
Declarative modeling of a neurulation-like process

Antoine Spicher, Olivier Michel

LaMI, UMR 8042 CNRS, Université d’Évry, Génopole, France

{aspicher, michel}@lami.univ-evry.fr

Abstract

MGS is an experimental programming language dedicated to the modeling and the simulation of a
special kind of discrete dynamical systems. Dynamical systems with a dynamical structure (or (DS)2)
arise when the state space is not fixed a priori but is jointly computed with the current state during the
simulation. In this case the evolution function is often given through local rules that drive the interaction
between some system components. MGS offers a new kind of data structure, topological collections, to
describe the state of a dynamical system, and transformations to express local and discrete evolution
laws. These two notions permit an easy specification of (DS)2.

We propose in this paper a presentation of the MGS language and its main contributions. We show
that various topological collections can be unified using concepts developped in combinatorial algebraic
topology: cellular complexes and topological chains. Then we apply the notions brought by MGS to model
and simulate the first step towards the simulation of the neurulation process where a sheet of cell evolves
to a neural tube. It is a direct description of the modification of the topology of an arbitrary structure
expressed in terms of local discrete evolution laws.

Keywords: computational models for developmental biology, dynamical systems with a dynamical struc-
ture, combinatorial algebraic topology, topological collection, transformation, rewriting.

1 Introduction

Developmental biology research is interested in highly organized complex systems. The main difficulty of

simulations of this kind of systems is that they gather various models (genetical, mechanical, chemical, . . .)

at different scales in time and space. Moreover, the spatial organization of the systems depends on its own

evolution, and the evolution relies on its spatial structure. These systems (that we are interested in) are called

dynamical systems with a dynamical structure, or (DS)2 [Giavitto et al., 2002]. As an example, let consider

the embryogenesis phenomena: the process starts with a single cell. After several mitosis, the system is

1

composed of several cells that are organized in space. Moreover, some migrating movements modify the

neighborhood of each cell to develop a particular shape. So during the embryogenesis process, the structure

of the embryo is changing and the evolution of the embryo depends on the structural modifications. The

highly dynamical behavior of the biological systems makes themselves be (DS)2.

In the computer science point of view, the phase space of such systems cannot be defined a priori and has

to be jointly computed with the state of the system (the set of states must be an observable of the system

itself, see [Giavitto, 2003]). So, the simulation of these models has to be supported by computational models

that allow the specification of both structural and functional properties of the system.

Several computational models were inspired by the problems raised in biology. As examples, Linden-

mayer systems [Rozenberg and Salomaa, 1992] (L-systems) are inspired by plant growth, CHAM formalism

and Gamma [Banâtre et al., 2001] take their origin from chemistry, Paun systems [Paun, 2001] (P-systems)

correspond to a biological cell membrane metaphor. Because of their inspiration, they provide the right

framework to handle complex systems. One of the characteristics of these models is they fit well with a

discrete, local and declarative specification of systems:

• discrete: Although the mainstream of the contributions are developed in the framework of continuous

models, the continuous formalism makes it difficult to express the discrete nature of the biological

entities. Moreover the discrete approach leads to an algebraic point of view adapted to the field of

formal language theory used in the computing models cited above.

• local: The description of (DS)2 in biology is difficult because of their very complex organization.

However, the description of the biological laws consists in the specification of the local interactions.

The global evolution is the result of an emergent behavior due to the local application of these laws.

• declarative: A declarative style allows the specification of model close to a mathematical formalism:

it is expressive and brief, theoretically well defined, and close to the concepts used naturally by the

programmer. As a consequence, we can use formal techniques to prove the correctness or to check some

properties of the biological model.

L-systems are paradigmatic of this approach. They are grammars that declaratively handle sequences. They

2

are especially used in developmental biology, for the simulation of the growth of tree-like structures (see the

simulation of Anabaena growth in [Lindenmayer and Jürgensen, 1992] and the modeling of plants described

in [Prusinkiewicz et al., 1990]).

