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Abstract

In this paper, we develop an analysis of the Needham-Schroeder Public-Key
Protocol (NSPK) using a P system approach. This analysis is used to validate the
protocol and exhibits, as expected, a well known logical attack. The novelty of our
approach is to use MGS, a P system like formalism, to find the attack by a systematic
state exploration.

The use of multiset rewriting has already been advocated for the development of
protocol validation tools. In this work, we focus on the use of nested multisets (i.e.
membranes). The use of membranes enables to tight the conditions for detecting
an attack.

All the three proposed version of the analysis have been successfully implemented
in MGS and we conclude the paper by a discussion on how the MGS programs can be
translated into standard P systems.

1 Goal and Motivations

Since the 1994 landmark demonstration by Adleman of the possibilities of DNA to solve a
class of combinatorial problems, biocomputing has often be advocated to develop “chem-
ically combinatorial problem solvers”. In this paper, we want to use the computational
model of P system to address a well known combinatorial problem: the analysis of a
cryptographic protocol.
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Our starting point is the logical analysis of the Needham-Schroeder Public-Key Pro-
tocol (NSPK). The goal of the logical analysis is to find an interleaving of elementary
actions (sending and answering messages) that allows an intruder to obtain confidential
information. We have chosen this problem because it is simple to explain, at the same
time it requires sophisticated data-structures for the exploration of its state space, it is
paradigmatic of this kind of applications, and its solution is well-known — hence we can
validate our result.

The approach taken in this paper is brute force and consists in the exploration of the
state space of the protocol for a systematic search of attacks. Indeed, we are interested in
the study of the states representation and generation, rather than in designing a new and
smart search strategy. This approach is motivated by the opinion that the representation
of data is a central problem in biocomputing.

Moreover, to validate our propositions, we have completely implemented and validated
three versions of the logical analysis using the MGS programming language. Because MGS
is oriented towards expressiveness, the programmer can use powerful constructions that
ease the programming tasks but are not available in the standard P system formalism.
These constructions can be seen as syntactic sugar over the core P system formalism but
makes difficult the expression of the complexity of the algorithms (see however section 6).

The idea of using the P system formalism in the area of communication protocol and
security is not new but has not been applied in the area of logical analysis. In [Ata03],
the author proposes the use of a P system to specify a message authentification protocol.
The problem addressed in our paper is very different, as we do not specify new protocols
but rather develop a verification tool for an existing one. References [Obt01] and [KRO3]
focus on studies of cryptographic functions (inverting one-way functions and breaking
DES) which is not of our concern since encryption is handled here as a black box (see
section 2).

Organization of the Paper. The rest of this paper is organized as follows. In section 2
we give some background on the logical analysis of cryptographic protocol. Section 3
present briefly the MGS language. MGS is an experimental programming language handling
various types of membrane structures in a homogeneous and uniform syntax. Section 4
describes precisely the Needham-Schroeder public-key protocol. Section 5 presents the
technical meat of the paper. We develop three versions of the analysis of NSPK. The
first one is inspired by an analysis initially developed with the ELAN rewriting tool. The
second version is improved using a more accurate representation of state using nesting.
The last version goes further by generalizing the approach to the exploration of general
state spaces. Finally, the last section summarizes our work and compares the MGS program
with the basic P system formalism.

2 Logical Validation of Cryptographic Protocol

Cryptographic protocols are nowadays paramount in all the domains concerned with se-
cure communications, like on-line banking, electronic commerce, enterprise servers, mobile



telephony, pay-per-view video, etc. They define the exchange of a few messages between
parties in order to distribute some secrete data like cryptographic keys or to authenticate
themselves. These messages are built with cryptographic primitives like encryption, sig-
nature or hash-functions, and therefore the security of protocols relies on the strength of
the cryptographic algorithms in use. However, using strong algorithms, and even perfect
(i.e. presumably unbreakable) ones, does not always prevent from attacks of a logical
nature. For instance, the well known problems of the distribution of keys for symmet-
ric cryptosystems like AES and the authenticity of public keys in PKIs are beyond the
scope of the study of encryption functions. Logical attacks occur when the cryptographic
operators are seen as (unbreakable) black boxes, and the security is compromised by an
unexpected interleaving of messages between honest agents and a malicious intruder which
has some control over the network. Examples of control over the network are the ability
to spy messages or to impersonate identities while sending new ones. Such attacks can be
realized at almost no computational cost and hence can have disastrous consequences.

Various formal methods have been proposed for analyzing automatically the vulnera-
bility of cryptographic protocols to logical attacks, both for searching of such flaws or for
the formal proof of their absence. Several systems have been implemented in purpose for
the search of flaws, e.g. [MCF87, Mea95, Hui99]. But many general purpose languages
and tools have also appeared appropriate in this setting, with the advantage of a greater
expressive power, efficiency and maturity. To cite only a few examples, there are model
checkers like FDR [Low96] or mury [MMS97], first order theorem provers [Wei99, JRV00]
and declarative languages used as model checkers [DMT98, Cir99].

