
fun hamiltonian(g) = try

H(g); raise Not Found
with Found(path) → path; ;

Transformation H uses an iterated pattern x∗ that matches a path. The keyword
self refers to the collection the transformation is applied on. The size of a graph
returns the number of its vertices. So, if the length of path is the same as the
number of vertices in the graph, then path is an Hamiltonian path (patterns are
linear without repeated matched element). The rhs raises an exception which
is trapped in function hamiltonian. The normal return of H is followed by the
raising of the Not Found exception in function hamiltonian.

3 From Local Changes to Global Specifications

The notions introduced in MGS for spatial organization can be used to handle
directly: (a) highly organized data structures used in algorithms (like trees, ar-
rays, etc.), (b) semi-structured data like those managed in XML applications
(XML schema are well represented by nested topological collections) or (c) to
take into account the data distribution over a network. The network architecture
can be static and regular (e.g., as in a tightly coupled parallel architecture) or
more fuzzy and dynamic (e.g., as in a grid on the Internet, in a P2P system or
in an amorphous medium [AAC+00]). In either case, the communication cost
between processing elements induces a neighborhood relationship. The states of
the processing elements together with this neighborhood relationship constitute
a topological collection. If any point-to-point communication exhibits the same
uniform cost, the corresponding topology is the topology of a multiset.

3.1 Self-* Properties and Fixed Point Iterations of Local Rules

In this point of view, the state of an autonomic system is a (distributed) topolog-
ical collection. The evolution of an autonomic system is specified through local
evolution rules that define the (local) evolution of a small subpart of the system.
A topological collection stable w.r.t. the reactions represents an admissible state
of the autonomic system. A perturbation or an interaction with the environ-
ment corresponds to a change in the topological collection: the addition or the
removal of some elements or a modification of the neighborhood relationship.
This framework is illustrated in Fig. 1.

Thus, an autonomic system can be defined in this framework if one can infer
that the asynchronous parallel applications of local rules lead to stable points
exhibiting some required properties. Some theoretical tools can be used in this



244 J.-L. Giavitto, O. Michel, and A. Spicher

steady state

perturbation

resilience

Fig. 1. Autonomic computing via trajectory stabilization. An autonomic system can
be seen as a distributed dynamical system. In this diagram, the states of the dynamical
system are figured as a plane and the system’s evolutions are given by a trajectory. The
surface represents some potential, for instance a quantitative evaluation of the diver-
gence of the system from a desired behavior. When some transient perturbations make
the system leave its steady state, the local transformations triggered by the matching
of some rules eventually lead to the return of the system’s state to an admissible state.

difficult task. In the rest of this presentation, we develop several topological
collection orderings based on multiset orderings [DM79]. Such orderings can be
used to prove the convergence of an autonomic system towards a fixed point.

The framework pictured in Fig. 1 can be made more precise in the following
way. We suppose that the state of an autonomic system is described by a topo-
logical collection c ∈ C where C is the state space of the system. The autonomic
program driving the autonomic system is specified by a unique transformation T .
The admissible states s of the corresponding autonomic system are fixed points
of T : s = T (s). A perturbation of the system corresponds to a state s′ such that
s′ 	= T (s′). The trajectory of the system after the perturbation is given by the
sequence s0 = s′, s1 = T (s0), . . . , sn+1 = T (sn). The problem is then to know
whether the sequence sn converges towards a fixed point in a finite number of
steps. A classical approach is to exhibit a well-founded ordering 2 ≺ of the state
space C such that sn+1 ≺ sn.

2 An ordering is well-founded if it contains no infinite descending sequences of ele-
ments. For countable sets, a well-founded ordering ≺ can be specified by giving a
mapping τ onto the positive integers such that c ≺ c′ ⇔ τ (c) < τ (c′). The “poten-
tial” surface in Fig. 1 figures such a function τ .



Spatial Organization of the Chemical Paradigm 245

In this context, it would be very useful to exhibit various well-founded or-
derings on arbitrary topological collections. To this end, we can adapt the well-
known multiset ordering introduced in [DM79].

