
Comparative and Functional Genomics
Comp Funct Genom 2004; 5: 95–99.
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.363

Conference Review

Rewriting systems and the modelling of
biological systems

Jean-Louis Giavitto1, Grant Malcolm2* and Olivier Michel1
1LaMI u.m.r. 8042 du CNRS, Université d’Évry Val d’Essone — GENOPOLE, Tour Évry-2, 523 Place des Terrasses de l’Agora, 91000
Évry, France
2Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK

*Correspondence to:
Grant Malcolm, Department of
Computer Science, University of
Liverpool, Liverpool L69 7ZF, UK.
E-mail: grant@csc.liv.ac.uk

Received: 13 November 2003
Revised: 18 November 2003
Accepted: 25 November 2003

Abstract
This paper gives a brief survey of the use of algebraic rewriting systems for mod-
elling and simulating various biological processes, particularly at the cellular level.
Copyright 2004 John Wiley & Sons, Ltd.

Keywords: computational models for cell simulation; dynamical systems with a
dynamical structure; rewriting systems; simulation

Introduction

Computer systems are designed and built to meet
some need in the real world: to maintain records
of chains of amino acids or of personal finances,
to visualize tomographic data or to send text
messages, to fly planes or guide satellites. Any
such system is useful only insofar as it records,
simulates, predicts or helps to control some element
of the behaviour of the real world (or, perhaps, of a
virtual world). In this respect, computer systems are
models of something, and designing and building
such systems is tantamount to constructing a model
of that thing.

Computer science has developed (or appropri-
ated) many languages and tools to help build these
models, and to relate different models that operate
on different levels of abstraction. In this paper we
give a survey of how a family of these languages,
rewriting systems, have been used to model a vari-
ety of biological processes.

Rewriting systems

The mechanics of rewriting systems are familiar
to anyone who has done high-school maths: a

term can be simplified by repeatedly replacing
parts of the term (subterms) with other, equivalent,
subterms, e.g:

1/2 · 2/3 · 3/4 → 1/3 · 3/4 → 1/4

The ‘cancellation’ rule that is applied here is:

M /N · N /P → M /P ,

where M , N and P are variables representing
arbitrary numbers (although, presumably, N and P
are not zero).

This cancellation rule is probably more familiar
where the left- and right-hand sides are separated
by an equality symbol (‘=’), rather than the arrow
used here. In this arithmetic example, what is
important is simplifying the original term in such
a way that the resulting term denotes the same
number as that denoted by the original term. If
we think of these terms as being the same thing
as the number they denote, then the end result of
the process of simplification is exactly the same
as where we started from. We could, however,
think of the terms as being more or less complex
representations of a particular number, and we
could think of the simplification process as moving

Copyright 2004 John Wiley & Sons, Ltd.

96 J.-L. Giavitto, G. Malcolm and O. Michel

from a more complex representation to a less
complex representation.

Computation is very often all about processes:
things change, and move into different states,
sometimes even in a non-deterministic way. The
languages that computer scientists use to describe
and create processes reflect this, e.g. the use of
an arrow rather than an equality symbol in the
example above.

Rewriting systems are just as simple as this
example suggests: terms are built up from con-
stants (such as, ‘0’, ‘1’, etc.) and operations (such
as multiplication and division) and a number of
rules (such as the cancellation rule above) describe
how terms can be rewritten. An individual rewriting
system specifies particular sets of constants, oper-
ations and rules; the mechanics of using the rules
to rewrite terms is common to all rewriting sys-
tems. The example above can be seen as a model
of numbers (or of terms denoting numbers), with
the rules describing how entities in the model inter-
act; the examples we survey below use rewriting
systems to model biological processes, e.g. by hav-
ing constants that represent proteins or molecules,
operations that represent ways in which proteins
and molecules can be brought together, and rules
to describe the effects of their interactions.

The theory of rewriting systems (see e.g [3,4])
lies in algebra and logic, areas that have been
extensively and successfully applied in almost
every branch of science. A key result is that
rewriting systems are Turing complete — every
computable process can be described by a rewriting
system. Moreover, using rules to transform terms
is such a basic operation that there are many
languages and tools (see e.g. [8,17]) that make
rewriting systems powerful tools for describing,
exploring and reasoning about models.