Our purpose in this paper is to describe an experiment with the language MGS for mod-
eling a cryptographic protocol and finding of attacks by state exploration. MGS [GMO02a]
is a declarative language that manipulates uniformly various data structures (sequences,
sets, multisets, arrays...) seen from a topological point of view. The use of a declarative
language like MGS is strongly advocated by the intruder-centric model which is generally
considered in order to apply formal methods to cryptographic protocol verification. In
this model, often referred as “Dolev-Yao model” [DY83], the agents executing the protocol
communicate asynchronously via a unique channel which has been compromised by an
intruder. The intruder is able to spy and divert every message on the channel, to analyze
read messages, with the restriction that he must know the appropriate encryption key
in order to decipher an encrypted message. He can also build and send new messages,
possibly under a fake identity. The global state of the system can hence be represented by
a heterogeneous set containing the local states of each agent (with a bounded memory),
the messages and submessages known to the intruder and the messages sent and not yet
received by an agent. The actions of the agents (receiving and sending messages) as well
as of the intruder can be modeled with MGS rewriting rules (called transformations) on
multisets. The sear of an interleaving leading to an attack can be coded very simply in MGS
with an appropriate pattern expression to find sequences of value or arbitrary length. The
representation of states by sets (as opposed to multisets), which are a built-in structure
in MGS, permits an important reduction of the search space.

The problem of finding attacks of protocols is highly undecidable, the state space be-



ing infinite for several reasons: the unboundedness of the number of agents in presence,
the ability of agents to generate fresh random data (nonces), the unlimited size of terms
generated by the intruder. In order to restrict our exploration with MGS to a finite search
space, while keeping our procedure reasonably complete, we shall apply on some theoret-
ical results on protocol verification. It is shown in [RT01] that the problem of protocol
security (non-existence of attacks) becomes decidable when the number of agents consid-
ered is bounded. Indeed, [RT01] shows that in this case, whenever there exists an attack,
there exists an attack involving messages of a bounded size. We can use this result here to
ensure the completeness of our attack search procedure, given a finite number of agents.

3 A Brief Introduction to the MGS Language

We briefly present in this section the MGS language. We do not detail all the features of
the language but we rather focus on the notions required to understand the rest of the

paper.

3.1 MGS as a Functional Language

MGS embeds a complete, impure, dynamically typed, strict, functional language. We only
describe here the major differences between the constructions available in MGS with respect
to functional languages like OCAML [Ler04] or HASKELL [JHH'93].

3.1.1 Values

Atomic values (like integers, floats, booleans, strings,...) with their usual functions, are
available. Constants are denoted with a backquote: ‘REQ (they are reminiscent of LISP
symbols). The only operations allowed on a constant is to store it or to compare it for
equality with another value.

Records (cartesian products with labels) are defined using braces: {x=0, y=1} creates
a pair with label x and y (MGS record are similar to Pascal’s record or C’s struct). The
fields are accessible using the dot notation: let v = {x=0, y=1} in v.x has value 0.
Since records are used in MGS to define a particular state of an entity, MGS allows the
definition of predicates based upon the fields found in a record. The keyword record is
used to define such predicates:

record agent = {id, ni, nr, pc}

defines the predicate agent that holds only if applied on a record value that has at least
all the fields id, ni, nr and pc. Record alice defined as record alice = {dest} +
agent extends predicate agent with the additionally required field dest. So far, the
record predicates only required to have the fields to hold. The predicate req defined as
record req = {pc = ‘REQ} holds only if its argument has a field pc with a value equal
to the constant ‘REQ.



3.1.2 Imperative Variables and Sequencing

Variables in a functional languages are not true variables: they refer to values and cannot
be updated. MGS has a notion of imperative variable (also called mutables) that can be
updated. The := operator allows to define such variables. For example imp := 0 defines
imp with value O that can be later updated with the same construction.

The semi column operator ; is used to express the sequencing of expressions: the value
of £();g() is the value returned by g() but £() has been computed before.

3.1.3 Functions

Since MGS is a functional language, it has functions as first-class values. Functions are
defined either using the construction fun like in fun max(x, y) = if (x > y) then x
else y fi or using the classical lambda notation as in \x.\y.if (x > y) then x else
y fi

Computations by fixpoints are heavily used in applications like simulations or state
space explorations. MGS provides an operator to compute iterations and fixpoints of func-
tions. Let f be a function, then f[iter = n] (x) computes f*(x) and f [*] (x) denotes
the fixpoint of f starting from x.

Functions together with mutables and iterations allows to define functions that pass
informations between calls. For example, function f defined as fun f[acc=0] (x)=(acc
:= acc+1l; x+acc) allows to define an accumulator acc which stores a value that is in-
cremented between each call. The value of f[’iter = 10, acc = 0] (1) is 56.

3.2 Topological Collections and their Transformations

The distinctive features of the MGS language is its handling of entities structured by abstract
topologies using transformations [GM02b]. A set of entities organized by an abstract
topology is called a topological collection. Topological means here that each collection
type defines a neighborhood relation inducing a notion of sub-collection. A sub-collection

B of a collection A is a subset of connected elements of A and inheriting its organization
from A.

3.2.1 Collection Types

Many different predefined and user-defined collection types are available in MGS. We won’t
describe them here since sets, multisets and sequences are the only collection type used
in this paper.

For any collection type T, the corresponding empty collection is written ():T. The
name of a collection type is also a predicate used to test if a value is of this type: T(v)
holds only if v is of type T. Each collection type can be subtyped. The type declaration
collection U = T introduces a new collection type U which is a subtype of T. The new
type U shares the same topology as T. However, a value of type U can be distinguished
from a value of type T using the U predicate (i.e., the subtyping relation implies that



U(u) = T(u), for any value u, but not the reverse). Elements in a collection can be of any
type, including collections.

3.2.2 Operations on Collections

The join of two collections Cy and Cy (written by a comma: C;, C3) is the main opera-
tion on collections. The comma operator is overloaded in MGS and can be used to build
any collection (the type of the arguments disambiguates the collection built). So, the
expression 1, 1+1, 2+1, ():set builds the set with the three elements 1,2 and 3, while
the expression 1, 1+1, 2+1, ():bag makes a bag (a set that allows multiple occurrences
of the same value) with the same three elements.

