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Abstract. We have developed an interpreter for the domain-specific
language MGS using OCAML as the implementation language. In this third
implementation of MGS, we wanted to provide the end-user with easy in-
cremental addition of new data structures and their associated functions
to the language. We detail in this paper our solution, in a functional
setting, which is based on techniques similar to those found in aspect-
oriented programming.

1 Introduction

This work takes place in the MGS [11, 16] project1 which develops new data and
control structures for the modelization and simulation of dynamical systems with
a dynamical structure [14]. These features are embedded in a simple functional
language, called also MGS, which is used to model various physical and biological
processes [30, 31, 13].

The adequacy of MGS to its application domain is achieved through the fol-
lowing three features:

1. it embeds a very rich family of data structures used for the representation
of the states of dynamical systems;

2. it provides a very large set of functions operating on these data structures;
3. it offers a new way of specifying uniformly functions defined by case on

arbitrary data structures, using topological rewriting [12].

An interpreter for the MGS language has been implemented in the OCAML [21,
28] language. The decisive advantages of OCAML for us were that (1) it provides
both functional and object-oriented features in the same environment and (2) it
produces very effective code [1, 2].

One of the main problems raised by the MGS project is the wish to offer easy
incremental addition of new data structures and their associated functions to
answer the needs expressed by the end-users. As a matter of fact, the initial
release of the interpreter did only include the collection data types sequences,
sets and multisets.
The current interpreter includes arbitrary graphs, Voronöı tessalation, group

1 The MGS project is available at: http://mgs.ibisc.univ-evry.fr



type expr =
Constant of value

| Apply of expr * expr

and value =
Int of int

| Fun of (value -> value)

let print_val = function
| Int i -> Printf.printf "%d\n" i
| Fun x -> Printf.printf "<fun>\n"

let inc_val =
Fun(function (Int i) -> Int (i + 1)

| _ -> failwith "bad arg")

let rec eval = function
| Constant x -> x
| Apply (e1, e2) ->

(match (eval e1) with
| Fun x -> x (eval e2)
| _ -> failwith "apply: type error")

let inc_expr = Constant inc_val
let inc = Apply(inc_expr,

Apply(inc_expr, Constant (Int 1)))

print_val (eval(inc))

Fig. 1. A simple and basic interpreter expressed in a higher-order syntax style
in ML.

based fields [11] which generalize various kind of arrays, gmaps [22], extensible
records and maps, trees defined by automata, and many other data types [29]. All
the additional data structures (together with their operators) have been added
incrementally using the techniques described in this paper.

Usually, the values handled in the target language (that is, the language to
be implemented, here, MGS), are represented through a unified data structure in
the implementation language (that is the language used to implement the target
language, here, OCAML). We call this data structure the value data structure.
Using OCAML as the implementation language, there are two choices for the value
data structure:

1. it can be represented using a sum type, following a functional style,
2. or, it can be represented using a class following an object-oriented style.

Both approaches have some shortcomings, with respect to the requirement of
incremental development. To summarize

1. in the functional approach, it is easy to add new functions but difficult to
add new target data structures;

2. on the contrary, in the object-oriented approach, it is easy to add new target
data structures but difficult to add new functions.

To overcome these drawbacks, we have developed an original technique, in-
spired from aspect programming techniques, that consists in weaving both the
value data structure and their associated functions. This technique has the ad-
vantages of:

– allowing new target data structures to be added without modifying the al-
ready written implementation files of the interpreter,

– facilitating the addition of new target data structures and functions to the
point that even end-users are able to increment the MGS interpreter.



The rest of the paper is organized as follows. We briefly describe the MGS
language in the next section to give the reader an idea of the complexity raised
by the implementation of the rich data types in the interpreter. Section 3 de-
scribes the functional and the object-oriented approach used to implement the
value data structure and details the problem raised by its incremental evolution.
The implementation of heavily overloaded target functions are presented in the
next section. The software architecture of the final implementation code of the
interpreter is sketched in section 5. Section 6 presents how the informations gath-
ered along all implementation files are collected to generate the value data type
and to implement the multiple dispatch of the target functions. The conclusion
summarizes our approach and shortly reviews related works.