3.2 Multiset Ordering

For a partially-ordered set of values (V, <), the multiset ordering � on M(V )
the multisets over V , is defined as follows: A � B if for some X, Y ∈ M(V )
such that X 	= ∅ and X ⊂ B,

A = (B − X) ∪ Y and ∀y ∈ Y, ∃x ∈ X, y < x

In other words, A is obtained from B by removing some elements (those in X) and
their replacement with a finite number of elements (those in Y ) that are smaller
than one of the element of X . The definition of the relation � relies on the relation
< and we will write �< when we need to make such dependence explicit.

In the previous definition, set operators denote their multiset analogs: the
equality A = B of two multisets, for example, means that any element occurring
exactly n times in A, also occurs exactly n times in B. The union of two multisets
A + B is a multiset containing m + n occurrences of any element occurring m
times in A and n times in B. A ⊂ B means that for any element occurring
n times in A, this element occurs m times in B with n < m. If A ⊂ B, then
B −A is a multiset where any element occurring n times in A and m times in B,
occurs m − n times. Union and difference between multisets are extended to the
addition and the removal of elements: A + x = A + {x} and A − x = A − {x}.

The result demonstrated in [DM79] is that �< is well-founded iff < is well-
founded. This result can be generalized in two ways to topological collections
more general than multisets.

3.3 Forgetting the Spatial Structure

The first approach simply consists in forgetting the additional spatial structure
of a topological collection. Thus, we can associate to each topological collection c
the multiset m(c) of the values associated with the cells of c. Assuming that � is
well-founded, the order ≺ defined by c ≺ c′ iff m(c) � m(c′), is also well-founded.
We write ≺� when we want to make explicit the underlying multiset ordering.

A Toy Example. To illustrate the use of a well-founded topological collection
ordering ≺, we consider a wireless sensor network targeted at environmental
monitoring, like for example the one described in [SKHH06]. Each node reacts
to environmental changes and, to fix the idea, the goal of the system is to record
the maximal temperature over the covered area. For this purpose, each node i
stores a current maximal temperature ti and updates it by comparison with its
neighbors. A perturbation is the change of one ti to record a new local maximum.

The state of the autonomic system is a topological collection c ∈ C where C can
be for instance the set of vertex-labeled undirected graphs (a vertex represents



246 J.-L. Giavitto, O. Michel, and A. Spicher

a node, an edge between two vertices corresponds to nodes able to interact, and
the label of the vertex i is the current maximal temperature ti). We further
suppose that there is only one strongly connected component. The behavior of
the system is specified as the iteration of the following transformation:

trans propagate = { t, t′/t′ < t ⇒ t, t }

(the local change of a ti is considered as an external change and not modeled here).
It is straightforward to prove that in absence of a perturbation, the system

will reach a state where all ti are equal. This property is a global one and must
be deduced from the application of the local rule. Although this result is obvious,
its proof illustrates the use of a well-founded topological collection ordering.

Constant Fields are the Fixed Points. First, the topological collections c where
each cell has the same value t, are the only fixed points of the propagate trans-
formation. Indeed, if c is a fixed point, we cannot find in c a pair of cells σ and
σ′ labeled by the values t and t′ such that t < t′ (the relation < is the classical
numerical comparison over the integers).

Exhibiting a Well-Founded Ordering. We may suppose that the temperature is
bounded by a sufficiently big positive number tmax. Thus the set V = {−∞, . . . ,
tmax} with the order � defined by (t�t′) ⇔ (t′ < t) is well-founded. Consequently,
the order on M(V ) defined by �� is well-founded, as well as ≺��

on C.

The System’s Trajectory is Decreasing. As a matter of fact, if c′ = propagate(c)
and c′ 	= c, we have c′ ≺��

c because m(c′) = m(c) − t + t′ with t, t′ ∈ m(c)
and t′ � t, and so m(c′) �� m(c). This just shows that the sequence T n(c) is
decreasing and since the order is well-founded, it implies that it converges in a
finite number of steps to some fixed point.

3.4 Topological Collection as Generalized Multisets

Forgetting the spatial structure is useful only if the fixed point does not depend
on the spatial structure of the topological collection, which is generally not true.

It is possible at the same time to keep the spatial structure of a topological
collection c and to consider it as a kind of generalized multiset. To see the con-
nection between both notions, we need to introduce some formal definitions. The
reader is warned that the following definitions are truncated to only focus on the
multiset structure of a topological collection. The algebraic structure required to
represent the spatial organization of a topological collection (dimension of a cell,
boundary operator, the neighborhood relationships, etc.) is ignored. Complete
definitions can be found in [GM02b, GS08].