3.2.3 Transformations

The global transformation of a topological collection C' consists in the parallel application
of a set of local transformations. A local transformation is specified by a rewriting rule
r that specifies the replacement of a sub-collection by another one. The application of a
rewriting rule § = f(/3,...) to a collection A:

1. selects a sub-collection B of A whose elements match the pattern (3,
2. computes a new collection C' as a function f of B and its neighbors,
3. and specifies the insertion of C' in place of B into A.

One should pay attention to the fact that, due to the parallel application strategy of rules,
all distinct instances B; of the sub-collections matched by the 3 pattern are “simultaneously
replaced” by the f(B;). This is very different from the evaluation strategies followed
by classical rewriting tools like MAUDE [CDE*99], ELAN [BKK*96], Mury [DAD"92],
MSR [CDL*99], etc.

The MGS experimental programming language implements the idea of transformations
of topological collection into the framework of a simple dynamically typed functional
language. Collections are just new kind of values and transformations are functions acting
on collections and defined by a specific syntax using rules. Transformations (like functions)
are first-class values and can be passed as arguments or returned as the result of an
application.

3.2.4 Sub-collection Patterns

A transformation is defined by a set of rules (listed between braces). A pattern [ that
appears in the left hand side of a rule is an expression used to select a sub-collection to
be replaced. Several operators are available; we will review here only few of them:

e literal: a literal value matches an element with the same value. For example, 123
matches an element with the integer value 123.



e variable: a pattern variable a matches exactly one element. The variable a can
then occur elsewhere in the rest of the rule and denotes the value of the matched
element. The identifier of a pattern variable can be used only once in a pattern. To
match an element without giving it a name, an underscore _ can be used.

e alias: the pattern p as X associates the variable X to the value matched by the
pattern p. X is a regular variable than can be used as previously described.

e neighbor: the pattern b , p matches a sub-collection composed of an element matched
by b neighbor of a sub-collection matched by p.

e guard: p/exp matches a sub-collection matched by p such that the predicate exp
hold. For instance, x,y / y >z matches two neighbor elements such that the second
one is greater than the first one.

e repetition: p* matches a sub-collection made of a (possibly empty) repetition of
sub-collections matched by p. If p is a pattern variable, then its value refers to the
sequence of matched elements and not to one of the individual values. For example,
3+ matches a non-empty sub-collection made only of 3’s.

3.2.5 MGS and Multiset rewriting

The MGS framework embeds the rewriting of multisets (or sets) in the following way. In
a multiset, an element is susceptible to interact with any other element, so the abstract
topology of a multiset is the topology of a complete connected graph: the neighbors of
an element are all the other elements in the multiset. Then, a pattern § can select an
arbitrary sub-multiset and a multiset rewriting rule is simply a local transformation in
this topology.

3.3 Example : Computing all the n-tuple in a Set

Let S be a set of values. To compute all the n-tuples (a 2-tuple is a pair, a 3-tuple is a
triple...) one can use the transformation :

trans n_tuplelacc, n] = {
(_x as c) / size(c) == n / (acc := c::acc; false) => 11(0);
=> return(acc)

3

In transformation n_tuple, parameters acc and n are mutables whose definition are lo-
cal to the transformation. They are set at the first call of the transformation. Applied
to a collection C', pattern of the first rule (_* as X) / size(X) == n) matches a sub-
collection ¢ of C of size n such that all elements of ¢ are neighbors (with respect to the
topology induced by C'). Once c is found, predicate (acc := c::acc; false) is calcu-
lated: collection ¢ is added to the accumulator (:: is the concatenation of a value to a
collection) and the value false is returned. Since the predicate does not hold, the right



hand side of the rule is not evaluated (the expression !!(0) aborts the program) and the
rule is tried against another instance, storing each time the solution of the matching into
the accumulator. Once all the possibilities have been tried and failed, the second rule
is tried. That rule succeeds in matching anything and returns the value of the accumu-
lator. Transformation n_tuplel[acc=set: (), n=2]((3,4,5,6,set:()));; computes all
the pairs

((3, 4):’seq, (3, 5):’seq, (3, 6):’seq, (4, 3):’seq, (4, 5):’seq, (4, 6):’seq,
(5, 3):’seq, (5, 4):’seq, (5, 6):’seq, (6, 3):’seq, (6, 4):’seq, (6, 5):’seq):’set

where (3, 4):’seq is a pair holding the two integers value.

4 The Needham-Schroeder Public-Key Protocol

4.1 Description of the Protocol

The Needham-Schroeder public key protocol [NS78] (NSPK for short) is the favorite case
study for formal methods applied to the verification of cryptographic protocols. This
popularity certainly comes from one of the most famous success story in this domain,
which is the discover in 1994 by G. Lowe [Low95] of a replay attack in this protocol 16
years after its publication. In [Low95], G. Lowe models the protocol in the CSP process
algebra and uses the model checker FDR to explore the state space.

The Needham-Schroeder public key protocol involves two participants Alice (A), Bob
(B) which are willing to authenticate reciprocally with three messages using public keys.
The original protocol of [NS78] involves also a server distributing the public keys to A
and B with three additional messages. We omit the server and its three messages here,
assuming that A and B both initially know each other’s public key, since they are not
necessary in Lowe’s attack. The messages are described in Figure 1, in the traditional
notation.