2 Functions and Values in the MGS Programming
Language

We briefly discuss in this section the values manipulated in the MGS language and
their associated functions. Our aim is to show that the technique presented in
this paper is required to deal with its complexity and to allow an easy incremental
addition of new data structures and their associated functions.

2.1 The Type Hierarchy of the MGS Programming Language

We briefly give in this section an incomplete description of the type hierarchy of
the MGS programming language.

any

scalar collection

int float symbol ... rec leibniz newton

monoidal del ... gbf graph achain qmf ...

seq set bag

Fig. 2. The type hierarchy of the MGS language.

A graphical representation of the type hierarchy of MGS is given in figure 2.
In MGS two main types of values are distinguished: the scalar values which are
elementary constants and collections which allow to organize the values. Example
of scalar values are integers, floats, symbols... Example of collection types are



sets, bag, Delaunay graphs, group-based fields [15], quasi-manifolds [22, 23]...
Collection values can be any combination of collections and scalar values such
as a bag containing symbols and sequences of integers.

In the following example, we define three values equal to collections: v_seq
which consists in the sequence (like a C one-dimensional array) composed of a
string value ("str"), a floating-point value (3.5), two integers values (4, 4),
a boolean value (true) and the identity function (expressed as an anonymous
lambda-calculus expression: \x.x) and the same elements organized as a set
(v_set) and a bag (bag).

1 mgs> v_seq := "str", 3.5, 4, 4, true, (\x.x), seq:();;

2 ("str", 3.500000, 4, 4, true, [funct]):’seq

3
4 mgs> v_set := "str", 3.5, 4, 4, true, (\x.x), set:();;

5 (4, true, 3.500000, "str", [funct]):’set

6
7 mgs> v_bag := "str", 3.5, 4, 4, true, (\x.x), bag:();;

8 (4, 4, true, 3.500000, "str", [funct]):’bag

The comma operator is overloaded and used, following the context, to add an
element to a collection, to merge two collections of the same type or to cre-
ate a sequence composed of its elements. For most of the collection types, the
empty collection type xxx is written xxx:() (for the example above, the empty
collection for the sequence type is namely seq:()).

2.2 Functions For the Manipulation of Values

In MGS, most of the functions are overloaded to allow an easy handling of complex
values. A collection value c has a type τ(µ) where τ is the collection type (like
set, seq, bag, ...) and µ is the type of the elements of the collection. To allow
an easy handling of complex values, most built-in functions are overloaded so
that user-defined functions can handle collections of any type τ(µ) regardless of
τ and µ. That property can be seen as a kind of polytypism [5, 19].

For example, the size functions, that returns the number of elements in the
collection, can be applied to any collection:

1 mgs> size(v_seq);;

2 6

3
4 mgs> size(v_set);;

5 5

6
7 mgs> size(v_bag);;

8 6

Among all the polytypic functions, we have the classics map, iter, fold, one_off,
rest, member... The interested reader should refer to http://mgs.ibisc.univ-evry.
fr/Online Manual/Collections.html for the detail of available functions de-
fined on collection types.



2.3 A Short Example

MGS unifies the collection types together with the polytypic functions in a general
rewriting scheme. Programs are written as a composition of transformations, a
very expressive form of rewriting process [12, 13, 17, 30, 32] based on the neigh-
borhood relationship exhibited by each collection type together with a general
form of pattern matching.

The following MGS expression returns (if it exists) the Hamiltonian path in a
graph G

1 trans Hamiltonian =

2 (s* as whole / (size(whole) == size(‘self)) => whole)

Pattern s* matches any path p (that is, a sequence of neighboring values) in G
such that each element in p appears only once; the additional requirement that p
is of the same size as G ensures that such paths are Hamiltonian. Of course, the
complexity of the search remains, but the complexity of its expression is highly
reduced.