Modelling biological systems

We give a brief and selective survey of research
that uses rewriting systems to model or simulate
dynamic biological systems. The simulation of any
dynamic system by a rewriting system relies on:

• Representing the states of the dynamic system
by expressions (terms built from the constants
and operations).

• Expressing the evolutionary rules of the dynamic
system as rewriting rules.

If this can be done, then the process of applying the
rewriting rules to an expression e corresponds to a
possible trajectory of the dynamic system starting
from the initial state e.

Finding appropriate constants, operations and
rules is at the heart of building these computational
models, and is a difficult task that requires insight
and creativity. However, certain kinds of operation
occur again and again, and give distinct proper-
ties to the rewriting systems that are built on top
of them. Consider, for example, an operation that
‘adds’ proteins together: such an operation might
form chains of proteins, as in DNA strands, or it
might build a ‘soup’ of proteins that are not bound
in a sequence, but can move about and interact
with one another. Either of these alternatives can
be built into a rewriting system by imposing cer-
tain rules on how the ‘addition’ operation behaves:
‘associativity’ in the former, giving rise to string
rewriting ; and ‘commutativity’ in the latter, giving
rise to multiset rewriting. These two approaches
are topological, in that they constrain the neigh-
bourhood of the proteins that are added together
(immediate neighbours in the sequence, in the first
case, and any other protein in the ‘soup’ in the
second).

We now look at both of these topological
approaches, then at approaches to capturing more
sophisticated topologic structures.

String rewriting

String rewriting has been successfully applied in
modelling plant development. Introduced in 1968
by Lindenmayer [16], the L system formalism is
characterized by the parallel application of rewrit-
ing rules on strings representing a linear or a
branching structure. The original L system formal-
ism has been extended in many ways and a com-
prehensive review can be found in Prusinkiewicz
[20,21]. A good example of its use that takes into
account cellular interaction is the modelling of
growth and heterocyst differentiation in Anabaena.
This cyanobacterium grows in filaments of 100
cells or more. When starved for nitrogen, special-
ized cells called heterocysts differentiate from the
photosynthetic vegetative cells at regular intervals
along each filament. Heterocysts are anaerobic fac-
tories for nitrogen fixation; in them, the nitrogenase

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

Rewriting systems and the modelling of biological systems 97

enzyme complex is synthesized and the compo-
nents of the oxygen-evolving photosystem II are
turned off. Plant signals exert both positive and
negative regulatory control on heterocyst differen-
tiation. Wilcox et al. [23] have proposed an acti-
vator–inhibitor model of heterocyst differentiation
where the (high) concentration of the activator trig-
gers the heterocyst differentiation. The production
of the activator is an autocatalytic reaction and
also catalyses the production of the inhibitor. The
inhibitor represses the activity of the activator when
its concentration is high enough. The diffusion of
the inhibitor to the neighbouring cells prevents
neighbours becoming heterocysts and explains why
heterocysts appear in a regularly spaced pattern in
the filament. A computer simulation of this process
[13] based on the use of parametric L systems [22]
validates the model. This example is remarkable for
at least two reasons: it shows the ability of this kind
of discrete model to accommodate features usually
handled in continuous formalisms (e.g. the mod-
elling of diffusion) and also because it tackles a
fundamental biological mechanism: a morphogen-
esis driven by a reaction–diffusion process taking
place in a growing medium.

Multiset rewriting

In a chemical solution, molecules move around and
can interact with any other molecule. The state of
the chemical solution can be modelled as a multiset,
a set where an element is allowed to occur multiple
times. We write a ⊕ b ⊕ c ⊕ b for a multiset
containing elements (e.g. molecules) a , b and c,
where b occurs twice. The operation ⊕ therefore
builds a ‘soup’ of elements by ‘adding’ them
together. Technically, we say that this addition
operation is associative and commutative, which
means that the elements can be written in any
order: the soup a ⊕ b ⊕ c ⊕ b is the same as, for
example, b ⊕ b ⊕ c ⊕ a .

