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1 Goals and Motivations

The emergence of terms like natural computing, mimetic computing, parallel prob-
lem solving from nature, bio-inspired computing, neurocomputing, evolutionary
computing, etc., shows the never ending interest of the computer scientists for
the use of “natural phenomena” as “problem solving devices” or more generally,
as a fruitful source of inspiration to develop new programming paradigms. It is
the latter topic which interests us here. The idea of numerical experiment can
be reversed and, instead of using computers to simulate a fragment of the real
world, the idea is to use (a digital simulation of) the real world to compute. In
this perspective, the processes that take place in the real world are the objects
of a new calculus:

description of the world’s laws = program
state of the world = data of the program

parameters of the description = inputs of the program
simulation = the computation

This approach can be summarized by the following slogan: “programming in the
language of nature” and was present since the very beginning of computer science
with names like W. Pitts and W. S. McCulloch (formal neurons, 1943), S. C.
Kleene (inspired by the previous for the notion of finite state automata, 1951),
J. H. Holland (connectionist model, 1956), J. Von Neumann (cellular automata,
1958), F. Rosenblatt (the perceptron, 1958), etc.

This approach offers many advantages from the teaching, heuristic and tech-
nical points of view: it is easier to explain concepts referring to real world pro-
cesses that are actual examples; the analogy with the nature acts as a powerful



source of inspirations; and the studies of natural phenomena by the various sci-
entific disciplines (physics, biology, chemistry...) have elaborated a large body
of concepts and tools that can be used to study computations (some concrete
examples of this cross fertilization relying on the concept of dynamical system
are given in references [6, 5, 34, 12]).

There is a possible fallacy in this perspective: the description of the nature
is not unique and diverse concurent approaches have been developed to account
for the same objects. Therefore, there is not a unique “language of nature”
prescribing a unique and definitive programming paradigm. However, there is a
common concern shared by the various descriptions of nature provided by the
scientific disciplines: natural phenomena take place in time and space.

In this paper, we propose the use of spatial notions as structuring relation-
ships in a programming language. Considering space in a computation is hardly
new: the use of spatial (and temporal) notions is at the basis of computational
complexity of a program; spatial and temporal relationships are also used in the
implementation of parallel languages (if two computations occur at the same
time, then the two computations must be located at two different places, which
is the basic constraint that drives the scheduling and the data distribution prob-
lems in parallel programming); the methods for building domains in denotational
semantics have also clearly topological roots, but they involve the topology of the
set of values, not the topology of a value. In summary, spatial notions have been
so far mainly used to describe the running of a program and not as means to
design new programs.

We want to stress this last point of view: we are not concerned by the orga-
nization of the resources used by a program run. What we want is to develop a
spatial point of view on the entities built by the programmer when he designs
his programs. From this perspective, a program must be seen as a space where
computation occurs and a computation can be structured by spatial relation-
ships. We hope to provide some evidences in the rest of this paper that the
concept of space can be as fertile as mathematical logic for the development of
programming languages. More specifically, we advocate that the concepts and
tools developed for the algebraic construction and characterization of shapes1

provide interesting teaching, heuristic and technical alternatives to develop new
data structures and new control structures for programming.

The rest of this paper is organized as follows. Section 2 and section 3 provide
an informal discussion to convince the reader of the interest of introducing a
topological point of view in programming. This approach is illustrated through
the experimental programming language MGS used as a vehicle to investigate
and validate the topological approach.

1 G. Gaston-Granger in [23] considers three avenues in the formalization of the concept
of space: shape (the algebraic construction and the transformation of space and
spatial configurations), texture (the continuum) and measure (the process of counting
and coordinatization [39]). In this work, we rely on elementary concepts developed
in the field of combinatorial algebraic topology for the construction of spaces [24].



Section 2 introduces the idea of seeing a data structure as a space where the
computation and the values move. Section 3 follows the spatial metaphor and
presents control structures as path specifications. The previous ideas underlie
MGS. Section 4 sketches this language. The presentation is restricted to the
notions needed to follow the examples in the next section. Section 5 gives some
examples and introduces the (DS)2 class of dynamical systems which exhibit
a dynamical structure. Such kind of systems are hard to model and simulate
because the state space must be computed jointly with the running state of the
system. To conclude in section 6 we indicate some of the related work and we
mention briefly some perspectives on the use of spatial notions.