REQ A — B: {4 NJkp
CHAL B — A: {Na, Np}tr
AUTH A — B: {Ny}k)

Figure 1: Needham-Schroeder public key protocol

In the first line (message labeled REQ), Alice generates a random number (nonce) N,,
appends it to her name A (the append operator is _, _) encrypts the results with Bob’s
public key K (B) (public key encryption is denoted with the binary operator {_} ) and
sends the result to the network. When Bob receives a message of the form of REQ, he
deciphers it and retrieves the identity A of Alice and the nonce N,. Then he generates a
second random number N,, appends it to /N, and sends the result encrypted with Alice’s
public key K(A) (message CHAL for a challenge). Alice, receiving message CHAL, can
decipher it and check whether the first component corresponds to the name she sent in



message AUTH. Then, she resend Bob’s nonce N, encrypted with Bob’s public key (message
AUTH). Bob can check that the message AUTH contains the nonce N, he has generated at
second step (CHAL).

4.2 A Replay attack

Receiving the message AUTH ensures Bob that Alice has really received the message CHAL
and answered, because Alice is the only one able to decipher this message. We assume
indeed that each agent, as well as the intruder (let us call him Charly, C'), knows only its
own private key, and that this key is necessary to decipher a message encrypted with the
corresponding public key.

Similarly, when receiving the message CHAL, Alice is ensured that it really comes from
B (and is not a fake message from Charly), as proven by the presence of N, because
the knowledge of Bob’s private key is necessary for the extraction of N, from message
REQ. Hence, N, and N, are used as authenticators in this protocols. Therefore, they must
remain secret. However, the attack of [NS78|, described below, shows that it is not the
case, even with the above hypotheses concerning the private keys.

REQ A — (C: {A, Na}K(C’)
REQ/ C(A) — B: {A, Na}K(B)
CHAL, B — C(A) : {Na, Nb}K(A)
CHAL C — A: {Na, Nb}K(A)
AUTH A — C {Nb}K(C)
AUTH’ C(A) — B: {Nb}K(B)

This attack involves two sessions in parallel. In the first session, Alice enters in commu-
nication with Charly (without knowing that he is an intruder). Since the message REQ is
encrypted with Charly’s public key K(C'), Charly can retrieve A, N, and encrypt it with
Bob’s public key K (B), and send this message as the first message REQ’ of a second session
between A and B. In this step REQ’, Charly impersonates A, which is denoted C'(A). Bob
answers to REQ' and Charly diverts this message CHAL' (it is by denoted C(A)). Then
Charly, with two messages CHAL and AUTH of the first session uses A as an oracle in order
to obtain the Bob’s nonce V.

5 Three Different Models to Find an Attack on the
NSPK in MGS

We shall describe here the specification of the Needham-Schroeder public key protocol
and the implantation of a attack-search procedure in a MGS program.

The description of the protocol in MGS involves two different kind of components:
entities and evolution rules. The entities are MGS records, and evolution rules are given by
rewrite rules specified as MGS transformations. A system state, we shall also write solution,
is a finite collection of entities which are of three kind: agents, messages transmitted trough



the network and messages components memorized by the intruder. Several entities in a
state shall react, firing an evolution rule which transforms a system state into a successor

state.

The MGS model is organized into the following parts, detailed in the next sections:

record definitions are used to describe the three kind of entities (Section 5.1); recall
that in MGS a record definition automatically defines a predicate, as described in
Section 3.1.1.

various predicates used to select, in the set of reacting entities, specific entity of a
given kind (an agent, a message),

transformations specifying the abilities of the intruder to collect all the messages
that have been exchanged between agents and extracts pertinent informations (Sec-
tion 5.2.1),

transformation specifying the abilities of the intruder to produce fake messages from
the informations gathered so far (Section 5.2.2),

transformations (alice_req, bob_chal, alice_auth, bob_finish) specifying the re-
ception and sending of messages by agents; such transformations are defined as
reactions between an agent and a (received) message which fulfills some conditions
(Sections 5.3 to 5.5).

function implementing a state exploration procedure which halts with a predicate
broken checking whether a bad state is reached, hence that the search of an attack
was successful.

The functions of the above two last categories come in three versions, described respec-
tively in Sections 5.3, 5.4 and 5.5.

5.1

Representing Agents, Messages and Intruder Knowledge

The three different kinds of entities (unstructured informations) found in the system states
(solutions) are represented using records.

Agents. We shall distinguish the roles, Alice and Bob in our example, which are pro-
grams, from the agents executing the programs, characterized by an identifier (agent’s
name), a role and a bounded memory. In particular, there can be several agents for one

role.

One set of records is used to define agents. An agent consists in:

an identity (its name, note that several agents may have the same identity),
two stores to memorize the session-specific values of the nonces N, and N,

a program counter (pc), which can take the value described below.



and is defined as

record agent = { id, ni, nr, pcl};;
record alice = { dest } + agent;;
record bob = agent;;

All agents with either role Alice or Bob shall create a nonce and receive another one
during the execution of the protocol of Section 4.1. The fields ni and nr store these two
values, for Alice, ni stores N, and nr stores V,, and reciprocally for Bob (ni stands for
nonce initial, because we can assume that each agent initially creates the nonces before
starting a session of the prococol, and nr stands for nonce received).

