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Abstract

In this report, we present a new framework for the definition of various data-structures
(including trees and arrays) together with a generic language of filters enabling a rule-based
programming style of functions. This framework is implemented in an experimental language
called MGS. The underlying notions funding our framework have a topological nature and
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1 Introduction

One of the achievement and success of current functional languages is the ability to define functions
by case using filters and pattern-matching. However, this possibility is restricted to pattern-
matching of algebraic data-types, which is now well understood. An example of a data-structure
beyond the current capability is for example the array data-type: it is not possible to define a
function by case on an array.

In this paper, we present a new framework for the definition of various data-structures, includ-
ing trees and arrays, together with a generic language of filters enabling a rule-based programming
style of functions. This framework is implemented in an experimental language called MGS.

The underlying notions funding our framework have a topological nature and unify several
programming paradigm like Gamma [BM86] and the CHAM [BB92], Lindenmayer systems [RS92],
Paun systems [Pau99] and cellular automata [VN66]. Gamma, CHAM and Paun systems are based
on multiset rewriting and Lindenmayer systems on string rewriting. These kind of data-structures
are qualified as monoidal [Man01, GM01b] and their rewriting theories are now mastered. In
this paper, we focus on non-monoidal data-structure and especially array-like data-structures for
which there is no clear agreement on a rule-based rewriting mechanism.

The rest of this paper is organized as follows. The next section introduces a motivating
example. Section 3 details the notion of group indexed data structure or GBF (for group-based
data fields). Such structure generalizes the notion of array. We give a geometric interpretation of
GBFs in section 4. This interpretation underlies the design of a generic pattern language described
in section 5. Some examples are worked out in section 6. The corresponding pattern-matching
algorithm is developed section 7, before reviewing some related and future works.

2 A Motivating Example

This example is loosely inspired from lattice gas automata. In such kind of cellular automata,
rules of forms β ⇒ f(β) are used to specify the local evolution of a set of particles distributed
on a regular subdivision of the plan. The expression β is a pattern that matches a configuration
(typically two particles in two neighbor cells that would collide at the next time step) and f(β) is
used to specify the evolution of the particles.

In our arbitrary example, we want to specify the 90◦-rotation of a cross in square lattice (see
the two diagrams at left of figure 1). An array-like data-structure can be used to record the lattice
state and the rule β ⇒ f(β) is used to specify the rotation of a single cross. Note that in this
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case, the pattern β does not filter a subarray but an arbitrary subset (a cross). Such rule must be
applied to each occurrence of a cross in the data structure. The result is an array function, called
here a transformation. We write:

trans Turn = { β ⇒ f(β); }
The transformation Turn is defined by case (here there is only one case corresponding to one
rule in the transformation Turn). The case β specifies a sub-domain which is replaced by f(β).
However, in opposition with case-based function definition acting on algebraic data-type, the cases
do not correspond to constructors nor exhaust the data-structure.

It is usual for physicists to work with an hexagonal lattice, because such tiling of the plane
respect more symmetries in the expression of fundamental physical laws than a square lattice. We
can transpose our transformation in such tiling, cf. the two diagrams at the right of figure 1. In
this case, the pattern β involves a 7 cells sub-domain.
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Figure 1: Application of transformation Turn on the array to the left or to the hexagonal subdivi-
sion at the right. In contrast with cellular automata, the evolution concerns a multi-cell domain.

To turn the description of the transformation Turn into a real program, one must dispose of
some new constructs in a language in order to

1. define the type of a data structure representing a 2D array (or better, some generalization
like an hexagonal tiling),

2. define a pattern β that matches an arbitrary sub-domain in an array,

3. specify a function using rules like β ⇒ f(β) that specifies the substitution of non-intersecting
occurrences of subdomains matched by β by a replacement computed as f(β).

Such devices are available in MGS, an experimental declarative language. One of the objectives of
the MGS project is to investigate the use of a rule-based approach for the simulation of dynamical
systems (this explains the choice of our examples). In [GM01c] we have show how MGS unifies
multiset and string based rewriting paradigms. In this paper, we extend further this unification
towards array-like data-structure. In section 3 we show how to describe such data-structure. The
problem of specifying a pattern β in this kind of data-structure is examined in section 4 and 5.

3 Group Indexed Data Structures

In this section, we introduce the concept of GBF with generalizes the concept of array. Such data
structure admits a geometrical interpretation which is the basis of the language of filters presented
in section 5.