2 Data Structures as Spaces2

The relative accessibility from one element to another is a key point considered
in a data structure definition:

– In a simply linked list, the elements are accessed linearly (the second after
the first, the third after the second, etc.).

– In a circular buffer, or in a double-linked list, the computation goes from
one element to the following or to the previous one.

– From a node in a tree, we can access the sons.
– The neighbors of a vertex V in a graph are visited after V when traveling

through the graph.
– In a record, the various fields are locally related and this localization can be

named by an identifier.
– Neighborhood relationships between array elements are left implicit in the

array data-structure. Implementing neighborhood on arrays relies on an in-
dex algebra: index computations are used to code the access to a neighbor.
The standard example of index algebra is integer tuples with linear map-
pings λx.x ± 1 along each dimension (called “Von Neumann” or “Moore”
neighborhoods).

This accessibility relation defines a logical neighborhood. The concept of logical
neighborhood in a data structure is not only an abstraction perceived by the
programmer and vanishing at the execution, but it does have an actual meaning
for the computation. Very often the computation indeed complies with the logical
neighborhood of the data elements and it is folk’s knowledge that most of the
algorithms are structured either following the structure of the input data or the
structure of the output data. Let us give some examples.

The recursive definition of the fold function on lists propagates an action to
be performed along the traversal of a list. More generally, recursive computations
on data structures respect so often the logical neighborhood, that standard high-
order functions (e.g. primitive recursion) can be automatically defined from the
data structure organization (think about catamorphisms and other polytypic
functions on inductive types [29, 26]).
2 The ideas exposed in this section are developed in [19, 14].



The list of examples can be continued to convince ourselves that a notion of
logical neighborhood is fundamental in the definition of a data structure. So to
define a data organization, we adopt a topological point of view: a data structure
can be seen as a space, the set of positions between which the computation moves.
Each position possibly holds a value3. The set of positions is called the container
and the values labeling the positions constitute the content.

This topological approach is constructive: one can define a data type by the
set of moves allowed in the data structure. An example is given by the notion
of “Group Based Fields” or GBF in short [21, 16]. In a uniform data structure,
i.e. in a data structure where any elementary move can be used against any
position, the set of moves possesses the structure of a mathematical group G.
The neighborhood relationship of the container corresponds to the Cayley graph
of G. In this paper, we will use only two very simple groups G corresponding to
the moves |north> and |east> allowed in the usual two-dimensional grid and
to the moves allowed in the hexagonal lattice figured at the right of Fig. 3.

3 Control Structures as Paths

In the previous section, we suggested looking at data structure as spaces in
which computation moves. Then, when the computation proceeds, a path in the
data structure is traversed. This path is driven by the control structures of the
program. So, a control structure can be seen as a path specification in the space
of a data structure. We elaborate on this idea into two directions: concurrent
processes and multi-agent systems.

3.1 Homotopy of a Program Run

Consider two sequential processes A and B that share a semaphore s. The current
state of the parallel execution P = A || B can be figured as a point in the plane
A × B where A (resp. B) is the sequence of instructions of A (resp. B). Thus,
the running of P corresponds to a path in the plane A× B. However, there are
two constraints on paths that represent the execution of P. Such a path must be
“increasing” because we suppose that at least one of the two subprocesses A or
B must progress. The second constraint is that the two subprocesses cannot be
simultaneously in the region protected by the semaphore s. This constraint has a
clear geometrical interpretation: the increasing paths must avoid an “obstruction
region”, see Fig. 1. Such representation is known at least from the 1970’s as
“progress graph” [7] and is used to study the possible deadlocks of a set of
concurrent processes.

Homotopy (the continuous deformation of a path) can be adapted to take
into account the constraint of increasing paths and provides effective tools to
detect deadlocks or to classify the behavior of a parallel program (for instance

3 A point in space is a placeholder awaiting for an argument, L. Wittgenstein, (Trac-
tatus Logico Philosophicus, 2.0131).