The computational models, such as L-systems, P-systems, abstract chemistry, can be considered as rewrit-

ing systems on different spatial structures: Venn diagram for P-systems, tree-like structure for L-systems, an

ether for chemistry. However, these structures are one dimensional and more complex and structured space

are required in developmental biology. In the MGS project, we wonder how these models could be unified

and generalized to structures of higher dimensions. Especially, a tissue is a 3 dimensional organization. The

contributions of MGS are twofold. We first propose a unification of the notion of data structure, using the

concept of topological collection: a collection of elements organized following topological properties. In fact,

the structure of the space corresponds to the notion of cellular complex in combinatorial algebraic topology,

and the space itself is a topological chain. To handle the topological collections in a declarative manner,

we have introduced the notion of transformations: they are functions defined by case using rewriting rule

generalized on cellular complexes.

This paper is organized as follows: section 2 presents the MGS project and its contributions in more details.

Section 3 shows with an example of programs how topological collections and transformations can be used

to implement a model of a sheet of epithelial cells that locally change their own shape to curve the sheet

until the two sides are close enough to glue each other. This example is a premise to the simulation of

the neurulation process where the neural plate changes its shape and its topology to form the neural tube.

The main contribution of the paper is how MGS notions can be used to modify the topology of an arbitrary

structure.

2 A quick description of the MGS formalism

The MGS project aims at developing a framework dedicated to the modeling and simulation of (DS)2. It is

inspired by the computational models described above. MGS is a classical declarative language that has been

extended with two structures described below.

3

2.1 Topological Collections

Topological collections are a unified view of the notion of data structure [Giavitto and Michel, 2002]. Here,

the data structure is defined as an aggregate of relative elements and the “structure of the space” is used to

specify the organization of the data structure.

In the MGS project, we advocate that notions developed in the combinatorial algebraic topology theory

provide a well-suited framework for the description of the structure of the space. This theory has already

been used in modeling physical laws in a discrete way. The interested reader can look at the works of Tonti

and Palmer [Tonti, 1974, Palmer and Shapiro, 1993] for an elaboration. Here is a brief but not exhaustive

description of the notions required to understand the rest of the paper.

We will call the structure of the space a cellular complex. A cellular complex is composed of elements of

various dimension (vertices, edges, faces, . . .) called topological cells of dimension n or n-cells. These basic

elements are organized following the incidence relationship that relies on the notion of boundary: let c1 and

c2 be respectively a n1-cell and an n2-cell with n1 < n2, c1 is incident to c2 if c1 belongs to the border of c2.

More especially, if n1 = n2 − 1, c1 is called a face of c2, and c2 is a coface of c1.

We can also define the notion of p-neighborhood of two n-cells: two n-cells, c1 and c2, are p-neighbors if

they are part of the same p-cell (when p > n), or if they share a same p-cell in their border (when p < n).

Now that we have defined the notion of cellular complex to specify the organization of the data structure,

we need to associate the data with the topological cells. This corresponds to the concept of topological chain

in algebraic topology. We won’t describe this notion in the paper because we will only use the fact that

values are associated with each cells.

To summarize, a topological collection is a cellular complex where values are associated with each cell. An

example of such a cellular complex is given on figure 1.

2.2 Transformation

Transformations are functions on topological collections defined by case. Each case is a rewriting rule α → β

where pattern α matches some sub-collection s of a collection S, where expression β computes a new sub-

collection s′ and substitutes s by s′ in S. Transformations fit very well with the notion of local evolution law.

4

f
v1

v2v3 e2

e3 e1

(3,0)(−3,0)

(0,4)

5 5

6

12

Figure 1: On the left is an example of a cellular complex: it is composed of 3 0-cells (v1, v2, v3), 3 1-cells (e1,
e2, e3), and a 2-cell f . The boundary of f is formed by its incident cells v1, v2, v3, e1, e2 and e3. Especially,
the 3 edges are the faces of f , and therefore, f is the coface of e1, e2 and e3. On the right, data are associated
with the topological cells: positions are associated with vertices, lengths with edges and area with f .

Indeed, a local law can be considered as a rewriting rule that matches some interacting subsystems, and that

replaces these entities by a combination of the interaction. There are two kinds of transformations available

in MGS.

<n, p>-transformations. The <n, p>-transformations use the p-neighborhood on cells of dimension n.

The patterns α of rules match a sequence of n-cells and two contiguous n-cells in this sequence have to be

p-neighbors. This sequence is called a path. The right hand side (r.h.s.) of a rule also computes a sequence of

values. Finally, the substitution is done element-wise: element i in the matched path is replaced by the ith

element in the r.h.s. sequence. This point of view enables a very concise writing of the rules. Nevertheless,

it doesn’t allow a topological modification of the cellular complex but only an updating of the associated

values.