3 The Implementation of the value Data Structure

3.1 The value Data Structure in a Functional Setting

In a functional setting, an evaluator consists in a function eval that, given an
expression of type expr, returns a value of type value. A toy example of such
an interpreter is given in figure 1.

In this example, the type value is restricted to integers and functions. The
precise application area of MGS does not matter in this paper and detailing the
handling of integers and integers operators should be enough to explain our
approach.

Functions in the target language rely on the use of functions of the implemen-
tation language (see the example of the inc_val function at line 16 in figure 1).
This mechanism of representing a target function by an implementation func-
tion lies at the heart of the higher-order abstract syntax [26, 7] approach. For
the sake of simplicity, we do not detail here on how to implement user-defined
functions. In the current MGS interpreter, this is achieved by using combinators
to translate on-the-fly a user-defined lambda expression into a Fun value [6].
The same mechanism can be used in the OO approach presented below. With
the higher-order syntax approach it is immediate to integrate existing libraries
of functions as a predefined kernel of functions: predefined library functions are
embedded using the Fun constructor. Note that the functions of the kernel have
exactly the same status and implementation as the user-defined functions and
so they can be arbitrarily mixed “for free” (e.g. using higher-order operators).
In the rest of this paper we focus only on the handling of a set of predefined
functional constants like inc val.

If one wants to extend the interpreter with a new primitive, like the addition
of integers, it only requires to define the corresponding constant



#include <iostream>
using namespace std;

struct value;

struct expr { virtual value& eval() =0; };

struct value : public expr {
value& eval() { return *this; }
virtual ostream& print(ostream& o) =0;

};

struct Number : public value {
virtual Number& inc() =0;

};

struct Int : public Number {
int val;
Int(int n) : val(n) {}
Number& inc() { return *(new Int(val + 1));}
ostream& print(ostream& o) {return o << val

<< "\n";}
};

struct Fun : public value {
virtual value& operator() (value&) =0;
ostream& print(ostream& o)

{return o << "<fun>\n";}
};

struct Error : public value {
char* msg;
Error(char* s) : msg(s) {}

ostream& print(ostream& o) {return o << msg
<< "\n";}
};

struct Apply : public expr {
expr& fct;
expr& arg;
Apply (expr& f, expr& a) : fct(f), arg(a) {}

value& eval() {
if (Fun* f = dynamic_cast<Fun*>(&(fct.eval())))

return (*f)(arg.eval());
else

return *new Error("apply: type error");
}

};

struct Inc : public Fun {
value& operator() (value& arg) {

if (Number* a = dynamic_cast<Number*>(&arg))
return a->inc();

else
return *new Error("bad arg");
}

};

main()
{

Int v(1);
Inc incr;
Apply tmp(incr, v);
Apply(incr, tmp).eval().print(cout);

}

Fig. 3. A simple and basic interpreter expressed in an OO programming style.

1 let add_val =

2 Fun(function (Int v1) ->

3 Fun (function (Int v2) -> Int (v1 + v2)))

in a new file and to rely on separate compilation and linking to produce the new
interpreter. The new function can be made available to the MGS programmer by
registering the previous expression in the global environment under an adequate
name.

So, it is straightforward to extend the library of available functions. On
the contrary, if we want to extend the available value type, for example with
floating-points values, we face several problems:

1. the type value must be extended accordingly, which implies to edit an ex-
isting file,

2. all functions defined by case on type value have to be updated to take into
account the new case.

The second point requires to edit all existing files related to the value type. For
instance, in the context of the MGS project, which represents 50k lines of OCAML
code, spread in about 75 files, it would require a huge amount of work.



3.2 The value Data Structure in an Object-Oriented Framework

In a object-oriented (OO) framework, the sum type used in the functional ap-
proach is replaced by an abstract class whose derived classes represent all the
cases. Methods are used to implement predefined target functions. The corre-
sponding interpreter, in C++, is given in figure 3.