Definition 1 (Cells, Abstract Cellular Complexes and Chains). Let S
be a set of symbols called the universal set of cells. An abstract cellular complex
K is a partially ordered subset of S. We write K the set of all abstract cellular
complexes.



Spatial Organization of the Chemical Paradigm 247

Let K be a complex and G be an abelian group. The set of functions from K
to G, null almost everywhere, is called the set of topological chains of K to G,
and is written CK(G).

The elements of CK(G) are easily representable by finite formal sums:

∀c ∈ CK(G), c =
∑

σ∈K

c(σ).σ

where c(σ).σ is the formal product that represents the association of the value
c(σ) ∈ G with the cell σ ∈ S. Thanks to the abelian group structure imposed on
G, the set CK(G) is an abelian group considering the addition +CK(G) defined by:

∀c1, c2 ∈ CK(G), c1 +CK(G) c2 =
∑

σ∈K

(c1(σ) +G c2(σ)).σ

where +G denotes the group operation in the group G. The proof is straightfor-
ward. If the context is clear, the subscript in the notation of the group operation
will be dropped.

While they seem useless in our context, the group structure on the set of
values and the induced group structure on chains are really meaningful to deal
with topological collections:

– 0G.σ means that no value is associated with σ (0G is the neutral element in
the group G),

– the neutral element of CK(G) represents the empty data structure,
– the operator +CK(G) adds a new association of a value v ∈ G with a cell

σ ∈ K in a data structure c: c + v.σ,
– the opposite −CK(G) removes an association: c − v.σ = c + (−v).σ.

We have mentioned above that a topological collection c can be represented
as a finite formal sum

∑
σ∈K c(σ).σ. We interpret this sum as a set of pairs

mp(c) = {(σ, c(σ)) : σ ∈ S and c(σ) 	= 0V }

A set is a special kind of multiset and so can be ordered using a multiset ordering
based on the ordering of the set elements. Hence the desired definition and
theorem:

Theorem 1. Let (V, <) a partially-ordered set of values, and (S, �) a partially-
ordered universal set of cells. Then the topological collection ordering is the
partial-order ≺ defined on CK(V ) by: c ≺ c′ iff mp(c) ≺(�×<) mp(c′) where
(� ×<) is the lexicographic or the element-wise ordering on S×V . The relation
≺ is well-founded iff � and < are well-founded.

In words, a collection c is smaller than a collection c′ if c can be obtained from c′

by replacing some valued cells by some other valued cells, in arbitrary number,
provided that the introduced cells and/or the associated values are smaller.



248 J.-L. Giavitto, O. Michel, and A. Spicher

3.5 Correction of the Eratosthenes’s Sieve

To illustrate the previous result, we consider the fixed point iteration of the
following transformation3:

trans prime = {
x/(x > 0), 0 ⇒ 0, −x;

x/(x ≥ 0), y/(y < 0), 1/(−y > x) ⇒ x,−y, 1;

x/(x ≥ 0), y/(y < 0), 1/(−y < x) ⇒ x, 1;

x/(x ≥ 0), y/(y < 0), z/(z > 0)/(−y > x) ∧ (−y < z) ⇒ x,−y, y, z;

x/(x < 0), y/(y > 0) ∧ (y ≤ −x) ∧ (x%y �= 0) ⇒ y, x;

x/(x < 0), y/(y > 0) ∧ (y ≤ −x) ∧ (x%y = 0) ⇒ y;

x/(x < 0), y/(y > 0) ∧ (y > −x) ∧ (y%x �= 0) ⇒ y, x;

x/(x < 0), y/(y > 0) ∧ (y > −x) ∧ (y%x = 0) ⇒ x;

}

We assume that this process is applied on a sequence that begins with a zero and
ends with a one. This transformation maintains a sorted sequence (sorted at the
exception of the ending one) of relatively prime positive integers. An external
perturbation consists in introducing an arbitrary integer x > 0 at the beginning
of the sequence. If all the integers up to m > 1 are introduced, in any order, the
sequence stabilizes on the sorted sequence of prime numbers up to m.