Patch transformations. A patch is a transformation that allows modifications of the topological structure

of a collection. The pattern and the r.h.s. specify sub-collection through a set of clauses.

The example described in section 3 shows how transformations can be defined and used in a concrete

manner.

2.3 Unification of Discrete Computational Model

The abstract approach of the data structure in MGS and the notions developed on transformations, enable an

homogeneous and uniform handling of the computational models quoted above.

For example, L-systems can be viewed as rewriting rules (defined by the grammar) applied on sequences.

5

In fact, sequences are one dimensional and corresponds to polylines: elements of a sequence are 0-cells, and

two elements are contiguous in the sequence if their associated cells are 1-neighbors. The data stored in the

sequence are values associated with each 0-cell in the corresponding topological collection.

3 Application to Modeling of Filament of Migrating Cells

In this section, we use the concepts of topological collections and transformations for multi-dimensional

structures presented above, to specify a model of epithelial cells migration that represents a first step towards

the modeling of neurulation.

3.1 Description of the Model

In developmental biology, several basic processes are used to describe biological phenomena. For example,

cells change their individual shape and migrate to modify the global organization of the structure. In the

same way, the neurulation process consists in a topological modification of the back region of the embryo (see

left of figure 21): the neural plate is folding and forms the neural fold. Then, this folding curves the neural

plate until the two borders touch each other and make the plate become a neural tube. A last step consists

in a separation between the neural tube and the epidermis located at the neural crest. The topological

modification corresponds to the transformation of a plate into a tube and is not trivial to implement. In our

example, we have simplified the systems into a sheet of epithelial cells that is folded by local cell migration

and deformation (see right of figure 2). After the migration, cells that were on the opposite sides at the

beginning become very close to each other. Once they are closed enough, they collapse to make the original

sheet of cells become a cylinder.

The mechanical model used is inspired from the works of Odell et al. [Odell et al., 1981] on the modeling

of epithelial cells. In their model, an epithelial cell is described in two dimensions by a masses and springs

system. Figure 3 presents this representation. A cell is a square composed of 4 vertices and 6 edges, or fibers

(4 for the sides and 2 others for the diagonals). The sides of the square correspond to the membrane of the

1Image taken from http://laxmi.nuc.ucla.edu:8027/Phelps.html and http://biology.kenyon.edu/courses/biol114/

Chap14/Chapter_14.html

6

Figure 2: On the left is a diagrammatic description of the neurulation process (taken from a drawing by
Patricia Phelps). Figure on the right shows three steps of our model. At the beginning, the system is a sheet
of cells representing the neural plate. Then it is curved by cells migration. At the final step, the sheet is
closed and becomes a true continuous topological cylinder.

cell, and the diagonals are used to model its inner fibers, and prevent an implosion. Moreover, the cell has

polarity: the fiber at the top is apical, the bottom one is basal. By contracting the springs of the basal and/or

the apical sides, the cell changes its shape.

Each edge corresponds to a spring with a stiffness constant k and a rest length L0 in parallel with a

friction with a damping constant µ. Let L be the length of the spring, the mechanical forces are done by

Newton’s second law of motion in the equation:

d2L

dt
= k(L0 − L)− µ

dL

dt
(1)

Each vertex is linked to several springs and its acceleration vector can be computed by summing the forces

apical

basal

vj

vi

k, L0

mu

Lij

Figure 3: On the left, Odell’s model for the simulation of epithelial cells. On the right, extension of the
Odell’s model to three dimensions.

7

applied by the springs. Let pi be the position vector of vertex i, we have:

m
d2pi

dt
=

∑

j∈neighbors(i)

d2Lij

dt
.

pj − pi

||pj − pi|| (2)

where Lij is the length of the spring between i and j and is given by the previous equation. Figure 4 presents

the application of this model on a ring of cells in MGS. In [Nagpal, 2001], this model has been extended in

Figure 4: Application of Odell’s model on a ring of cells in MGS. From the left to the right, some screen-shots
at different steps of the simulation.

three dimensions. We will use this extension in our model. Instead of representing a cell by a square, we use

cubes as shown on the right of figure 3: a cell is composed of 8 vertices, 24 edges, 6 faces (the faces of the

cube) and 1 volume. Note the inner fibers are not represented, and instead of corresponding to inner fibers

in the 2D model, the diagonals represent fibers in the membrane in 3 dimensions.