�������
�������
�������
�������

�������
�������
�������
�������

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

V(r)

P(r)

P(s)

V(s)

P(r) V(r)
V(s)P(s)

A

B

α

β

P(s)

V(s)

P(s) V(s) A

B

Fig. 1. Left: The possible path taken by the process A || B is constrained by the ob-
struction resulting of a semaphore shared between the processes A and B. Right: The
sharing of two semaphores between two processes may lead to deadlock (corresponding
to the domain α) or to the existence of a “garden of Eden” (the domain β cannot be
accessed from outside β and can only be leaved.)

in the previous example, there are two classes of paths corresponding to execu-
tions where the process A or B enters the semaphore first). Refer to [22] for an
introduction to this domain.

3.2 The Topological Structure of Interactions4

In a multi-agent system (or an object based or an actor system), the control
structures are less explicit and the emphasis is put on the local interaction be-
tween two (sometimes more) agents. In this section, we want to show that the
interactions between the elements of a system exhibit a natural topology.

The starting point is the decomposition of a system into subsystems defined
by the requirement that the elements into the subsystems interact together and
are truly independent from all other subsystems parallel evolution.

In this view, the decomposition of a system S into subsystems S1, S2, . . . , Sn

is functional : state si(t + 1) of the subsystem Si depends solely of the previous
state si(t). However, the decomposition of S into the Si can depend on the time
steps. So we write St = {St

1, S
t
2, . . . , S

t
nt
} for the decomposition of the system

S at time t and we have: si(t + 1) = ht
i(si(t)) where the ht

i are the “local”
evolution functions of the St

i . The “global” state s(t) of the system S can be
recovered from the “local” states of the subsystems: there is a function ϕt such
that s(t) = ϕt(s1(t), . . . , snt(t)) which induces a relation between the “global”
evolution function h and the local evolution functions: s(t + 1) = h(s(t)) =
ϕt(ht

1(s1(t)), . . . , ht
nt

(snt(t))).
The successive decomposition St

1, S
t
2, . . . , S

t
nt

can be used to capture the el-
ementary parts and the interaction structure between these elementary parts
of S. Cf. Figure 2. Two subsystems S′ and S′′ of S interact if there are some
t such that S′, S′′ ∈ St. Two subsystems S′ and S′′ are separable if there are
some t such that S′ ∈ St and S′′ 6∈ St or vice-versa. This leads to consider the
set S, called the interaction structure of S, defined by the smaller set closed by
intersection that contains the St

j .

4 This section is adapted from [36].



Set S has a topological structure: S corresponds to an abstract simplicial
complex. An abstract simplicial complex [24] is a collection S of finite non-
empty set such that if A is an element of S, so is every nonempty subset of
A. The element A of S is called a simplex of S; its dimension is one less that
the number of its elements. The dimension of S is the largest dimension of one
of its simplices. Each nonempty subset of A is called a face and the vertex set
V (S), defined by the union of the one point elements of S, corresponds to the
elementary functional parts of the system S. The abstract simplicial complex
notion generalizes the idea of graph: a simplex of dimension 1 is an edge that
links two vertices, a simplex f of dimension 2 can be thought of as a surface
whose boundaries are the simplices of dimension 1 included in f , etc.

...

S

s(0)

S1
1

s(1)

S0
1

S1
i

s(t)

S ′ ∈ V (S)

Fig. 2. The interaction structure of a system S resulting from the subsystems of ele-
ments in interaction at a given time step.

4 MGS Principles

The two previous sections give several examples to convince the reader that
a topological approach of the data and control structures of a program present
some interesting perspectives for language design: a data structure can be defined
as a space (and there are many ways to build spaces) and a control structure is
a path specification (and there are many ways to specify a path).

Such a topological approach is at the core of the MGS project. Starting from
the analysis of the interaction structure in the previous section, our idea is to
define directly the set S with its topological structure and to specify the evolution
function h by specifying the set St

i and the functions ht
i:

– the interaction structure S is defined as a new kind of data structures called
topological collections;

– a set of functions ht
i together with the specification of the St

i for a given t
are called a transformation.

We will show that this abstract approach enables an homogeneous and uniform
handling of several computational models including cellular automata (CA),



lattice gas automata, abstract chemistry, Lindenmayer systems, Paun systems
and several other abstract reduction systems.

These ideas are validated by the development of a language also called MGS.
This language embeds a complete, strict, impure, dynamically or statically typed
functional language.