The program counter pc of an agent can take the following values, according to the
role:

Alice ‘REQ | ‘AUTH | ‘FINISHED
Bob ‘CHAL | ‘WAIT | ‘FINISHED

For Alice, pc = ‘REQ means that the agent is about to send the message with the corre-
sponding label in Figure 1, and similarly for pc = ‘AUTH (role Alice) and ‘CHAL (Bob).
For an agent playing the role of Bob, pc = *WAIT means that he is waiting for the answer
of Alice to his challenge CHAL, and pc = *FINISHED means that the agent has completed
his session of the protocol. Some records for the the various possible agent pc are defined
as follows:

record req = { pc = ‘REQ };;
record chal = { pc = ‘CHAL };;
record auth = { pc = ‘AUTH };;
record wait = { pc = ‘WAIT };;
record finished = { pc = ‘FINISHED };;

Messages. Three different kind of messages are exchanged between Alice and Bob dur-
ing the protocol. The messages are characterized by the kind of information that they
hold. We define a predicate for each kind of message:

record messageReq = { na, a, kb 1};;
record messageChal { na, nb, ka };;
record messageAuth { nb, kb ¥}

In message_req, na, a represent the content of the message REQ, and kb is the public key
used for encryption. For the sake of simplicity, in our program, every public key or private
key is represented by the identity of the owner.

Intruder Knowledge. Finally, we define a predicate for each kind of information that
the intruder will be able to reveal from the whole history of exchanged messages:

record info_name = { name };;
record info_nonce = { nonce };;
record info_pub = { pub };;
record info_priv = { priv };;



Predicates are defined for each kind of message to determine the presence of a message of
a given kind in the solution:

fun messageReqCond(a, m) = messageReq(m) & (m.kb == a.id);;

fun messageChalCond(a, m) = messageChal(m) & (m.ka == a.id) & (m.na == a.ni);;
fun messageAuthCond(a, m) = messageAuth(m) & (m.kb == a.id) & (m.nb == a.ni);;
fun PmessageReq(b, all) = exists(messageReqCond(b), all);;

fun PmessageChal(a, all) = exists(messageChalCond(a), all);;

fun PmessageAuth(a, all) exists(messageChalCond(a), all);;

5.2 The Intruder Transformation Rules

Since the network is common to all agents and the intruder, he’s able to read and produce
new messages. This behavior is implemented by the transformations presented in the two
following sections.

5.2.1 Reading and Analyzing Messages

In our approach, the existing messages are read by the intruder from the current state
and they are put back unchanged. Moreover, the encrypted contents of a message are
added as new known information to the state if decryption is possible. More precisely,
the intruder can learn a plaintext encrypted with a public key (for instance the nonce nb
encrypted with kb in messageAuth) only if he knows the corresponding private key.

The following transformation rules define the evolution of the knowledge of the in-
truder, according to the messages present in the network. There is exactly one rule for
each kind of message. They will actually not generate all the informations that the in-
truder can extract from collected message. However, these transformations are sufficient
to extract all the information needed to built messages with the rules of Section 5.2.2. For
instance, if a message m present in the solution has type REQ (i.e. messageReq(m) is true),
and the intruder knows the private key associated to m.kb, then he learns the components
m.na and m.a of m. Theoretically, he also learns the pair m.na, m.a but storing such an
information is useless since we assume that the intruder is able to build pairs arbitrarily.

trans intruder = {
m / messageReq(m) & exists((\k.(info_priv(k) & (k.priv == m.kb))), neighbors(m))
=> m, {nonce = m.na}, {name = m.a};
m / messageChal(m) & exists((\k.(info_priv(k) & (k.priv == m.ka))), neighbors(m))
=> m, {nonce = m.na}, {nonce = m.nb};
m / messageAuth(m) & exists((\k.(info_priv(k) & (k.priv == m.kb))), neighbors(m))
=> m, {nonce = m.nb}

}ss

The function neighbors used in the transformation is a special form that returns all the
neighbors of the element denoted by a pattern variable.



5.2.2 Forging Some New Messages

In the previous section, we have describe the intruder transformation which only reveals
information according to already known messages an keys. The following transforma-
tion produces new fake messages from know informations in the solution. There is one
transformation for each kind of message:

trans forge_reqlacc = set: ()] =

{
((k:info_pub), (n:info_name), (m:info_nonce)) as X
/ acc := {na = m.nonce, a = n.name, kb = k.pub},acc; false
=> 11(0);
=> return(acc)
}ss
trans forge_challacc = set: ()] =
{
((k:info_pub), (n:info_nonce), (m:info_nonce)) as X
/ acc := {na=m.nonce, nb=n.nonce, ka=k.pub},{nb=m.nonce, na=n.nonce, ka=k.pub},acc; false
=> 11(0);
_ => return(acc)
}5s

trans forge_authlacc = set: ()] =

{
((k:info_pub), (m:info_nonce)) as X
/ acc := {nb=m.nonce, kb=k.publ}, acc; false
=> 11(0);
_ => return(acc)
}is

fun forge(s) =
s, forge_reqlacc=set:()](s), forge_challacc=set:()]1(s), forge_authlacc=set:()](s);;

fun attack(s) = intruder(forge(s));;

Consider the first transformation: one should remark that, since the record made of
info_pub, info name and info nonce might not be unique, we have to use the same kind
of procedure described in section 3.3 to produce all matching triple. This way, we produce
all possible fake messages knowing public keys, names of agents involved in the sessions
and revealed nonces.

Function forge, applied to the solution s adds to the original solution the result of
the application of the three forge transformations.

An attack, described by the attack consists in the revealing of all possibles informa-
tions by the intruder after having forged all possible fake messages. Actually, we’ll see
in the following that a real attack always consists in the fixpoint of the attack function.



5.3 First Version: Simple Multiset Rewriting for Bounded Ver-
ification

In this first version, the solution consists of a single flat set (that is, no values of the set
are themselves sets) of all involved entities in the protocol: the agents, the messages and
the revealed informations. The agents and the intruder will augment the solution with
respect to their own behavior. All informations are in the solution at the same level. An
attack on the NSPK protocol consists here in finding an interleaving of the agents actions
described below such that Bob’s nonce is revealed.