In the rules, the operator ∧ is the boolean conjunction operator and % is the
modulo operator. The fourth rule increases the length of the sequence while some
other rules shrink it. So the convergence is not obvious. The idea behind this
program is similar to the sieve of Eratosthenes but adapted in order to admit
the orderless introduction of the integers. The perturbation x “travels” along
the sequence, from the beginning to the end of the sequence. This “traveling
number” is distinguished from the other numbers in the sequence using a negative
number (note that there is no constraint in the perturbation, so several “traveling
numbers” may coexist in the sequence). This number and the next are tested
to check if they are relatively prime. The “traveling number” is inserted in the
sequence at the correct position in order to maintain a sorted sequence and the
propagation continues to check the primality of the rest of the sequence.

The correction of this algorithm is easy to establish with the previous tool. We
focus on the convergence, that is: a fixed point is reached in a finite number of
steps. It is sufficient to exhibit a well-founded order such that a rule application
to sequence c1 gives raise to a smaller sequence c2. We take the topological
collection order induced by the following order on cells and values:

– Cells are ordered in descending order “from left to right”. For instance, the
sequence 0, 2, 3, 1 is represented by the sum 0.σ0 + 2.σ1 + 3.σ2 + 1.σ3 and

3 This transformation is derived from a natural implementation of the sieve of Era-
tosthenes, see [GM02b]. This program is not intended to be readable and has been
chosen to illustrate the approach on an arbitrary set of rules and conditions.



Spatial Organization of the Chemical Paradigm 249

σ3 � σ2 � σ1 � σ0. We assume that only a finite number of cells has been
used, so � is well-founded. This assumption is satisfied because a cell is
created each time a new integer is introduced and we suppose that there is
a bounded number of introductions.

– Relative integers are ordered as follows: let N be the greatest integer intro-
duced in the sequence. Then the set of values V = {−N, . . . , N} used in the
program is ordered by : −N > −N + 1 > · · · > −1 > N > N − 1 > · · · >
1 > 0. This order is well-founded. Note that V is a subset of the abelian
group (Z, +) and this is enough for our purpose.

Finally, we consider the lexicographic order on the pairs (cell, value). It is
straightforward to check that each rule applied to a sequence c1 gives raise to a
smaller sequence c2. We will sketch only three rules for illustration:

– The first rule does not change the sequence length. Its application replaces in
a sequence c1 the submultiset x.σ0+0.σ1 by 0.σ0+(−x).σ1 where σ1�σ0 and
x > 0. We have x.σ0 > 0.σ0 (because x > 0) and x.σ0 > (−x).σ1 (because
σ1 � σ0). It follows that c2 ≺ c1.

– Rule 4 is the only rule that increases the sequence length. The submultiset:

c1 = x.σ0 + y.σ1 + z.σ2 where σ2 � σ1 � σ0 and 0 ≤ x and y < 0

is replaced by

c2 = x.σ0 + (−y).σ1 + y.σ2 + z.σ′
2 where σ′

2 � σ2

We have c2 ≺ c1 because y.σ1 > (−y).σ1 (y is strictly negative and so
−y > y > 0). We have also y.σ1 > y.σ2 and y.σ1 > z.σ′

2 because σ′
2 �σ2 �σ1.

– The application of rule 8, the last rule of the transformation, decreases the
sequence since it removes one element.

So, since the successive sequences are decreasing in a well-founded order the
sequence must converge in a finite number of steps.

3.6 The Group Structure and the Ordering of the Values

We cannot assume that every set of values V we may consider, carries a group
structure. The group operation is useful to manage the association of a value to
a cell but it is in some sense external to the proper definition of V . Hopefully,
in absence of any “natural” group operation on V , we can use a mathematical
trick to turn any set V into an abelian group.

Definition 2 (Abelianization of a set). Let V be an arbitrary set. The Z-
module freely generated by the elements of V , written A(V ), is the free abelian
group generated by the elements of V . An element g of A(V ) can be written has
a formal sum:

∑
v∈V zv.v where zv belongs to Z.



250 J.-L. Giavitto, O. Michel, and A. Spicher

In the following, we consider only “finite formal sum” where only a finite subset
of coefficients zv are different from zero. The structure of Z-module generalizes
the structure of multiset: as a matter of fact, any multiset m ∈ M(V ) can be
represented by a formal sum with positive coefficients zv. So, A(V ) generalizes
M(V ) by allowing a negative number of occurrences.