The dynamic cast<...>(...) is used for downward casting a class to one
of its derived classes in a safe way. Failure to downcast corresponds to type
errors during evaluation of MGS expressions. value are defined as a subtype of
expression. A class Number gathers all classes that admit numerical operations
like incrementation. Initially, the only descendant of Number is Int which repre-
sents integers. Despite the syntactic differences, the OO C++ code mimics closely
the functional approach. The eval methods applies to any expression and is
defined, case by case, on each derived subclasses. The real difference is that the
cases are not gathered in one place but scattered in each derived classes. The
evaluation of a value is always the identity and so it is defined at the level of the
value class.

If one wants to extend the interpreter with a new data type, like floating-
points values, it only requires to define the corresponding derived class

1 struct Float : public Number {

2 float val;

3 Float(float f) : val(f) {}

4
5 value& inc() { return *(new Float(val + 1.0)); }

6
7 ostream& print(ostream& o)

8 { return o << val << "\n"; }

9 };

in a new file and to rely on separate compilation and linking to produce the new
interpreter.

So, it is straightforward to add new target data structures. On the contrary,
if we want to extend the library of available functions, we have to add a virtual
function to the mother-class value or one of its derived classes. This implies to
edit the class value but also all the derived classes for which an implementation
of the new method is relevant.

arity number min cases average cases max cases

1 100 1 3.43 24
2 93 1 5.77 40
3 22 1 2.4 14
4 4 1 1 1
5 0
6 4 1 6 21
7 2 1 12 23

Fig. 4. Statistics summary of overloaded functions in MGS.



4 Implementing Overloading

The implementation of an incremental interpreter has also to face an additional
problem if we provide to the end-user overloaded target functions. In the previous
example, the function inc has a meaning for both integer and floating-points
values. It would be very convenient to offer to the end-user an overloaded function
acting on both types. This means that from an MGS identifier inc and the type
of the arguments in an application, some dispatch mechanism must be used
to call the correct implementation method or function. This problem is not
negligible. In the MGS context, there are many overloaded functions: figure 4
gives the number, and distribution with respect to their arity, of overloaded
target functions available to the end-user.

In the functional framework, the dispatch is easily provided for unary func-
tions, using definition by cases through the pattern matching on the constructors
of the value data type. In the OO framework, this is also easily achieved using
virtual methods.

Things get more complex when we consider functions with multiple argu-
ments. For example, consider the addition of two values. Pattern matching can
still be used, but at the price of explicitly writing the Cartesian product of the
value constructors. For example, in the current MGS interpreter, there are 24
available data types. So, overloading the addition comes at the cost of writing
576 cases. Obviously, most of the cases correspond to errors and are handled
similarly. Even if this can be done using wild-cards in patterns, there is still a
huge number of cases to be written.

In the OO framework, the extension of the overloading of a target function
to multiple arguments requires multiple dispatch [18]. Multiple dispatch can be
implemented (in languages with only single dispatch, like C++ or OCAML) using
auxiliary methods [25, item 31]. The number of these functions also grows ex-
ponentially with the number of arguments meaningful for the dispatch.

5 An “Incremental” Software Architecture for the MGS

Interpreter

Our first design decision in MGS was to rely on the functional approach. As
a matter of fact multiple dispatch is easier to implement in this framework.
However, the problems raised in section 3.1 have still to be addressed. Our
idea is to split the various cases of an overloaded function into multiple OCAML
functions spread through the whole set of files. A pre-processing phase gathers
all the defined functions and merges them into the actual implementation. A
similar process is done for the various constructors of the value data type.

Splitting the definition into several files raises the problem of functional de-
pendency. It is hopeless to force the developer to have a correct sequencing of the
files when we want to enable at the same time the unconstrained addition of new
data types and pieces of code. To solve this problem, we use a well-known tech-
nique of forward pointers that are correctly set at run-time (see for example [21,
page 150]).



generates includes the corresponding .mli

dispatch.ml

def2.ml

def1.ml code.ml

generation time compile  time

type.ml

sig.ml

S3S1 S2

Fig. 5. Organisation of the code: the three phases S1, S2 and S3 are given together
with the exact date when each file is produced and the functions are made available.