An n×m array A associates a well defined value to an index (i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Thus, an array can be seen abstractly as a total function from the set of indices I = [1, n]× [1,m]
to some set of values. The data field approach extends this notion by considering the array A
as a partial function with a finite support from a larger set of indices I = Z × Z (the support of
a partial function is the subset of its domain for which the function takes a well defined value).
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This enables the representation of “arrays with holes”, “triangular arrays”, etc. The notion of
data field appears in the development of recurrence equations and goes back at least to [KMW67].
The term itself seems to appear for the first time in [YC92, CiCL91] and its investigation in a
functional and data-parallel context has been mainly made by Lisper [Lis96] (see also [GDVS98]).

Our starting point to extend further the notion of data field, is the remark that the set of
indices I is provided with some operations. The standard example of index algebra is integer
tuples with linear mappings. For instance, more than 99% of array references are affine functions
of array indices in scientific programs [GG95]. As a consequence, we have proposed to provide
the set of indices with a group structure [GMS96]. Such data structure, a partial function with a
finite support from a group to a set of values, is called a GBF for group-based data field. The
basic example is the data fields themselves, where the group of indices is the group (Zn, +). The
advantage of providing the set of indices with a group structure and several examples of GBF are
detailed in [GM01a].

GBF are introduced in the MGS language using a type declaration specifying the underlying
group of indices. The definition of the group is given using a finite presentation listing a set of
generators gi for the group and a set of equations ek = e′k:

gbf G = < g1, ..., gn; e1 = e′1, ..., ep = e′p >

We use the following typographical conventions: if G is a GBF, we write G (a finite group
presentation) for its type and G (the group of indices of G) for its domain. Beware that a group
admits various presentations, so a GBF type contains more information than just the group
structure. The set of values of a GBF G is not mentioned in the type declaration for G because
MGS is a dynamically typed language and heterogeneous values can be recorded in a GBF.

In this paper we deal only with abelian group and we use an additive notation for the group
operation. By convention a finite presentation starting with “<” and ending with “>” introduces
an abelian group, that is: the set of equations is completed implicitly with the equations specifying
the commutation of the generators gi + gj = gj + gi.

Examples of GBF types. The two examples of figure 1 correspond to the two GBF types:

gbf G2 = < north, east >
gbf H2 = < X, Y, Z; X+Z = Y >

The type H2 defines an hexagonal lattice that tiles the plane. This geometrical interpretation of
the presentation relies on the notion of Cayley graph.

4 Group of Indices and Topological Representation

A Cayley graph is a graph representation of the presentation G of a group G: each vertex in the
Cayley graph is an element of the group G and vertex x and y are linked if there is a generator u
in the presentation G such that x+u = y. See figure 2. This representation support the following
topological interpretation of a GBF:

• The group of indices G of a GBF type G is the set of positions of a discrete space.

• A GBF G associates a value to some positions. As a partial function with finite support, G
can be seen as a finite set of pairs (position, value). An element a of G is such a pair and we
use the sentences “position of a” and “value of a” to speak about the first and the second
elements of this pair.

• A generator g of the group presentation G is also an elementary translation (we use equiv-
alently the words move, shift or direction) from a position p to a position p + g.

• More generally, an element x ∈ G can be seen both as a position and as a translation
(technically, we consider the left-action of G on itself).

3



• The set of elementary translations provide a neighborhood relationships to the set of positions:
y is g-neighbor of x iff x + g = y. Two elements u and v are said neighbors, and we write
“u, v” if there is a generator g such that u is a g-neighbor of v or v is a g-neighbor of u.

• A path is a sequence of positions ui. It starts at position u0 and ends at position un. Usually
ui and ui+1 are neighbors, but we do not enforce this constraint. Paths can be translated
by a translation t simply by adding t to each ui.

• A relative path is a sequence ri of positions. A relative path is a path but it is intended to
be applied to a base position. The application of a relative path ri to a position p0 gives an
actual path pi defined as pi+1 = pi + ri.

The graphical representations of G2 and H2 in figure 1 can be enlighten from this topological
point of view. In these diagrams, a vertex of the Cayley graph is pictured as a polygonal cell
and two neighbors share an edge in this representation. For G2 , each position (i.e. cell) has 4
neighbors corresponding to the north and east directions and their inverse. In H2 , each cell
has six neighbors (following the three generators and their inverses). The equation X + Z = Y
specifies that a move following Y is the same has a move following the X direction followed by
a move following the Z direction (or equivalently, the translations corresponding to the relative
paths Y and X,Z are the same).