5.3.1 The Agents

The behavior of each agent, at each possible pc, is described by a transformation. Since
they all are (almost) the same, we only describe the behavior of alice at pc ‘AUTH:

e the rule matches if there is in the solution one instance of Alice being at pc ‘AUTH
and with some messages addressed to her,

e in that case, all the messages for Alice are stored in the all messages variable and,
for each message for Alice, an answer is produced.

Notice that the messages addressed to Alice are not removed from the solution. Since
they do not appear in the pattern part of the rule, they are not matched and therefore
not “consumed” from the solution.

trans alice_req = {
x / (req(x) & alice(x)) => (x + {pc = ‘AUTH}), {kb = x.dest, na = x.ni, a = x.id}
}ss

trans bob_chal = {
y / bob(y) & chal(y) & PmessageReq(y, neighbors(y))
=> let all_messages = filter (messageReqCond(y), neighbors(y))
in flatten(map((\m.((y+{pc=‘WAIT, nr=m.na}), {ka=m.a, na=m.na, nb=y.ni})), all_messages))
}5s

trans alice_auth = {
x / auth(x) & alice(x) & PmessageChal(x, neighbors(x))
=> let all_messages = filter(messageChalCond(x), neighbors(x))
in flatten(map((\m.((x + {pc=‘FINISHED}), {kb=x.dest, nb=m.nbl})), all_messages))
}5s

trans bob_finish = {
y / bob(y) & wait(y) & PmessageAuth(y, neighbors(y))
=> let all_messages = filter(messageAuthCond(y), neighbors(y))
in map((\m. ((y + {pc=‘FINISHED}))), all_messages)
Y5



5.3.2 Revealing a Successful Attack

A successful attack is to find in the solution the nonce of Bob revealed. Predicate broken
therefore only holds for solution S if the nonce is in S, which is described by the function
below:

fun broken(x) = member({nonce = 1}, x);;

5.3.3 The Initial State
The initial state for the attack search consists in:

e the two agents, Alice and Bob initialized (with their respective identity, the desti-
nation of the message for Alice, initial nonces to arbitrary integer values, program
counter),

e intruder knowledge (public keys for all participants and its own private key).

Remark that the nr field is not set in the definitions: in this case, it is defined with an
undefined value (and will later be set to a relevant value once a message is received).

initial := {id "alice", dest = "charly", ni = 0, nr, pc = ‘REQ},
{id = "bob" , ni =1, nr, pc = ‘CHAL},
{priv = "charly"}, {pub = "charly"}, {pub = "alice"}, {pub = "bob"}, set:();;

5.3.4 Looking for an Attack

We've just seen that in our definition of the initial state, the number of agents is fixed
(and remains such). Therefore, the number of execution steps is bounded accordingly.
The problem consists in finding the correct interleaving of Alice and Bob actions leading
to a successful attack.

Transformation breaks succeeds if such an interleaving exists. It is applied on functions
which is the set of the transformations describing the agents behavior. The MGS pattern
expression (_*) as F will match all possible permutations of the elements of functions.
For the sake of explanation, let F be the sequence [fi, ..., f,] of one possible permutation.
The guard checks whether broken holds for an attack on the state attack® o f; o...0
attack® o f,(initial).

trans break = {
(_x) as F / broken(fold((\fn.\s. (attack[*] (fn(s)))), initial, F)) => return(true)

}ss
functions := alice_req, alice_auth, bob_chal, bob_finish, set:();;
successful := break(functions);;

The search for an attack succeeds in less than a second on a AMD-1.4Ghz/LINUX com-
puter, and reveals that the correct interleaving of functions is, as expected, bob_finisho
alice_auth o bob_chal o alice_req.



5.3.5 Conclusion

As said before, in this version of the model, the effect of the agents is to augment the
solution with messages depending on the state of each agent, but keeping all the informa-
tions at the same level. Given a solution S, an agent a in a state where he might reply to
two different messages m; and msy. The two scenarii could happen:

1. The agent replies to both messages: to m; to give m/| and to my to give m,. Here,
after the agent action, S is equal to S Um) Um). In the future of the protocol,
another agent may react to both m) and m/, leading to an incorrect situation, even
where the intruder may break the protocol and reveal the nonce.

2. The agent replies to only one of the two message: to m; to produce m,. In that
case, an attack might not be found because the case where the reply should have
concerned the other message has not been considered. The protocol analysis is
therefore too weak.

The current model describes the first of the two above behavior. In the next version, we
propose to model the second case by producing a new, distinct, solution each time such a
situation arises.

5.4 Second Version: Nested Multiset Rewriting

In this second version of the model, we take into account the different evolutions of the
protocol that might happen when he receives more than one message. To model such a
situation, the initial state consists in a slice of sets. Each set in the slice is a possible
state in the protocol. All transformations are changed to model this new situation.