3.2 Implementation in MGS

3.2.1 Representation of the System

First of all, we start by defining a type to the values associated with each cell.

record Vertex = { px:float, py:float, pz:float,
vx:float, vy:float, vz:float,
ax:float, ay:float, az:float,
m:float } ;;

record Edge = { k:float, L0:float, mu:float, vL:float,
vi:cell, vj:cell } ;;

We define two types of MGS records (a data structure equivalent to a C struct) for cells of dimension 0 and 1.

The type Vertex contains 10 fields used for the newtonian mechanics: px, py and pz represent the position

8

vector, vx, vy and vz the velocity vector, ax, ay and az the acceleration vector, and m the mass. The type

Edge pulls together the different constants associated with the spring model k, mu and L0. The velocity of

the elongation is stored in the field vL. Moreover, two fields, vi and vj refer to boundaries of the edge; they

are used to generate an arbitrary orientation of the edges. Note that r.x denotes the value associated with

the field x of a record r.

Faces and volumes are not used in this example. However, it is easy to imagine that the volumes contain a

kind of “genetic script” and the faces correspond to the place where cells exchange some chemical entities (ion

channel, port, etc.). Therefore, these cells would be useful for the simulation of reaction diffusion processes

superimposed with the regulation of a genetic network.

In a second step, we have to initialize the chain representing the filament of cells. MGS can load cel-

lular complexes from external files. So we consider that the structure of filament has been built with a

CAD program and imported into MGS. Let c be a chain where the position { px=..., py=..., pz=... }

is associated with each vertex, and where the other cells have no value. The initialization is done by 4

transformations for each dimension. As an example, we will describe here the initialization of the vertices:

trans <0> init 0 =
{ v => v + { m=1.0, vx=0.0, vy=0.0, vz=0.0, ax=0.0, ay=0.0, az=0.0 } };;

The keyword trans <0> means the transformation is dedicated to the elements of dimension 0. For each

matched element, the variable v contains the position of the vertex. The initialization consists in adding the

velocity and the acceleration (null at the beginning) to the record v. The addition between two records r

+ r’ computes the asymmetric fusion: the result is a record that contains all the fields of r and r’ with a

priority for r’ when a collision occurs.

3.2.2 Mechanical Model

The mechanical model is described by two equations. So we will write two transformations to compute the

force applied on each edge, and then the displacement of each vertex.

trans <1> update spring = {
e:Edge =>

let vi = self.(e.vi) and vj = self.(e.vj) in
let L = dist(vi,vj) in
let f = (e.k*(e.L0-L) + e.mu*e.vL) in
let eij x = (vj.px - vi.px) / L and eij y = ...and eij z = ...in

9

e+{vL=vL, fx=f*eij x, fy=f*eij y, fz=f*eij z}
};;

This transformation (dedicated to the edges of type Edge) is the straight forward translation of equation 1.

The amplitude of the elastic force is associated with the variable f. The orientation of the edge is taken into

account: the vector ~eij = pj−pi

||pj−pi|| is computed and the force is distributed along the 3 directions. The variable

self denotes the collection that update spring is applied on and self.(x) returns the value associated with

cell x of the collection self. The function dist computes the distance between its two arguments of type

Vertex.

trans <0> integration [delta t = 0.01] = {
vi:Vertex =>

let forces = cofacesfold (
(fun e acc ->

let ve = self.(e) in
if (vi == ve.vi) then
{ fx=acc.fx+ve.fx, fy=..., fz=...}

else
{ fx=acc.fx-ve.fx, fy=..., fz=...}

fi),
{ fx=0.0, fy=0.0, fz=0.0 },
vi

) in
vi + { ax = forces.fx / vi.m, ay=..., az=...,

vx = vi.vx + delta t * vi.ax, vy=..., vz=...,
px = vi.px + delta t * vi.vx, py=..., pz=...}

} ;;

The transformation integration computes the new position of the vertices by using equation 2 to obtain

the updates acceleration, and a classical Euler integration approximation given by:

~v(t + ∆t) = ~v(t) + ∆t~a(t) and ~p(t + ∆t) = ~p(t) + ∆t~v(t) (3)

Value ∆t corresponds to a discretization of time, and is given as an optional argument, here delta t, whose

default value is 0.01. In the right hand side of the rule, the function cofacesfold corresponds to a basic fold

on the sequence of the cofaces of vi. These cofaces are the edges whose vi is one of their boundaries. The

function given in argument, sums the force applied by each edge on vi. Note that a conditional test is used

to take account of the orientation of the edge; as a consequence, the force is added or subtracted.