4.1 Topological Collections

The distinctive feature of the MGS language is its handling of entities structured
by abstract topologies using transformations [20]. A set of entities organized by an
abstract topology is called a topological collection. Here, topological means that
each collection type defines a neighborhood relation inducing a notion of subcol-
lection. A subcollection S′ of a collection S is a subset of connected elements of S
and inheriting its organization from S. Beware that by “neighborhood relation”
we simply mean a relationship that specify if two elements are neighbors. From
this relation, a cellular complex can be built and the classical “neighborhood
structure” in terms of open and closed sets can be recovered [35].

A topological collection can be thought as a function with a finite support
from a set of positions (the elements of V (S)) to a set of values (the support
of a function is the set of elements on which the function takes a well defined
value). Such a data structure is called a data field [13]. This point of view is
only an abstraction: the data structure is not really implemented as a function.
This approach makes a distinction between the content and the container. The
notions of shape [25] and shape type [11] also separate the set of positions of a
data structure from the values it contains. Often there is no need to distinguish
between the positions and their associated values. In this case, we use the term
“element of the collection”.

Collection Types. Different predefined and user-defined collection types are avail-
able in MGS, including sets, bags (or multisets), sequences, Cayley graphs of
Abelian groups (which include several unbounded, circular and twisted grids),
Delaunay triangulations, arbitrary graphs, quasi-manifolds [36] and some other
arbitrary topologies specified by the programmer.

Building Topological Collections. For any collection type T, the corresponding
empty collection is written ():T. The join of two collections C1 and C2 (writ-
ten by a comma: C1,C2) is the main operation on collections. The comma
operator is overloaded in MGS and can be used to build any collection (the
type of the arguments disambiguates the collection built). So, the expression
1, 1+2, 2+1, ():set builds the set with the two elements 1 and 3, while the
expression 1, 1+2, 2+1, ():bag computes a bag (a set that allows multiple oc-
currences of the same value) with the three elements 1, 3 and 3. A set or a bag
is provided with the following topology: in a set or a bag, any two elements are
neighbors. To spare the notations, the empty sequence can be omitted in the
definition of a sequence: 1, 2, 3 is equivalent to 1, 2, 3,():seq.



4.2 Transformations

The MGS experimental programming language implements the idea of transfor-
mations of topological collections into the framework of a functional language:
collections are just new kinds of values and transformations are functions acting
on collections and defined by a specific syntax using rules. Transformations (like
functions) are first-class values and can be passed as arguments or returned as
the result of an application.

The global transformation of a topological collection s consists in the parallel
application of a set of local transformations. A local transformation is specified
by a rule r that specifies the replacement of a subcollection by another one. The
application of a rewriting rule σ ⇒ f(σ, ...) to a collection s:

1. selects a subcollection si of s whose elements match the pattern σ,
2. computes a new collection s′i as a function f of si and its neighbors,
3. and specifies the insertion of s′i in place of si into s.

One should pay attention to the fact that, due to the parallel application
strategy of rules, all distinct instances si of the subcollections matched by the σ
pattern are “simultaneously replaced” by the f(si).

Path Pattern. A pattern σ in the left hand side of a rule specifies a subcol-
lection where an interaction occurs. A subcollection of interacting elements can
have an arbitrary shape, making it very difficult to specify. Thus, it is more
convenient (and not so restrictive) to enumerate sequentially the elements of the
subcollection. Such enumeration will be called a path.

A path pattern Pat is a sequence or a repetition Rep of basic filters. A basic
filter BF matches one element. The following fragment of the grammar of path
patterns reflects this decomposition:

Pat ::= Rep | Rep , Pat Rep ::= BF | BF /exp BF ::= cte | id | <undef>

where cte is a literal value, id ranges over the pattern variables and exp is a
boolean expression. The following explanations give an interpretation for these
patterns:

literal: a literal value cte matches an element with the same value.
empty element the symbol <undef> matches an element whose position does

not have an associated value.
variable: a pattern variable a matches exactly one element with a well defined

value. The variable a can then occur elsewhere in the rest of pattern or in
the r.h.s. of the rule and denotes the value of the matched element.

neighbor: b, p is a pattern that matches a path which begins by an element
matched by b and continues by a path matched by p, the first element of p
being a neighbor of b.

guard: p/exp matches a path matched by p when the boolean expression exp
evaluates to true.