The kind of spaces that can be described by a finite presentation are uniform in the sense that
each position has the same number of neighbors reachable by the same set of elementary moves.
Spaces that can be described as GBFs include:

• n-ary trees as the Cayley graph of a presentation of a free group with n generators [Ser77];

• n-dimensional grids as the Cayley graph of a presentation of a free abelian group with n
generators;

• grids with circular dimension and screwed grids corresponding to abelian groups;

• archimedian partitions of the plane [Cha95].
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Figure 2: Graphical representation of the relationships between Cayley graphs and group theory.
A vertex is a group element. An edge labeled a is a generator a of the group. A word (a formal
sum of generators) is a path. Path composition corresponds to group addition. A closed path
(a cycle) is a word equal to 0 (the identity of the group operation). An equation v = w can be
rewritten v − w = e and then corresponds to a cycle in the graph. There are two kinds of cycles
in the graph: the cycles that are present in all Cayley graphs and corresponding to group laws
(intuitively: a backtracking path like b + a − a − b) and closed paths specific to the own group
equations (e.g.: a − b − a + b for abelian groups). The graph connectivity, i.e. there is always a
path going from x to y, is equivalent to say that there is always a solution v to equation x+v = y.
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5 A Generic Filter Languages for Path Patterns

In a rule β ⇒ f(β), the expression β is a pattern used to select a “part of a GBF”. We call
the part that can be matched and replaced a sub-collection. Our idea is to specify this pattern
as a path pattern that matches in some order the elements of the sub-collection. A path is a
sequence of elements and thus, a path pattern Pat is a sequence or a repetition Rep of basic
filters Bfilt. A basic filter matches one element in a GBF. The grammar of path patterns reflects
this decomposition:

Pat ::= Rep | Rep Dir Pat | Pat as id
Rep ::= Bfilt | Bfilt/exp | Bfilt Dir + | Bfilt Dir *

Bfilt ::= cte | id | | <undef>
Dir ::= , | |u1, ..., un>

where cte is a literal value, id ranges over the pattern variables, exp is a boolean expression, and
ui is a word of generators. The following explanations give a systematic interpretation for these
patterns.

literal: a literal value cte matches an element with the same value. For example, 123 matches an
element in a GBF with value 123.

variable: a pattern variable a matches exactly one element with a well defined value. The variable
a can then occur elsewhere in the rest of the rule and denotes the value of the matched
element. The position of a is accessible through the expression pos(x). The identifier of a
pattern variable can be used only once in the position of a filter. If the pattern variable a
is not used in the rest of the rule, one can spare the effort of giving a fresh name using the
anonymous filter that matches any element with a defined value.

empty element the symbol <undef> matches an element with an undefined value, that is, an
element whose position does not belong to the support of the GBF. The use of this basic
filter is subject to some restriction: it can occur only as the neighbor of a defined element.

neighbor: b dir p is a pattern that matches a path with first element matched by b and continuing
as a path matched by p with the first element p0 such that p0 is neighbor of b following the
dir direction. The specification dir of a direction is interpreted as follows:

— the comma “,” means that p0 and b must be neighbors.
— |u> means that p0 must be a u-neighbor of b;
— the direction |u1, ..., un> means that p0 must be a u0-neighbor or a u1-neighbor

or ... or a un-neighbor of b;

For example, x, y matches two connected elements (i.e., x must be a neighbor of y). The
pattern 1 |east> |north, east> 2 matches three elements. The first must have the
value 1 and the third the value 2. The second is at the east of the first and the last is at the
north or at the east of the second.

guard: p/exp matches a path matched by p if boolean expression exp evaluates to true. For
instance, x, y / y > x matches two neighbor elements x and y such that y is greater than x.

repetition: pattern b dir∗ matches a possibly empty path b dir b dir...dir b. If the basic filter
b is a variable, then its value refers the sequence of matched elements and not to one of
the individual values. The repetition b dir+ is similar but enforces a non-empty path. The
pattern x+ is an abbreviation for “x ,+”.

6 Examples

We give immediately some examples of path patterns and complete MGS programs.
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Finding its way in a labyrinth. Suppose a labyrinth represented as a GBF where the value
1 denotes the entry doors, the value 2 codes the corridors and the value 3 the exit doors. Then
finding a path between the entry and the exit doors is simply specified as:

trans FindPath = { 1, 2*, 3 ⇒ Print("there is a path") ; }

The pattern 1, 2*, 3 matches a path beginning with 1 and ending with 3 after a sequence of 2. If
one wants to record the sequence of positions corresponding to the travel from the entry to the
exit door, one can use the rule

(1, 2*, 3) as P ⇒ pos(P )

the construction as is used to give a name to a path matched by an arbitrary sub-pattern.