10

v13

f1

v12

e13

e11

e12

e14

v11

v14

v21

v24

f2

e23

e21

e24

e22

v22

v23
e3

v1

v4
v3

v2

e2f
e4

e1

Figure 5: Scheme of a rewriting rule of the topological transformation of the sheet of cells into a cylinder.
To simplify the figure, diagonals are not drawn. The dotted edges represent the rest of the cellular complex.

3.2.3 Topological Surgery

The previous transformations allows the sheet to be folded. Nevertheless, no intersection between cells is

checked. The following patch transformation merges two very close faces where one face is opposite to

another. This transformation is ad-hoc and the initial rest lengths have been appropriately chosen to make

the curvature realistic.

Figure 5 shows a diagrammatic view of the rewriting rule we want to specify in MGS. Note cells are gathered

two by two and are merged. Moreover, the rest of the cellular complex (represented by the dotted edges) has

to be considered for the reconstruction. As an example, the unmatched cofaces of the vertices v11 and v21

must be cofaces of v1. The patch transformation is the following:

patch surgery = {
f1:[dim=2, (e11,e12,e13,e14) in faces]
v11 < e11 > v12 < e12 > v13 < e13 > v14 < e14 > v11

f2:[dim=2, (e21,e22,e23,e24) in faces]
v21 < e21 > v22 < e22 > v23 < e23 > v24 < e24 > v21

[P(v11,v12,v3,v14,v21,v22,v23,v24)]
=>

‘v1:[dim=0,faces=(),
cofaces=(‘e1,‘e4)@unmatched cofaces(v11,v12),
average 0(v11,v21)]

...
‘e1:[dim=1,faces=(‘v1,‘v2),

cofaces=(‘f)@unmatched cofaces(f1,f2),
average 1(e11,e21)]

...

11

Figure 6: Simulation of a neurulation-like process in MGS: from the left to the right, a sheet of epithelial cells
is curving until the hems sew together to form a tube.

‘f:[dim=2,faces=(‘e1,‘e2,‘e3,‘e4),
cofaces=cofaces(f1,f2),
average 2(f1,f2)]

} ;;

The pattern of a patch rewriting rule is composed of clauses. As an example, clause f:[dim=2, (e1,e2,e3)

in faces] specifies a cell f of dimension 2, that has at least 3 faces called e1, e2 and e3. The :[...] part

of the clause is optional. Moreover, we can use the operators < and > between two clauses: a < b means the

cell matched by the clause a is a face of the cell matched by b. To simplify the program, the diagonals are not

specified in the surgery patch. A predicate P is also used to check some additional geometrical properties of

the vertices (both squares have to be very close).

The right hand side specifies, within a syntax close to the patch pattern one, the elements that are built

to replace the matched one. As an example, we create a new cell ‘v1 of dimension 0, that has two new

elements (‘e1 and ‘e4), and the old cofaces of v11 and v12 that have not been matched (they are given

by the function unmatched cofaces) as cofaces. The value associated with ‘v1 is computed by the function

average 0(v11,v21). The @ operator denotes the sequence concatenation. Figure 6 shows the animation

generated by MGS on a sheet of 20x2 cells.

3.2.4 A Token in the Ring

To show that the cylinder is really closed after the topological surgery step, we put a token in the volumes.

We want it to move along the sheet from one side to another. After the cylinder formation, this token should

move along the ring without being blocked2. The following transformation can also be viewed as a substance

2The movie of this simulation is available at http://www.lami.univ-evry.fr/~mgs/ImageGallery/EXEMPLES/Neurulation/

neurulation.avi

12

transport between biological cells.

We have decided to associate values with the volumes. At the beginning, every cube has the value ‘cell:

this is a symbol, i.e. a constant built from a name (here “cell”). However, we associate the value ‘token

with a cell, and ‘back, with one of its neighbors. This second symbol is used to force the token to go along

one direction.

trans <3,2> token = {
‘back, ‘token, ‘cell => ‘cell, ‘back, ‘token ;
‘back, ‘token => ‘token, ‘back

} ;;

This transformation is applied on the element of dimension 3, and we consider the 2-neighborhood relationship

between them. Therefore, the pattern ‘back, ‘token, ‘cell means we want to find a path of three cubes

whose values correspond to ‘back, ‘token and ‘cell in this order. We rewrite ‘cell, ‘back, ‘token that

makes the token move forward. The second rule corresponds to the case when the token is at an extremity.