Elements matched by basic filters in a rule are distinct. So a matched path is
without self-intersection. The identifier of a pattern variable can be used only
once as a basic filter. That is, the path pattern x,x is forbidden. However, this
pattern can be rewritten for instance as: x,y / y = x.

Right Hand Side of a Rule. The right hand side of a rule specifies a collection
that replaces the subcollection matched by the pattern in the left hand side.
There is an alternative point of view: because the pattern defines a sequence of
elements, the right hand side may be an expression that evaluates to a sequence of
elements. Then, the substitution is done element-wise: element i in the matched
path is replaced by the element i in the r.h.s. This point of view enables a very
concise writing of the rules.

A Very Simple Transformation. The map function which applies a function to
each element of a collection is an example of a simple transformation:

trans map[f=\z.z] = { x => f(x) }
This transformation is made of only one rule. The syntax must be obvious (the
default value of the optional parameter f is the identity written using a lambda-
notation). This transformation implements a map since each element e of the
collection is matched by the pattern x and will be replaced by f(e) in a parallel
application strategy of the rule.

5 Examples

5.1 The modeling of Dynamical Systems

In this section, we show through one example the ability of MGS to concisely and
easily express the state of a dynamical system and its evolution function. More
examples can be found on the MGS web page and include: cellular automata-like
examples (game of life, snowflake formation, lattice gas automata...), various res-
olutions of partial differential equations (like the diffusion-reaction à la Turing),
Lindenmayer systems (e.g. the modeling of the heterocysts differentiation during
Anabaena growth), the modeling of a spatially distributed signaling pathway, the
flocking of birds, the modeling of a tumor growth, the growth of a meristem, the
simulation of colonies of ants foraging for food, etc.

The example given below is an example of a discrete “classical dynamical
system”. We term it “classical” because it exhibits a static structure: the state
of the system is statically described and does not change with the time. This
situation is simple and arises often in elementary physics. For example, a falling
stone is statically described by a position and a velocity and this set of variables
does not change (even if the value of the position and the value of the velocity
change in the course of time). However, in some systems, it is not only the
values of state variables, but also the set of state variables and/or the evolution
function, that changes over time. We call these systems dynamical systems with
a dynamic structure following [17], or (DS)2 in short. As pointed out by [15],
many biological systems are of this kind. The rationale and the use of MGS in
the simulation of (DS)2 is presented in [14, 15].



Fig. 3. From left to right: the final state of a DLA process on a torus, a chess pawn, a
Klein’s bottle and an hexagonal meshes. The chess pawn is homeomorphic to a sphere
and the Klein’s bottle does not admit a concretization in Euclidean space. These two
topological collections are values of the quasi-manifold type. Such collection are build
using G-map, a data-structure widely used in geometric modeling [27]. The torus and
the hexagonal mesh are GBFs.

Diffusion Limited Aggreation (DLA). DLA, is a fractal growth model studied
by T.A. Witten and L.M. Sander, in the eighties. The principle of the model is
simple: a set of particles diffuses randomly on a given spatial domain. Initially
one particle, the seed, is fixed. When a mobile particle collides a fixed one,
they stick together and stay fixed. For the sake of simplicity, we suppose that
they stick together forever and that there is no aggregate formation between
two mobile particles. This process leads to a simple CA with an asynchronous
update function or a lattice gas automata with a slightly more elaborate rule set.
This section shows that the MGS approach enables the specification of a simple
generic transformation that can act on arbitrary complex topologies.

The transformation describing the DLA behavior is really simple. We use
two symbolic values ‘free and ‘fixed to represent respectively a mobile and a
fixed particle. There are two rules in the transformation:

1. the first rule specifies that if a diffusing particle is the neighbor of a fixed
seed, then it becomes fixed (at the current position);

2. the second one specifies the random diffusion process: if a mobile particle is
neighbor of an empty place (position), then it may leave its current position
to occupy the empty neighbor (and its current position is made empty).

Note that the order of the rules is important because the first has priority over
the second one. Thus, we have :

trans dla = {
‘free, ‘fixed => ‘fixed, ‘fixed
‘free, <undef> => <undef>, ‘free

}

This transformation is polytypic and can be applied to any kind of collection,
see Fig. 3 for a few results.