We detail in the rest of this section the overall software organization through
the description of a small example. We assume that the value data type is
completely defined once and for all. Section 6.1 sketches how this data type can
also be generated from informations gathered through all the code. The reader
is supposed to be familiar with the OCAML language and its compilation tools.

5.1 Organization of the Code

The project consists in three set of files, S1, S2 and S3. A dispatch will be com-
puted from the definitions occurring in S1 and S2. After S1, the signature of
the dispatched functions are available (for the functions defined in S2 and S3).
That is, the functions are called through a diversion mechanism. After S2, the
functions can be directly called since all dispatched functions are known and
initialized after S2. Then, the dispatch is effective and the direct call to the dis-
patched functions is possible. Figure 5 shows the clear timing of the operations
occurring in the three phases and what files are used.

5.2 S1: Basic Definitions

The files in S1 are definitions, usually types and functions, that do not rely on
other previous definitions and that will be used everywhere in the project.

It includes a file types.ml that defines the type of the values (the value type)
that are going to be handled. All the functions that will handle values in the
code will require to have access to this file. From the .ml, a .mli include file is
produced by the OCAML compiler. Using this include file through the open Types
directive all other files are able to define functions on value.

1 type value =

2 Int of int

3 | Float of float

5.3 The Diversion Mechanism: Generation of Forward and
Signatures

At this point, it is necessary to give access to the overloaded functions, which
raises two problems:



1. since the functions are defined incrementally, there is no global repertory of
them;

2. these functions must be made available for code in S2 and S3 independently
of their actual implementation localization.

These two problems are solved by scanning all implementation files to collect
the various function names to generate a unique file sig.ml providing the im-
plementation of the forwarding mechanism. The scanning is made possible by
enforcing a specific syntax for the function names (see below).

For our example, the generated sig.ml file is

1 open Types;;

2
3 (* Signature declaration *)

4 let (add_forward : (value -> value -> value) ref) =

5 ref (function _ -> failwith "unitialized add")

6
7 let (print_forward : (value -> unit) ref) =

8 ref (function _ -> failwith "unitialized print")

9
10 Printf.printf "Setting the forward pointers\n"

11
12 let add x y = !add_forward x y

13 let print x = !print_forward x

The forward mechanism works as follows: an overloaded function add is a
wrapper that applies the value of the imperative variable add_forward. This
imperative variable is initialized with a dummy function raising an error. This
variable will be set later with the correct function (see lines 20 and 21 of the file
dispatch.ml in section 5.5).

5.4 S2: Writing of Code

The files in the second set S2 contains the implementation of the various cases
of an overloaded function. Suppose that a unary function XX is overloaded on
two types p and q. This suppose that the value data type has two constructors
P and Q defined like

1 type value = ...

2 | P of type_p

3 ...

4 | Q of type_q

5 ...

Then the MGS implementers have only to provide two functions called _XX_p and
_XX_q both of arity one. The argument of _XX_p is of type type_p. The naming
convention is simple: the name of the constructor (which is constrained to always
begin with a capital letter in OCAML) is used in small letter in the name of the
function case.

The naming convention is straightforwardly extended to handle multiple ar-
guments. A function definition:



XX p1 ... pn

represents the handling of the arguments of type type p1, . . . , type pn for the
overloaded function XX. The types type pi are arguments of constructors of the
sum type value. Each constructor corresponds to a different MGS value type and
we assume that the type pi are all different, even if the implementation type are
the same by using alias type declaration. This naming convention enables the
scanning described in the previous section and the generation of the diversion
functions XX and XX forward as well as the dispatch function XX described in
the next section.

An example of two overloaded functions, add and print is given in the
def1.ml file below:

1 open Types;;

2 open Sig;;

3
4 let _add_int_int i1 i2 = Int (i1 + i2)

5
6 let _print_int i1 = Printf.printf "%d" i1

7 let _print_float f1 = Printf.printf "%f" f1

Note that the definition of add is, at this point, not complete. Other cases
are specified or will be specified in other files.