Given g ∈ A(V ), we can distinguish between the positive and the negative
coefficients of g, that is:

g = (
∑

v∈V1

zv.v) − (
∑

v′∈V2

zv′ .v)

with V1, V2 ⊂ V . Assuming V1 ∩ V2 = ∅ and all coefficients z strictly positive,
the decomposition of g is unique and we write: g = g+ − g−. Both sums g+

and g− are multisets on V and this justify the following definition of the abelian
ordering.

Definition 3 (Abelian ordering). Let (V, <) be a partially-ordered set of
values. The abelian ordering � on A(V ) is defined as follows: g � g′ iff
(g+, g−) < (g′+, g′−) where < is the lexicographic ordering or the element-wise
ordering and where the elements of the pair are compared using the multiset
ordering on M(V ).

Theorem 2. Let (V, <) a well-founded partially-ordered set of values, and (S, �)
a well-founded partially-ordered universal set of cells. Let ≺ be the topological
collection ordering defined on CK(Abel(V )) by: c ≺ c′ iff mp(c) ≺(�×�) mp(c′)
where � is the abelian ordering induced by < on A(V ) and (� × �) is the
lexicographic or the element-wise ordering on S × A(V ). Then, the relation ≺ is
well-founded.

4 Conclusion

In this paper we have shown how the declarative chemical programming
paradigm can be enhanced to take into account logical and physical spatial orga-
nization using some notions developed in algebraic topology. This new framework
is investigated in the MGS experimental programming language. At the core of
this extension is the idea that a data structure can be conceived as a physi-
cal field. This notion is not entirely new and we review below some previous
work.

The chemical paradigm has been advocated for the development of amorphous
and autonomic systems. In a second part, we have adapted the well-founded
multiset ordering, a classical tool used to prove program termination, to show
how the convergence of a fixed point iteration can be established for topological
collections. The parallel between autonomic systems and self-stabilizing systems
has been recently noticed and we sketch some differences.

Data Structure as Field. The notion of data field is an old one in computer
science: it already appeared in the development of recurrence equations and



Spatial Organization of the Chemical Paradigm 251

dates at least from [KMW67]. The term “data field” seems to be used for the
first time in [CiCL91]. The notions of data field and data parallelism have been
explicitly brought together in [Lis93]. This approach is also close to the notion of
pvar or xapping [SH86] in the context of the Connection Machine. However, in
all these works, the set of points is simply an integer lattice (points are elements
of Z

n) and is often left implicit.
Topological collections consider, for the underlying space, more general spaces

than integer lattices or even arbitrary graphs, in order to accommodate a large
variety of spatial organizations [GM02a]. This generality will ease the devel-
opment of various applications, for example in simulation by allowing a direct
representation of the modeled entities. As a matter of fact, many physical quan-
tities have different values at various points in space (temperature field, velocity
field, potential, etc.). In addition, the value associated with a spatial domain
often depends on the dimension of the domain [Ton74], e.g. a concentration for
a volume and a flux for the surface bounding this volume. Such generality will
also facilitate portability by offering a uniform abstraction of arbitrary spatial
computing media (e.g.: grids, amorphous computers, chemical reaction diffusion
computers, DNA self-assembly, natural or synthetic cellular assemblies, etc.).

Self-Stabilization and the Self-* Paradigms. Recent works in the self-
stabilization community [BDHY07, BDH+08] advocate the use of self-
stabilization as a provable property to achieve the goal of self-* paradigms for
systems. Usually, a self-stabilizing system is designed to start in any possible
configuration where processors, processes, communication devices, etc. are in an
arbitrary state. The approach exemplified here follows the same line. However, it
is more abstract (communications are abstracted by the data movements within
a topological collection) and less demanding concerning the initial state. We
want to underline that our goal is not to develop algorithmic tools for design-
ing self-stabilizing systems but to show that well-known approaches in program
semantics can be adapted to new programming paradigms advocated for amor-
phous and autonomic applications.

Future Work. Our future research directions follow two paths. First, we need
to investigate further how classical tools in the semantics of programs can be
adapted to the case of perpetual autonomic systems. The other direction tries
to import some tools from dynamical system theory to design and study the
semantics of autonomic systems. A first step in this direction is the development
of a discrete analog of differential operators for topological collections [GS08].
Our idea is to rely on topological and geometrical results (fixed-point theorem,
existence of objects defined by differential equations, integration theorem) to
design, control and validate global behaviors from the specification of local ones.