Rotation of the cross. The transformation Turn on the square lattice G2 in section 2 can be
specified as:

trans Turn = {
a |east> b |north - east> c |-east - north> d |east - north> e ⇒ a, e, b, c, d ;

}

To understand why the right hand side (r.h.s.) of the rule specifies a 90◦-rotation of the cross
matched in the left hand side (l.h.s.) of the rule, one must know that the comma operator in an
expression corresponds to the sequence constructor. Thus, the comma denotes ambiguously the
neighborhood relationships in the l.h.s. of a rule and building of a sequence in the r.h.s. (The two
interpretations agree because two elements in a sequence are neighbors if they are argument of a
constructor). Moreover, in a rule p ⇒ sexp, where the expression sexp computes a sequence s of
elements, the sequence s is used to replace point-wise the elements matched by p. (If the r.h.s.
computes a GBF g, then the GBF is inserted in place of the sub-collection matched by p if the
“borders” of p and g agree, else it is an error.) The specification of Turn is also straightforward
in H2 :

trans Turn = { a |X> b |Z> c |-X> d |-Y> e |-Z> f |X> g ⇒ a, g, b, c, d, e, f ; }

Eden’s growing process. We consider a simple model of growth sometimes called the Eden
model (specifically, a type B Eden model [YPQ58]). The model has been used since the 60’s
as a model for things such as tumor growth and growth of cities. In this model, a 2D space is
partitioned in empty or occupied cells (we use the value true for an occupied cell and left undefined
the unoccupied cells). We start with only one occupied cell. At each step, occupied cells with
an empty neighbor are selected, and the corresponding empty cell is made occupied. The Eden’s
aggregation process is simply described as the following MGS global transformation:

trans Eden = { x, <undef> ⇒ x, true ; }
We assume that the boolean value true is used to represent an occupied cell, other cells are
simply left undefined. The special symbol <undef> is used to match an undefined value. Then
the previous rule can be read: an occupied element x and an undefined neighbor are transformed
into two occupied elements. The transformation Eden defines a function that can then be applied
to compute the evolution of some initial state. See figure 3 for an illustration.

One of the advantages of the MGS approach, is that this transformation can apply indifferently
on grid or hexagonal lattices, or any other collection kind (this also holds for the transformation
FindPath).
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Figure 3: Eden’s model on a grid and on an hexagonal mesh (initial state, and states after the
3 and the 7 time steps). Exactly the same transformation is used for both cases. These shapes
correspond to a Cayley graph of G2 and H2 with the following conventions: a vertex is represented
as a face and two neighbors in the Cayley graphs share an edge in this representation. An empty
cell has an undefined value. Only a part of the infinite domain is figured.

7 A Generic Pattern-Matching Algorithm

We present in this section a simplified pattern-matching algorithm for GBF path patterns. This
algorithm is inspired from the approach taken by J. A. Brzozowski for the computation of the
derivatives of regular expressions [Brz64]. For the sake of the simplicity, we restrict the grammar
of path patterns to the following abstract syntax:

Pattern ::= Atom | Atom Dir Pattern

Atom ::= a/exp | id Dir ∗
Dir ::= |u1, ..., un>

Note that a literal pattern cte can be rewritten a / a = cte where a is a fresh variable. A variable is
systematically guarded but one can use the pattern a/true if there is no check to do. The unnamed
filter “ ” can be coded as a/true where a is a fresh variable. The neighborhood relation , can be
recovered as the direction |g1, ..., gn, -g1, ..., -gn> where the gi are the generators of the
GBF type. The non-empty repetition + can be recovered using *, e.g. p dir + can be rewritten
as p dir p dir * using fresh variables where needed.

Notations. We use brackets to enumerate the elements in a set and for set comprehension. The
symbol ∅ is for the empty set. The expression S − x denotes the set S without the element x.
List(X) represents the set of lists of elements of X; [ ] is the empty list; `@`′ is the concatenation
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of lists ` and `′. The distribution S ⊗ e of an expression e over elements of a set S is defined as
{l@[e], l ∈ S}. An environment is a partial function defined for a set of identifier i1, ..., in with
value v1, ..., vn, and elsewhere undefined; E ranges over environments; the augmentation of an
environment E with identifier in+1 and value vn+1 is a new environment E′ = E + [in+1 → vn+1],
such that E′(in+1) = v and ∀k, k 6= n + 1, E′(ik) = E(ik).