Once we have represented the state of a chemical
solution as a multiset, it is then easy to formulate
the chemical reaction rules as multiset rewriting
rules, e.g:

r1: a ⊕ a → a ⊕ a ⊕ b r2: a ⊕ b → a ⊕ b ⊕ b

r3: b ⊕ b → b ⊕ b ⊕ a

represent second-order catalytic reactions between
two molecule types a and b. For example, if

reaction r1 occurs in a state a ⊕ c ⊕ a ⊕ b, then the
result is a state a ⊕ c ⊕ a ⊕ b ⊕ b, one additional
b is produced. (Note that it does not matter that
the two a’s were not side-by-side in the first state,
because a multiset can be written in any order; this
is just the same thing as applying the arithmetic
cancellation rule to a term 1/3 · 2/7 · 3/5.)

This abstract approach to chemistry is now
recognized as an emerging field called artificial
chemistries (see [5]) and embraces a wide variety
of research, ranging from the study of the auto-
mated generation of combustion reactions [2] to
the study of complex dynamic systems and self-
organization in biological evolution [10].

Fisher et al. [9] proposed the use of rewriting
systems to model cascades of protein interactions
in signalling pathways. In this context, multisets
provide a convenient way of making the participat-
ing proteins available for the individual reactions
in the cascade. Later work by Eker et al [6,7] has
produced some very sophisticated models of these
pathways; however, the earlier work draws atten-
tion to the subtle role that so-called ‘scaffold pro-
teins’ play in facilitating cascades and preventing
cross-talk between pathways. These scaffold pro-
teins can be seen as introducing interesting topo-
logical structure among the proteins that they bind;
a kind of structure that is not, in itself, at odds
with the multiset approach, but which suggests that
more structured approaches to intracellular protein
interactions, and other biological dynamic systems,
would be a fruitful avenue of research.

P systems

Several variations on multisets have been proposed
to facilitate the representation of more sophisticated
biological structure, e.g. one can ‘nest’ multisets
one within another, so that the elements of the mul-
tiset can be both molecules and multisets (which
may in turn contain both molecules and other mul-
tisets, and so on). This approach can be used to
represent ecologies of cells and proteins, where the
nested multisets represent cells, or even compart-
ments, such as sites, within cells. Such nesting of
multisets is developed in the domain of P systems
[18,19]. This paradigm extends standard multiset
rewriting by introducing the notion of ‘membrane’.
A membrane structure is a nesting of compart-
ments represented, for example, by a Venn diagram
without intersection and with a unique superset:

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

98 J.-L. Giavitto, G. Malcolm and O. Michel

the skin. Objects are placed in the regions defined
by the membranes and evolve following various
transformations: an object can evolve into another
object, can pass through a membrane or dissolve
its containing membrane. In the initial definition of
the P systems, each region defined by a membrane
corresponds to a multiset of atomic objects which
can evolve following some evolutionary rules. The
membrane structure enables the specification of
some localization of the processes and a region can
be equipped with various computational mecha-
nisms: multiset rewriting, string rewriting, splicing
systems, etc. An example of this approach, mod-
elling a spatially distributed biochemical network,
is given in Giavitto and Michel [12].

P-systems represent a particularly well-develo-
ped approach to integrating complex topological
structures into rewriting systems; other approaches,
as well as the issues concerning dynamically
changing topological structures, are discussed in
Giavitto and Michel [12].

Conclusion

The examples above indicate that rewriting systems
and tools such as the languages Maude [17] and
ELAN [8] can be effectively used in modelling
biological systems. The speed of such tools also
makes them particularly effective in simulating and
exploring the models that are built.

By combining and structuring multiset and string
rewriting, we can extend the applicability of these
formalisms. Applications of such extensions at the
genetic level include DNA computing [1] and
splicing systems, a language-theoretic model of
DNA recombination that allows the study of the
generative power of general recombination and of
sets of enzymatic activities [14,15]. However, the
need to represent more structured organizations
motivates further extensions of rewriting (see e.g.
[3,11].

To conclude, we want to emphasize the versatile
nature of rewriting formalisms. Models can be
qualitative or quantitative. They also support an
individual-based simulation style by computing
the global consequences (the derivations) of the
local interactions (the rules) between the system
entities. This versatility should be a big advantage
in biological applications.