A new collection type is defined: slice which derives from the collection type seq
(slice is then just a sequence with a different name). The empty collection of that kind
is ():slice.

collection slice = seq;;

5.4.1 The Agents

The transformations describing the behavior of each agents are very close to those de-
scribed in section 5.3.1. The only differences are that now, the result of the transforma-
tions are not flattened and each set embeds the full solution onto which the transformation
was applied (this is the setify(neighbors(y)) argument in the map of the r.h.s. of each
transformation; setify computes the set of elements of its collection argument).

trans alice_req = {
x / (req(x) & alice(x)) => (x + {pc = ‘AUTH}), {kb = x.dest, na = x.ni, a = x.id}
}s;

trans bob_chal = {
y / bob(y) & chal(y) & PmessageReq(y, neighbors(y))



=> let all_messages = filter(messageReqCond(y), neighbors(y))
in return(map((\m. ((y + {pc = ‘WAIT, nr = m.na}),
{ka = m.a, na = m.na, nb = y.ni}, setify(neighbors(y)))), all_messages

}5s

trans alice_auth = {
x / auth(x) & alice(x) & PmessageChal(x, neighbors(x))
=> let all_messages = filter(messageChalCond(x), neighbors(x))
in return(map((\m.((x + {pc = ‘FINISHED}), {kb = x.dest, nb = m.nb}, setify(neighbors(x)))
all_messages))

}ss

trans bob_finish = {
y / bob(y) & wait(y) & PmessageAuth(y, neighbors(y))
=> let all_messages = filter(messageAuthCond(y), neighbors(y))
in return(map((\m.((y + {pc = ‘FINISHED}), setify(neighbors(y)))), all_messages))
3

5.4.2 Revealing a Successful Attack

Since we now have a slice of sets, revealing a successful attack consists in looking in each
set if the nonce is revealed:

fun isbroken(x) = member ({nonce = 1}, x);;
fun broken(x) exists(isbroken, x);;

5.4.3 The Initial State

The same goes for the initial state: we now have a slice of sets with only one set:

initial := ({id = "alice", ni = 0, nr, pc = ‘REQ, dest = "charly",},
{id = "bob", ni = 1, nr, pc = ‘CHAL},
{priv = "charly"}, {pub = "charly"}, {pub = "alice"}, {pub = "bob"}, set:()
):: slice: Q);;

5.4.4 Looking for an Attack

As for the search of an attack, we still look for an interleaving leading to revealing the
nonce. We now have to map and flatten the attack that follows an action of one of the
agents:

fun fmap(f, e) = flatten(map(f, e));;

trans break = {
(_*) as F / broken(fold((\fn.\s.(fmap(attack[*], fmap(fn,s)))), initial, F)) => return(true)
}ss

successful := break(functions);;

functions is the same as in section 5.3.4. The search for an attack is as fast as for the
previous model and leads to the same result.



5.4.5 Conclusion

In this version, we are now searching for the correct interleaving of the agents actions
leading to a possible attack. We now handle correctly the fact that an agent may have to
react to more than one message leading to more than one evolution of the state.

Nevertheless, this method is tailored for the search of an interleaving of agents actions
leading to the revelation of the nonce. This is possible because we actually know that
such an interleaving will lead to a successful attack. We propose in the next section a
more general approach where a full state space search is done.

5.5 Third Version: Full Exploration of the State Space of the
Protocol

In this third and last version of the model, we use a systematic approach to search for an
attack on the NSPK protocol.

Given an initial state s; of the protocol, to produce the first evolution of the solution,
our strategy is to apply the transformation of each agent to s; giving the four new states
st = alice req(s;), s2 = bob_chal(s;), s} = alice auth(s;), s] = bob_finish(s;). The
application of the intruder’s transformations to the 31'1, 1 <7 <4 gives si’, 1<i<4. In
the process, state s; is removed and replaced by the four new states sil/.

The second evolution of the system starts will all four states st and for each s¢,1 <
i < 4, produces the four new states s5,1 < j < 4 by the application of alice_req, ...,
bob_finish. The apphcatlon of the intruder’s transformations to those new states leads

to the 16 states s5 ,1 < ,j < 4. The process continues as long as an attack is not found.

5.5.1 The Agents

The agents description is very similar to the previous one, with the difference that the
map operations applies to setify(all messages) in order to produce the correct result
in term of sets. This is a minor change, since the overall design remains the same.

trans alice_req = {
x / (req(x) & alice(x)) => (x + {pc = ‘AUTH}), {kb = x.dest, na = x.ni, a = x.id}
}5s
trans bob_chal = {
y / bob(y) & chal(y) & PmessageReq(y, neighbors(y))
=> let all_messages = filter (messageReqCond(y), neighbors(y))
in return(map((\m.((y + {pc=‘WAIT, nr=m.na}),
{ka=m.a, na=m.na, nb=y.ni}, setify(neighbors(y)))),
setify(all_messages)))
+is
trans alice_auth = {
x / auth(x) & alice(x) & PmessageChal(x, neighbors(x))
=> let all_messages = filter(messageChalCond(x), neighbors(x))
in return(map((\m. ((x + {pc=‘FINISHED}), {kb=x.dest, nb=m.nb}, setify(neighbors(x)))),
setify(all_messages)))



trans bob_finish = {
y / bob(y) & wait(y) & PmessageAuth(y, neighbors(y))
=> let all_messages = filter(messageAuthCond(y), neighbors(y))
in return(map((\m. ((y + {pc=‘FINISHED}), setify(neighbors(y)))), setify(all_messages)))
s
5.5.2 Revealing a Successful Attack

Since the code is the same, we do not detail it here.