All functions are allowed to recursively call any overloaded function. For
example, in another file def2.ml, the definition of _add_float_int uses the
overloaded function add:

1 open Types;;

2 open Sig;;

3
4 let _add_int_float i1 f1 = Float

5 (f1 +. (float_of_int i1))

6 let _add_float_float f1 f2 = Float (f1 +. f2)

7 let _add_float_int f1 i1 = add (Int i1) (Float f1)

Note however that add can only be effectively used once the wrapper has cor-
rectly been set at run-time. This means that, at this point, only function defini-
tions, implying overloaded functions, can occur and no actual function calls to
overloaded functions.

5.5 Generation of the Overloaded Functions

An overloaded function is implemented using pattern matching to dispatch to the
several function cases. The implementation function corresponding to the over-
loaded function XX is called __XX. For our example, the generated dispatch.ml
file is:

1 open Types;;

2 open Sig;;

3 open Def1;;



4 open Def2;;

5
6 let __add x y = match x, y with

7 | (Int x0), (Int x1) -> _add_int_int x0 x1

8 | (Float x0), (Float x1) -> _add_float_float x0 x1

9 | (Int x0), (Float x1) -> _add_int_float x0 x1

10 | (Float x0), (Int x1) -> _add_float_int x0 x1

11
12 and __print x = match x with

13 | Int x0 -> _print_int x0

14 | Float x0 -> _print_float x0

15
16 Printf.printf "Setting the correct link\n"

17 flush Pervasives.stdout

18
19 Sig.add_forward := __add

20 Sig.print_forward := __print

At the end of the file, the imperative variables used in the wrapper functions are
set to their correct value, using the just defined __XX functions.

5.6 S3: Using Dispatched Functions

At this point, all function cases have been gathered, the overloaded functions
have been generated and can be used even in the initialization phase, on the
contrary to the code in the S2 set of files. In the MGS project, the files in S3

corresponds to the implementation of transformations, the parsing, the top-level,
etc.

To finalize our running example, the file code.ml below describes some pos-
sible use of the overloaded functions, add and print:

1 open Types;;

2 open Sig;;

3
4 print (add (Float 2.0) (Float 3.0))

5 print_newline()

6 print (add (Float 2.0) (Int 1))

7 print_newline()

8 print (add (Int 2) (Float 1.0))

9 print_newline()

10 print (add (Int 2) (Int 1))

11 print_newline()

5.7 Compilation and Execution of the Code

The compilation follows five phases to respect the code organization:

1. in a first phase, all the files in S1 are compiled;



2. in a second phase, all the files of the project are scanned to automatically
generate and compile the sig.ml file;

3. in a third phase, all files from S2 are compiled (which additionally produces
the include files required for dispatch.ml);

4. in a fourth phase, dispatch.ml is generated and compiled;
5. finally, files in S3 are compiled and the final linking is done.

This process is fully automated by a Makefile. The compilation and the execu-
tion of our example gives:

ibisc 12 > make

ocamlc -c types.ml

ocamlc -c sig.ml

ocamlc -c def1.ml

ocamlc -c def2.ml

ocamlc -c dispatch.ml

ocamlc -c code.ml

ocamlc -o dsal types.cmo sig.cmo def1.cmo def2.cmo\

dispatch.cmo code.cmo

ibisc 13 > dsal

Setting the forward pointer

Setting the correct link

5.000000

3.000000

3.000000

3

6 Weaving the Implementation Code

In this section, we sketch the automatic generation of the type.ml, sig.ml and
dispatch.ml files.

6.1 Weaving the value Data Structure

In the same way that the function cases are split through several files, the vari-
ous constructor of the value data type are split in several files. This enables to
add a new data structure to MGS simply by providing a new file introducing the
corresponding constructor. The precise syntax used for the constructor declara-
tion does not matter. The first weaving tool scans all the source files to gather
all the constructors related to the value type and generates the types.ml file.