5.2 Programming in the Small: Algorithmic Examples

The previous section advocates the adequation of the MGS programming style
to model and simulate various dynamical systems. However, it appears that the
MGS programming style is also well fitted for the implementation of algorithmic
tasks. In this section, we show some examples that support this assertion. More
examples can be found on the MGS web page and include: the analysis of the
Needham-Schroeder public-key protocol [30], the Eratosthene’s sieve, the nor-
malization of boolean formulas, the computation of various algorithms on graphs
like the computation of the shortest distance between two nodes or the maximal
flow, etc.

Gamma and the Chemical Computing Metaphor. In MGS, the topology
of a multiset is the topology of a complete connected graph: each element is the
neighbor of any other element. With this topology, transformations can be used
to easily emulate a Gamma transformations [2, 3]. The Gamma transformation:

M = do
rp x1, . . . , xn

if P (x1, . . . , xn)
by f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

is simply translated into the following MGS transformation:

trans M = {
x1, . . . , xn

/ P (x1, . . . , xn)
=> f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) }

and the application M(b) of a Gamma transformation M to a multiset b is replaced
in MGS by the computation of the fixpoint iteration M[iter=‘fixpoint](b).
The optional parameter iter is a system parameter that allows the programmer
to choose amongst several predefined application strategies:

f [iter=‘fixpoint](x0)

computes x1 = f(x0), x2 = f(x1), ..., xn = f(xn−1) and returns xn such that
xn = xn−1.

As a consequence, the concise and elegant programming style of Gamma is
enabled in MGS: refer to the Gamma literature for numerous examples of algo-
rithms, from knapsack to the maximal convex hull of a set of points, through the
computation of prime numbers. See also the numerous applications of multiset
rewriting developped in the projects Elan [38] and Maude [37].

One can see MGS as “Gamma with more structure”. However, one can note
that the topology of a multiset is “universal” in the following sense: it embeds
any other neighborhood relationship. So, it is always possible to code (at the
price of explicit coding the topological relation into some value inspected at
run-time) any specific topology on top of the multiset topology. We interpret
the development of “structured Gamma” [10] from this perspective. In addition,



transformations are functions and functions are first citizen values in MGS. So
the higher-order features of the higher-order chemical programming style (see
the article by Banâtre et al. in this volume) can be easely achieved in MGS.

Two Sorting Algorithms. A kind of bubble-sort is straightforward in MGS;
it is sufficient to specify the exchange of two non-ordered adjacent elements in
a sequence, see Fig. 4. The corresponding transformation is defined as:

trans BubbleSort = { x,y / x > y ⇒ y,x }
The transformation BubbleSort must be iterated until a fixpoint is reached. This
is not a real a bubble sort algorithm because swapping of elements happen at
arbitrary places; hence an out-of-order element does not necessarily bubble to
the top in the characteristic way.

Bead sort is a new sorting algorithm [1]. The idea is to represent positive
integers by a set of beads, like those used in an abacus. Beads are attached to
vertical rods and appear to be suspended in the air just before sliding down (a
number is read horizontally, as a row). After their falls, the rows of numbers
have been rearranged such as the smaller numbers appears on top of greater
numbers, see Fig. 4. The corresponding one-line MGS program is given by the
transformation:

trans BeadSort = { ’empty |north> ’bead ⇒ ’bead, ’empty }
This transformation is applied on the usual grid. The constant ’empty is used
to give a value to an empty place and the constant ’bead is used to represent an
occupied cell. The l.h.s. of the only rule of the transformation BeadSort selects
the paths of length two, composed by an occupied cell at north of an empty cell.
Such a path is replaced by a path computed in the r.h.s. of the rule. The r.h.s.
in this example computes a path of length two with the occupied and the empty
cell swapped.
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Fig. 4. Left: Bubble sort. Right: Bead sort [1].