5.5.3 The Initial State
The solution is now a set of sets. This is described in the initial state of the model:

initial := ({id = "alice", dest = "charly", ni = 0, nr, pc = ‘REQ},

{id = "bob" , ni =1, nr, pc = ‘CHAL},
{priv = "charly"}, {pub = "charly"}, {pub = "alice"}, {pub = "bob"}, set:()
Y:i:set: ()

5.5.4 Looking for an Attack

This time, rather than searching for an interleaving, we exhaustively apply the agents
transformations to the elements of the solution. This is done in the evolve transformation
which afterwards applies attack. Functions nested and flat are here to ensure that the
solution, after a transition step, is correctly nested:

fun nested(x) = set(x) && set(hd(x));;
trans flat = { x:nested => sequify(x) };;

trans evolve = {
x => map(attack, flat(alice_req(x)::alice_auth(x)::bob_chal(x)::bob_finish(x)::set:()))
+is

successful := evolve[’fixpoint=broken] (initial);;

An attack is found as the fixpoint of the evolution of the system function. The option
>fixpoint = broken of the evolve function is used to stop the iterates of evolve once
a fixpoint is reached (in the usual sense of evolve(x) = x) or broken(z) holds.

5.5.5 Conclusion

Here, we should face the usual combinatorial explosion of these kind of strategies. By

chance, most agent transformations do not apply to the szk . Due to MGS’s policy on
rule application, if one rule does not apply on its argument, the argument is returned
unchanged. Since all the states are in a set, only a single instance of all non-matching
arguments of a kind will remain. This drastically reduces the effective complexity of this
approach. At the end of the process, an attack is found (in less than a second) with only
6 states in the solution, rather than the 256 awaited ones.



6 Conclusion: From MGS to basic P System

In this paper, we have used the MGS language to describe and analyze in three different
ways the NSPK protocol. It has been shown that the well-know security hole of [Low96]
is easily (in less than one second) discovered by our state exploration procedure. The MGS
program has been written for this special protocol, however, the principles of our modeling
are general enough to envision a systematic way to derive a program for searching attacks
from an abstract description of the messages of a protocol given with the notations of
Section 4.1, following [JRV00].

Section 5 shows that the programming of the NSPK analysis is particularly simple and
readable in MGS. Moreover, it is also easy to evolve the initial analysis to more sophisticated
ones. However, we want to stress that this does not preclude a straightforward translation
of these MGS programs into “classical P systems”. By a classical P system, we mean a
set of membranes in which occurs a Gamma like multiset-transformation [BEMO1]. To
support this claim, we can note that:

e Records are used to represent entities like agents, messages or the intruder knowl-
edges (cf. section 5.1). A record is used here because we want to aggregate several
informations into a single entity and the record data structure makes simple the
examination of this aggregate. However, each information is taken in a finite set
of symbols. An alternative and more basic approach would be to use a multiset to
aggregate each information part of an entity.

e We have used sets instead of multisets. It is simply more elegant and efficient (the
generation of some duplicate case is spared). One can replace each set by a multiset
without changing the results.

e The rule in transformation intruder of section 5.2.1 selects an m that satisfies a
local property (depending only of m) when some global property (depending on m
and the entire multiset) holds (namely: it exists an element k in the multiset that
has some relationship with m). The formulation chosen to check the global property
allows the generation of all the new informations in only one step. However, if we
accept to generate the new informations in several steps, it is easy to check the global
property using only basic multiset rewriting. The idea is to make m to react with k
and becomes inert after that. We only have to wait until a fixpoint is reached.

e The transformations forge_xxx in section 5.2.2 are variations on the transformation
n_tuple presented in section 3.3. This transformation is highly “non standard”: the
first rule updates a global variable and the second rule relies on the return state-
ment. Again, this transformation can be turned into a standard multiset rewriting
system by some coding. For instance, transformation:

trans couple = {

u:int, v:int => {fst = u, snd = v}, {fst = v, snd = u}, u, v;
u:int => {fst = u, snd = u}, u



iterated until a fixpoint computes the set of couples of a set of integers (couples
are represented by records and the integers can then be easily eliminated). The
computation of the multiset of couples of a multiset of integers is slightly more
difficult because the repetition of couples must be eliminated using an additional
rule. However, one may notice that the rule application strategy has a big impact
and, even if reaching a fixpoint has some similarities with reaching the steady state
of a chemical solution, it is not completely clear how to determine that a fixpoint
has been reached (which is needed for the sequencing of operations).

e Several rules make use of the flatten and map operator. A map consist in applying a
function to each element in a multiset. This can be done by iterating a rewriting rule
that applies the transformation and tags the results to prevent a second application.
The flatten operator transforms a multiset of multisets into a simple multiset. It
corresponds to the use of the membrane dissolving operator.

e A rule that uses the return construct corresponds to a non standard exit. It can
be emulated using the membrane dissolving operator: when a rule with a return
applies, then the r.h.s of the rule can be generated together with the dissolution
of the enclosing membrane. The problem is to cancel all other elements of the
membrane before the dissolution. This can be done using two nested membranes.
In the top membrane, a rule cancels all elements, except the element to be returned
(which can be tagged). A second rule is used for its dissolution. The enclosed
membrane is the initial one.

e The broken function in section 5.3.2 is an application of the member predicate.
Thus, it corresponds to the process of finding if a membrane contains an element
satisfying a property, which can be easily coded.

e The break transformation in section 5.3.4 is also simple to translate despite its
apparent complexity: the idea is to make each element to react with the other and
to generate all the possible interleaving of actions. Then this interleaving is applied
to the initial state and the boolean true value is returned if an attack is found.
Again, this can be done using a fixpoint (and a bound to the number of interleaved
actions). The style used here favors the single application of a transformation.

e Other transformations correspond to very simple rules for multiset rewriting.

e All others functions are simple ones: their definitions are not recursive and most of
the times they are simple predicate used to check if some data (e.g. a record) holds
some property.

The previous remarks are indications that the MGS programs presented here can be trans-
lated into the classical P system formalism. However, it may require a considerable amount
of work to “desugar” all the available high-level constructs.
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