Acknowledgments. Pascal Fradet at INRIALPES, Thierry Priol and Jean-Pierre
Banâtre at IRISA are gratefully acknowledged for stimulating discussions and
interactions on the chemical paradigm an its application to autonomic systems.
The authors also wish to thank the organizers of the InterLink workshop series



252 J.-L. Giavitto, O. Michel, and A. Spicher

for making these fertile workshops possible. The work presented here are partially
funded by the ANR NanoProg, the ANR AutoChem, a BQR of the University
of Evry and the CNRS.

References

[AAC+00] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight, T.F.,
Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing.
CACM: Communications of the ACM 43 (2000)

[ACD02] Arulanandham, J.J., Calude, C.S., Dinneen, M.J.: Bead-Sort: A natural
sorting algorithm. EATCS Bull. 76, 153–162 (2002)

[BCM88] Banâtre, J.-P., Coutant, A., Le Metayer, D.: A parallel machine for mul-
tiset transformation and its programming style. Future Generation Com-
puter Systems 4, 133–144 (1988)

[BDH+08] Brukman, O., Dolev, S., Haviv, Y., Lahiani, L., Kat, R., Schiller, E.,
Tzachar, N., Yagel, R.: Self-stabilization from theory to practice. Bulletin
of the EATCS (94), 130–150 (2008)

[BDHY07] Brukman, O., Dolev, S., Haviv, Y., Yagel, R.: Self-stabilization as a
foundation for autonomic computing. In: Proc. of the Second IEEE In-
ternational Conference on Availability, Reliability and Security (ARES
2007), Workshop on Foundation of Fault-tolerance Distributed Comput-
ing (FOFDC 2007), pp. 991–998. IEEE, Los Alamitos (2007)

[BdR+06] Barbier de Reuille, P., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro,
N., Godin, C., Traas, J.: Computer simulations reveal properties of the
cell-cell signaling network at the shoot apex in Arabidopsis. PNAS 103(5),
1627–1632 (2006)

[BL90] Banâtre, J.-P., Le Métayer, D.: The GAMMA model and its discipline of
programming. Science of Computer Programming 15(1), 55–77 (1990)

[BRF04] Banâtre, J.-P., Radenac, Y., Fradet, P.: Chemical specification of auto-
nomic systems. In: IASSE, pp. 72–79. ISCA (2004)

[CiCL91] Chen, M., Il Choo, Y., Li, J.: Crystal: Theory and Pragmatics of Generat-
ing Efficient Parallel Code. In: Szymanski, B.K. (ed.) Parallel Functional
Languages and Compilers. Frontier Series, vol. 7, pp. 255–308. ACM Press,
New York (1991)

[DJ90] Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: Handbook of The-
oretical Computer Science, vol. B, pp. 244–320. Elsevier Science, Amster-
dam (1990)

[DM79] Dershowitz, N., Manna, Z.: Proving termination with multiset orderings.
Communications of the Association for Computing Machinery 22, 465–476
(1979)

[Gia03] Giavitto, J.-L.: Invited talk: Topological collections, transformations and
their application to the modeling and the simulation of dynamical sys-
tems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, Springer,
Heidelberg (2003)

[GM01] Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data
structures and approximation of their domains. In: Proceedings of the 3nd
International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP 2001). ACM Press, New York (2001)



Spatial Organization of the Chemical Paradigm 253

[GM02a] Giavitto, J.-L., Michel, O.: Data structure as topological spaces. In:
Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509,
pp. 137–150. Springer, Heidelberg (2002)

[GM02b] Giavitto, J.-L., Michel, O.: The topological structures of membrane com-
puting. Fundamenta Informaticae 49, 107–129 (2002)

[GS08] Giavitto, J.-L., Spicher, A.: Topological rewriting and the geometrization
of programming. Physica D (2008) (accepted for publication)

[Hen94] Henle, M.: A combinatorial introduction to topology. Dover publications,
New-York (1994)

[Hor01] Horn, P.: Autonomic computing: IBM’s perspective on the state of infor-
mation technology. Technical report, IBM Research (October 2001),
http://www.research.ibm.com/
autonomic/manifesto/autonomic computing.pdf

[IGE07] IGEM. Modeling a synthetic multicellular bacterium. Modeling page of
the Paris team wiki at iGEM 2007 (2007),
http://parts.mit.edu/igem07/index.php/Paris/Modeling