References

1. Adleman LM. 1994. Molecular computation of solutions to
combinatorial problems. Science 266(5187): 1021–1024.

2. Bournez O, Côme G-M, Valérie Conraud HK, Ibanescu L.
2003. A rule-based approach for automated generation
of kinetic chemical mechanisms. In 14th International
Conference on Rewriting Techniques and Applications (RTA
’03), vol 2706 of Lecture Notes in Computer Science,
Nieuwenhius R (ed.). Springer: Heidelberg; 30–45.

3. Brown R, Heyworth A. 2000. Using rewriting systems to
compute left kan extensions and induced actions of categories.
J Symbol Comput 29(1): 5–31.

4. Dershowitz N, Jouannaud J-P. 1990. Rewrite systems. In
Handbook of Theoretical Computer Science, vol B, Elsevier
Science: Amsterdam; 244–320.

5. Dittrich P, Ziegler J, Banzhaf W. 2001. Artificial chemis-
tries — a review. Artificial Life 7(3): 225–275.

6. Eker S, Knapp M, Laderoute K, Lincoln P, Talcott C. 2002a.
Pathway logic: executable models of biological networks.
In Fourth International Workshop on Rewriting Logic and
Its Applications (WRLA ’2002), vol 71 of Electronic Notes
in Theoretical Computer Science, Gradducci F, Montanari U
(eds). Elsevier: Amsterdam.

7. Eker S, Knapp M, Laderoute K, et al. 2002b. Pathway logic:
symbolic analysis of biological signaling. In Proceedings
of the Pacific Symposium on Biocomputing, Altman RB,
Danker AK, Hunter L, Lauderdale K, Klein TE (eds). World
Scientific: New Jersey USA; 400–412.

8. ELAN Home Page. 2002. http://www.loria.fr/equipes/
protheo/SOFTWARES/ELAN/.

9. Fisher M, Malcolm G, Paton R. 2000. Spatiological processes
in intracellular signalling. BioSystems 55: 83–92.

10. Fontana W, Buss L. 1994. The arrival of the fittest: toward a
theory of biological organization. Bull Math Biol 56: 1–64.

11. Giavitto J-L, Michel O. 2002. The topological structures
of membrane computing. Fundamenta Informaticae 49:
107–129.

12. Giavitto J-L, Michel O. 2003. Modeling the topological
organization of cellular processes. BioSystems 70(2):
149–163.

13. Hammel M, Prusinkiewicz P. 1996. Visualization of develop-
mental processes by extrusion in space-time. In Proceedings
of Graphics Interface ’96, Davis WA, Bartels R (eds). Cana-
dian Human — Computer Communications Society: Toronto,
Canada; 246–258.

14. Head T. 1987. Formal language theory and DNA: an analysis
of the generative capacity of specific recombinant behaviors.
Bull Math Biol 49: 737–759.

15. Head T. 1992. Lindenmayer Systems: Impacts on Theoretical
Computer Science, Computer Graphics, and Developmental
Biology, Springer-Verlag: Berlin; 371–383; Also appears in
Nanobiology 1992. 1: 335–342.

16. Lindenmayer A. 1968. Mathematical models for cellular
interaction in development, Parts I and II. J Theoret Biol 18:
280–315.

17. Maude Home Page. 2002. http://maude.csl.sri.com/.
18. Paun G. 1998. Computing with membranes. Technical Report

TUCS-TR-208, Turku Centre for Computer Science.
19. Paun G. 2001. From cells to computers: computing with

membranes (P systems). Biosystem 59(3): 139–158.

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/
http://maude.csl.sri.com/
http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/

Rewriting systems and the modelling of biological systems 99

20. Prusinkiewicz P. 1998. Modeling of spatial structure and
development of plants: a review. Scientia Horticulturae 74:
113–149.

21. Prusinkiewicz P. 1999. A look at the visual modeling of plants
using L-systems. Agronomie 19: 211–224.

22. Prusinkiewicz P, Hanan J. 1990. Visualization of botanical
structures and processes using parametric L-systems. In

Scientific Visualization and Graphics Simulation, Thalmann D
(ed.). Wiley: Chichester; 183–201.

23. Wilcox M, Mitchison GJ, Smith RJ. 1973. Pattern formation
in the blue-green alga, Anabaena. I. Basic mechanisms. J Cell
Sci 12: 707–723.

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