6.2 Weaving the Dispatch on value Type

The second weaving tool gathers all the function cases spread among the source
files to generate the overloaded functions. The dispatch mechanism presents some



subtleties. In the previous example, all the types used as the arguments of the
constructors of the value type where incomparable. However, the situation is
more complex in the implementation of MGS:

– wild-cards are required to handle within the same case function various ar-
gument types;

– there is a hierarchy of data types in the MGS language that is available to the
developer of the MGS language.

A simple example of the last kind is the following: MGS values are split into
atomic and compound values. Sometimes, cases functions are dispatched on this
distinction, and not on the implementation type of the data structure. For ex-
ample, the primitive function size returns -1 on all atomic values and returns
the number of elements in its argument in case of a compound value. Interior
nodes of the MGS hierarchy type corresponds to several constructor in the value
type. The type of the argument passed to the dispatched function is then value
and not the argument type of a constructor.

Having family of types produces a hierarchy that has to be taken into account
while generating the pattern matching of the overloaded functions. For example,
a case on _XX_int_int has to appear before the case _XX_int_atomic. The
partial order relationships between the MGS types is used to sort lexicographically
the collected cases of an overloaded function.

A “catch-all” case is produced to handle “bad argument types” error. To
avoid spurious warnings by the OCAML compiler, this case is produced only if
required.

7 Conclusion

The software organization and the weaving tools described in this paper have
been successfully used in the development of the MGS interpreter. This represents
over 50k lines of OCAML code (there is also over 100k lines of C++ libraries to
provide basic support for sophisticated data structures like Voronöı tessalation,
G-Maps, Cayley graphs, ...). The 50k lines of OCAML files are scattered over 75
files. The scanning of these files is almost immediate and does not slow down the
compilation process. It generates 225 overloaded functions. These results show
that our approach is well suited to the development, in a functional setting, of
large incremental projects.

One of the originality of this work is the application of aspect weaving tech-
niques in the context of a functional language (OCAML). As far as we know, this
is the first attempt to merge these two worlds to ease the implementation of a
domain-specific language. Our approach relies only on a tailored software archi-
tecture, a dedicated makefile, some naming conventions and two external tools
to parse and collect informations on the various data types entering in the value
type and on the overloaded functions. It does not involves any changes on the
OCAML compiler nor sophisticated typing techniques. It is therefore a lightweight
solution to the problem of incrementally building an interpreter.



Related Works.

The various techniques implied have already been used in other contexts (for
example, wrapper functions are used to overcome the impossibility to have re-
cursively defined modules spun across multiple files) and the problem that we
have tried to solve has been coined the expression problem in [34] (with an en-
lightening discussion in [35]). We briefly review, because of space limitation,
some similar approaches.

Language Extensions. In [20] is proposed a specific design pattern called
the Extensible Visitor which is a combination of functional and object-oriented
programming methods while our approach is purely functional.

An aspect-oriented programming extension to OCAML, very similar to As-
pectJ [3], is proposed in [24]. It is a highly technical approach that uses the
usual features of join points, pointcuts and advices declarations that leads to the
definition of the Aspectual Caml language while our work do not change the
language itself but consists in two additional tools to collect information and
produce the dispatch files.

Extensible Interpreters. The conception of extensible interpreters has been
considered for example in [33]. However, it requires sophisticated type inference
techniques to be implemented that goes beyond standard ML type inference.

Multiple dispatch has been considered for overloaded functions in a functional
language [4]. As for the previous work, it requires sophisticated types techniques.

Extensible sum data types[8, 9] (which is further extended in [10] by adding
private row types to functors) have been proposed and are implemented in OCAML.
They enable the incremental definition of the value data type and of the func-
tions but at the cost of requiring a lot of wrap/unwrap functions that are done
for free in our approach. Moreover, since with polymorphic variants a matching
case can easily be forgotten in a function definition, we believe that this approach
would be too error-prone on a large-scale development like the MGS language

Once again, a very technical solution is found in [27] by relying on modules
and (higher-order) functors.
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