[KMW67] Karp, R.M., Miller, R.E., Winograd, S.: The organization of computations
for uniform recurrence equations. Journal of the ACM 14(3), 563–590
(1967)

[Kov01] Kovalevsky, V.: Algorithms and data structures for computer topology.
In: Digital and image geometry: advanced lectures, pp. 38–58. Springer,
New York (2001)

[Lie94] Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular
quasi-manifolds. International Journal on Computational Geometry and
Applications 4(3), 275–324 (1994)

[Lis93] Lisper, B.: On the relation between functional and data-parallel program-
ming languages. In: Proc. of the 6th. Int. Conf. on Functional Languages
and Computer Architectures. ACM Press, New York (1993)

[Mic07] Michel, O.: There’s plenty of room for unconventional programming
languages, or, declarative simulations of dynamical systems (with
a dynamical structure). Habilitation Manuscript (December 2007),
http://www.ibisc.univ-evry.fr/∼michel/Hdr/hdr.pdf

[Mun84] Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Reading
(1984)

[Pău02] Pǎun, G.: Membrane Computing. An Introduction. Springer, Berlin
(2002)

[PS93] Palmer, R.S., Shapiro, V.: Chain models of physical behavior for engineer-
ing analysis and design. In: Research in Engineering Design, vol. 5, pp.
161–184. Springer International, Heidelberg (1993)

[RS92] Rozenberg, G., Salomaa, A. (eds.): Lindenmayer Systems: Impacts on
Theoretical Computer Science, Computer Graphics and Developmental
Biology. Springer, Heidelberg (1992)

[SH86] Steele, G.L., Hillis, D.: Connection machine LISP: Fine grained parallel
symbolic programming. In: Proceedings of the 1986 ACM Conference on
LISP and Functional Programming, pp. 279–297. ACM, New York (1986)

[SKHH06] Suhonen, J., Kohvakka, M., Hännikäinen, M., Hämäläinen, T.D.: Design,
implementation, and experiments on outdoor deployment of wireless sen-
sor network for environmental monitoring. In: Vassiliadis, S., Wong, S.,
Hämäläinen, T.D. (eds.) SAMOS 2006. LNCS, vol. 4017, pp. 109–121.
Springer, Heidelberg (2006)

http://www.research.ibm.com/
autonomic/manifesto/autonomic_computing.pdf
http://parts.mit.edu/igem07/index.php/Paris/Modeling
http://www.ibisc.univ-evry.fr/~michel/Hdr/hdr.pdf


254 J.-L. Giavitto, O. Michel, and A. Spicher

[SM05] Spicher, A., Michel, O.: Using rewriting techniques in the simulation of
dynamical systems: Application to the modeling of sperm crawling. In:
Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.)
ICCS 2005. LNCS, vol. 3514, pp. 820–827. Springer, Heidelberg (2005)

[SM07] Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process.
BioSystems 87(2-3), 281–288 (2007)

[SMC+08] Spicher, A., Michel, O., Cieslak, M., Giavitto, J.-L., Prusinkiewicz, P.:
Stochastic p systems and the simulation of biochemical processes with
dynamic compartments. BioSystems 91(3), 458–472 (2008)

[TM87] Toffoli, T., Margolus, N.: Cellular automata machines: a new environment
for modeling. MIT Press, Cambridge (1987)

[Ton74] Tonti, E.: The algebraic-topological structure of physical theories. In:
Glockner, P.G., Sing, M.C. (eds.) Symmetry, similarity and group theo-
retic methods in mechanics, Calgary, Canada, pp. 441–467 (August 1974)

[Ton01] Tonti, E.: A direct discrete formulation of field laws: The cell method.
Computer Modeling in Engineering & Sciences 2(2), 237–258 (2001)


	Introduction
	Gamma and the Chemical Paradigm
	Gamma and the Autonomic Computing Challenge

	Introducing Space in the Chemical Paradigm
	From Multisets to Sequences and Beyond
	A Short MGS Presentation
	The MGS Programming Language
	A Few Examples

	From Local Changes to Global Specifications
	Self-* Properties and Fixed Point Iterations of Local Rules
	Multiset Ordering
	Forgetting the Spatial Structure
	Topological Collection as Generalized Multisets
	Correction of the Eratosthenes's Sieve
	The Group Structure and the Ordering of the Values

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