Derivatives of a path pattern. A pattern-matching expression is an element of Pat. The
derivative of a pattern-matching expression P with respect to a position p, given a set C of pairs
(position, value) (i.e., a GBF) and an environment E is written

∂ P

∂ p
(C, E)

and represents the set of paths in a GBF C starting at position p and matched by the path
pattern P . The environment E is an additional argument used to record the variable bindings
used in the evaluation of guards in a pattern. The result of ∂ P/∂ p(C,E) is a set of lists ` of
positions. Let ε be the empty environment, then all the occurrences of a path pattern P in a GBF
C are computed by: ⋃

p∈{q|∃v, (q,v)∈C}

∂ P

∂ p
(C, ε)

In the definition of the function ∂ ·/∂ ·(·, ·) that follows, three additional functions are required:
val(C, p) is a function that requires a GBF C and a position p and returns the value of C at position
p; eval(E, C, expr) is a predicate that holds when expression expr evaluates to the boolean true
value in environment E with respect to C; neighbor(C, dir, p) is a function that computes, given
a list of directions and a GBF C, all (defined) neighbors of a position p:

neighbor(C, |u1, ..., un>, p) =
{
p + ui | 1 ≤ i ≤ n and ∃v s.t. (p + ui, v) ∈ C

}

The definition of the derivatives is given by induction on the path pattern P and the GBF C:

∂ id/expr
∂ p

(C, E) = if eval(E + [id → p], C, expr) then
{
[p]

}
else ∅

∂ id dir∗
∂ p

(C, E) =
{
[ ]

} ∪ ∂ id dir id dir∗
∂ p

(C, E)

∂ id/expr dir P
∂ p

(C, E) = letE′ = E + [id → p] and C ′ = C − (p, val(C, p))

in if eval(E′, C, expr)

then
⋃

p′∈ neighbor(C, dir, p)

((∂ P

∂ p′
(C ′, E′)

)
⊗ p

)

else ∅

∂ id dir ∗ dir′ P

∂ p
(C, E) =

{
[ ]

} ∪ ∂ id dir id dir ∗ dir′ P

∂ p
(C, E)

The rule for the repetition a d* simply specifies that the corresponding paths is a 0 length path
or begins with an element matched by a and then follows direction d to match a path satisfying
the same pattern a d*.
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8 Conclusions

The array data structure is not smoothly handled in functional languages because they cannot be
described convincingly as instances of an algebraic data type. Therefore, there are no means to
specify by case a function on an array. This annoying situation is summarized by Wadge: “We
spent a great deal of efforts trying to find a simple algebra of arrays (...) with little success” [WA85].

In this work, we have presented a framework, the group-based data fields, that allows a uniform
description on trees and arrays in the same framework [GM01a]. The GBF approach put the
emphasis on the logical neighborhood of the data structure elements [GM02]. This topological
point of view allows the definition of path patterns used to match a sub-collection in an array or a
tree. A first algorithm to find all the paths matched by a pattern is given, inspired by the notion
of derivative developed for the recognition of regular expression on sequences. This algorithm has
been extended to handle a more complete pattern language and is used in the current version of
the MGS interpreter (see the web home page http://www.lami.univ-evry/mgs). This interpreter
handles the examples proposed in section 6. Several other examples of the programming style
allowed by MGS rules on GBF are developed in [GGMP02] in the context of biological simulations.

Pattern matching in arrays has been considered in the functional language community as back
as [Bir77, Bak78] and more recently in [Jeu92] but the problem is then restricted to determine an
occurrence of a rectangular sub-array. For example, if P is a p × q rectangular two-dimensional
array (a pattern of literals), and G is a n ×m array, the problem handled is to find a pair (i, j)
such that for all k and l such that 1 ≤ k ≤ p and 1 ≤ l ≤ q, we have G[i−p+k, j− q + l] = P [k, l].

Compared to these previous works, our algorithm is more general in two directions: it handles
group-indexed data structures and it allows a more expressive pattern languages. Obviously, there
is a large room for optimizations. For instance, we do not compute all paths before applying a rule
but we stop the search as soon as one matching path has been found. By specifying an order for
the unions appearing in the definition of the derivatives, we can parameterize a strategy for the
enumeration of paths. We are currently developing a pattern compiler for MGS based on pattern
transformations.
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