Hamiltonian Path. A graph is a MGS topological collection. It is very easy to
list all the Hamiltonian paths in a graph using the transformation:

trans H = {
x* / size(x) = size(self) / Print(x) / false => !(false)

}



This transformation uses an iterated pattern x* that matches a path (a sequence
of elements neighbor two by two). The keyword self refers to the collection on
which the transformation is applied, that is, the entire graph. The size of a
graph returns the number of its vertices. So, if the length of the path x is the
same as the number of vertices in the graph, then the path x is an Hamiltonian
path because matched paths are simple (no repetition of an element). The second
guard prints the Hamiltonian path as a side effect and returns its argument which
is not a false value. Then the third guard is checked and returns false, thus, the
r.h.s. of the rule is never triggered (the ! operator introduces an assertion and
!(false) raises an exception that stops the evaluation process if it is evaluated).
The matching strategy ensures a maximal rule application. In other words, if a
rule is not triggered, then there is no instance of a possible path that fulfills
the pattern. This property implies that the previous rule must be checked on
all possible Hamiltonian paths and H(g) prints all the Hamiltonian path in g
before returning g unchanged.

6 Current Status and Related Work

The topological approach we have sketched here is part of a long term research
effort [21] developed for instance in [13] where the focus is on the substructure,
or in [16] where a general tool for uniform neighborhood definition is developed.
Within this long term research project, MGS is an experimental language used
to investigate the idea of associating computations to paths through rules. The
application of such rules can be seen as a kind of rewriting process on a collection
of objects organized by a topological relationship (the neighborhood). A privi-
leged application domain for MGS is the modeling and simulation of dynamical
systems that exhibit a dynamic structure.

Multiset transformation is reminiscent of multiset-rewriting (or rewriting of
terms modulo AC). This is the main computational device of Gamma [2], a lan-
guage based on a chemical metaphor; the data are considered as a multiset M of
molecules and the computation is a succession of chemical reactions according to
a particular rule. The CHemical Abstract Machine (CHAM) extends these ideas
with a focus on the expression of semantic of non deterministic processes [4].
The CHAM introduces a mechanism to isolate some parts of the chemical solu-
tion. This idea has been seriously taken into account in the notion of P systems.
P systems [31] are a recent distributed parallel computing model based on the
notion of a membrane structure. A membrane structure is a nesting of cells
represented, e.g, by a Venn diagram without intersection and with a unique su-
perset: the skin. Objects are placed in the regions defined by the membranes
and evolve following various transformations: an object can evolve into another
object, can pass trough a membrane or dissolve its enclosing membrane. As for
Gamma, the computation is finished when no object can further evolve. By using
nested multisets, MGS is able to emulate more or less the notion of P systems.
In addition, patterns like the iteration + go beyond what is possible to specify
in the l.h.s. of a Gamma rule.



Lindenmayer systems [28] have long been used in the modeling of (DS)2 (es-
pecially in the modeling of plant growing). They loosely correspond to transfor-
mations on sequences or string rewriting (they also correspond to tree rewriting,
because some standard features make particularly simple to code arbitrary trees,
Cf. the work of P. Prusinkiewicz [32]). Obviously, L systems are dedicated to the
handling of linear and tree-like structures.

There are strong links between GBF and cellular automata (CA), especially
considering the work of Z. Róka which has studied CA on Cayley graphs [33].
However, our own work focuses on the construction of Cayley graphs as the
shape of a data structure and we develop an operator algebra and rewriting
notions on this new data type. This is not in the line of Z. Róka which focuses
on synchronization problems and establishes complexity results in the framework
of CA.

A unifying theoretical framework can be developed [18, 20], based on the no-
tion of chain complex developed in algebraic combinatorial topology. However,
we do not claim that we have achieved a useful theoretical framework encom-
passing the previous paradigms. We advocate that few topological notions and a
single syntax can be consistently used to allow the merging of these formalisms
for programming purposes.

The current MGS interpreter is freely available at the MGS home page:
mgs.lami.univ-evry.fr. A compiler is under development where a static type
discipline can be enforced [8, 9]). There are two versions of the type inference
systems for MGS: the first one is a classical extension of the Hindley-Milner type
inference system that handles homogeneous collections. The second one is a soft
type system able to handle heterogeneous collection (e.g. a sequence containing
both integers and booleans is heterogeneous).
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Loria-Nancy, Éric Goubault at CEA-Saclay, P. Prusinkiewicz at the University of
Calgary (who coined the term ”computation in space”) and the members of the
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