It cannot go forward and goes in the opposite direction.

4 Conclusion

In this paper we have presented a new approach of data structure based on notions developed in algebraic

topology. This unifying point of view enables a clear and concise description of models of (DS)2. We have

shown that the notions brought by MGS allow to take into account systems that have a multi-dimensional

structure by giving a direct description in MGS terms of a model of simulation of the neurulation process.

The perspectives opened by this work are numerous. The notions developed here must be further validated

through the development of large scale examples. We are currently using the MGS language in the modeling of

several biological processes (especially in plant development). We also have to work on efficiency issues: the

efficient evaluation of patch patterns is a subject of future work, as well as the compilation of MGS programs.

Acknowledgments.

The authors would like to thank J.-L. Giavitto and J. Cohen at LaMI, F. Jacquemard at INRIA/LSV-
Cachan, the MOKA team at the Univ. of Poitier and the members of the “Simulation and Epigenesis”
group at Genopole for technical support, stimulating discussions and biological motivations. This research is
supported in part by the CNRS, GDR ALP, IMPG, University of Évry and Genopole/Évry.

13

References

[Banâtre et al., 2001] Banâtre, J.-P., Fradet, P., and Métayer, D. L. (2001). Gamma and the chemical
reaction model: Fifteen years after. Lecture Notes in Computer Science, 2235:17–44.

[Giavitto, 2003] Giavitto, J.-L. (2003). Invited talk: Topological collections, transformations and their appli-
cation to the modeling and the simulation of dynamical systems. In Rewriting Technics and Applications
(RTA’03), volume LNCS 2706 of LNCS, pages 208 – 233, Valencia. Springer.

[Giavitto et al., 2002] Giavitto, J.-L., Godin, C., Michel, O., and Prusinkiewicz, P. (2002). Modelling and
Simulation of biological processes in the context of genomics, chapter “Computational Models for Integra-
tive and Developmental Biology”. Hermes. Also republished as an high-level course in the proceedings of
the Dieppe spring school on “Modelling and simumation of biological processes in the context of genomics”,
12-17 may 2003, Dieppes, France.

[Giavitto and Michel, 2002] Giavitto, J.-L. and Michel, O. (2002). Data structure as topological spaces.
In Proceedings of the 3nd International Conference on Unconventional Models of Computation UMC02,
volume 2509, pages 137–150, Himeji, Japan. Lecture Notes in Computer Science.

[Lindenmayer and Jürgensen, 1992] Lindenmayer, A. and Jürgensen, H. (1992). Grammars of development:
discrete-state models for growth, differentiation, and gene expression in modular organisms. In Ronzenberg,
G. and Salomaa, A., editors, Lindenmayer Systems, Impacts on Theoretical Computer Science, Computer
Graphics and Developmental Biology, pages 3–21. Springer Verlag.

[Nagpal, 2001] Nagpal, R. (2001). Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. PhD thesis, Massachusetts Institute
of Technology.

[Odell et al., 1981] Odell, G.-M., Oster, G., Alberch, P., and Burnside, B. (1981). The mechanical basis of
morphogenesis. i. epithelial folding and invagination. Developemental Biology, 85(2):446–462.

[Palmer and Shapiro, 1993] Palmer, R. S. and Shapiro, V. (1993). Chain models of physical behavior for
engineering analysis and design. Research in Engineering Design, 5:161–184. Springer International.

[Paun, 2001] Paun, G. (2001). From cells to computers: Computing with membranes (P systems). Biosys-
tems, 59(3):139–158.

[Prusinkiewicz et al., 1990] Prusinkiewicz, P., Lindenmayer, A., Hanan, J. S., et al. (1990). The Algorithmic
Beauty of Plants. Springer-Verlag.

[Rozenberg and Salomaa, 1992] Rozenberg, G. and Salomaa, A. (1992). Lindenmayer Systems. Springer,
Berlin.

[Tonti, 1974] Tonti, E. (1974). The algebraic-topological structure of physical theories. In Glockner, P. G.
and sing, M. C., editors, Symmetry, similarity and group theoretic methods in mechanics, pages 441–467,
Calgary, Canada.

14

