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Abstract. In its initial presentation, the P system formalism describes the topology of the mem-
branes as a set of nested regions. In this paper, we present an algebraic structure developped in
combinatorial topology that can be used to describe finer adjacency relationships between mem-
branes. Using an appropriate abstract setting, this technical device enables us to reformulate also the
computation within a membrane and proposes a unified view on several computational mechanisms
initially inspired by biological processes. These theoretical tools are instantiated inMGS, an exper-
imental programming language handling various types of membrane structures in a homogeneous
and uniform syntax.
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1. Introduction and Motivations

The original motivation of this work lies in the modeling and the computer simulation of biologicaldy-
namical systems(DS) with a special focus onDS with a dynamical structure. StandardDS exhibit a static
structure, that is, the exact phase space of theDS can be known statically before the simulation. This is
usually not the case for theDS found in biology [5, 6, 7] like the models conceived for developmental
processes (e.g. embryogenesis, plant growing), integrative cell models, protein transport and compart-
ment simulation, etc. In this kind of situation, the dynamic of the system is often specified as several
local competing transformations occurring in an organized set of simpler entities. The organization of
this set is subject to possible drastic changes in the course of time.
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Considering the biological roots of this problem, the dynamical structure and the specification of the
dynamics, it is not surprising to consider the formalism of P system, and more generally the approach of
membrane computing, as a starting point for developping a dedicated programming language. P systems
are new distributed parallel computing models based on the notion of a membrane structure [20, 21].
A membrane structure is a nest of cells represented, e.g., by a Venn diagram without intersection and
with a unique superset: the skin. Objects are placed in the regions defined by the membranes and evolve
following various transformations subject to some conditions: an object can evolve into another object,
can pass trough a membrane or dissolve its enclosing membrane, etc. The computation is finished when
no object can further evolve.

The need of more accurate membrane structures. In its initial presentation, the P system formalism
describes the topology of the membranes asnesting. The nested structures of the membranes can be
specified in several ways: as a tree, a Venn diagram, a string of matching parentheses, see figure 1. With
respect to the modeling and simulation of concrete biological processes, this description is too rough and
presents three main shortcommings.

• Only the nesting of membranes is taken into account, not their adjacency (see figure 2). However,
the adjacency relationships of cells are of prime importance in the organization of biological tissues
(e.g. for the diffusion of morphogenetic gradient).

• There is an artificial distinction between a membrane and its enclosed region: only the enclosed
region is decorated with evolving objects. But in real biological compartments (like cells, vesicles,
cargo, organs, etc.) the boundary that defines the compartment is itself the place of active and
specific processes (reaction between anchored proteins, hyperstructure [18], ionic chanels, etc.)
that need the same computational representation as the region.

• Biological compartmentalization localizes processes at regions of various dimensions (active sites
are points and0-dimensionnal, gene’s promoters are localized on one-dimensional molecules, cell
membranes are two-dimensional and lumens are three-dimensional regions).

The point we want to emphasize here is that the topological organization of the membrane structure is
not fully taken into account in the original formulation of the P systems. We use the term “topological
organization” to underline the topological nature of the characteristics we want to consider. Obviously,
such topological organization can be supported more or less directly in a genuine P system bycoding.
Figure 3 sketches the coding of the adjacency relationships by specific evolution rules (left diagram), and
the coding of the membrane labeling (right diagram).

However, taking explicitly into account topological features in the computational model is interesting
per seand not only to ease the development of simulations of real biological processes. This has already
been acknowledged through the development of some P system generalizations, for example toward
graph structured membranes [22]. More generally, if we pinpoint “membrane computing models” as
computational devices able to:

1. store and move objects between regions (compartments, loci, positions, . . . , specified by the mem-
branes),

2. transform locally the objects stored in a region,
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Figure 1. Some representation of the nesting structure of the membranes of a P system: as a Ven diagram, as a
tree of regions and as a string of matching parentheses. Regions are numbered from1 to 6.
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Figure 2. The two different topological situations give the same nesting structure. However, in the diagram to the
left, entities in region2 can pass directly to region3, which is not the case in the diagram to the right.
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Figure 3. The topological configuration(a) can be coded by the flat membrane structure(a′). Specific transport
rules between adjacent compartments are coded by two elementary moves routed between the elementary regions
and the top region0, and then to the final destination. Membranes holding objects(b) (objects are given using
italic labels) can be simulated using additional membranes(b′).
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3. create, delete and rearrange locally the organization of the regions,

then it is mandatory to study the organization of the regions, their representations and their handling.
In section 2 we introduce the notion of achain complexthat can be used for this purpose. A chain
complex is a standard construction in the field of algebraic topology that formalizes a faithfull and com-
plete representation of the topological organization of a set of membranes. In addition, the algebraic
and combinatorial definition of the involved concepts makes them particularly suited for a computer
implementation.

Uniform description of the computational mechanisms. The above presentation shows that two ba-
sic computation mechanisms are at work in a membrane computing model: one to process the objects in
a region and the second to compute the regions.This is a two stages model. From this point of view, P
systems exhibit the following two characteristics.

• The type of objects and the evolution mechanism are supposed to be the same for all the regions
(e.g.: the evolution rules are based on multiset rewriting, or string rewriting, or splicing systems,
but not on both).

• A strict distinction is maintained between the global membrane structure (a tree) and the local
computational entities that take places into a region (multisets, strings, etc.).

These characteristics put a burden on the description of theDS, especially when the structure of the
system must intrinsically be computed together with its state. A biological motivation to relax these
constraints can be illustrated by the simulation of a string of DNA with its coat of activator and inhibitor
proteins. The DNA string in the nucleus can be modeled as the object of a splicing system in an enclosing
membrane, but it must also be conceived as a region itself endowed with some string rewriting process to
take into account the activities and sequential organization of the coat. This example shows that at some
level, an entity must be processed as an object in a multiset, while at the same time, at another level, it
must be processed as a string. To make this possible, one has to reify the two stages model into a single
framework describing with the same device both the computation on objects (of various kind) and the
computation on regions.

This unification is not out of reach, because at a sufficiently abstract level, the regions nested in a
regionR can be conceived as first-citizen objects belonging toR, like the ordinary objects stored in the
region. For example, the region0 in schema(a′) of figure 3, can be seen as a multiset of multisets, and
then, subject to the same computational mechanism (multiset rewriting) that applies to the atomic objects
in an elementary membrane.

It appears that the mathematical device we will introduce to represent adequately arbitrary topologi-
cal organization of membranes, is also able to support such an uniform specification.

The rest of the paper is organized as follows. Section 2 gives some informations about the notion
of chain complexes and defines the notion of topological collection. Based on these notions, theMGS
language is described informally in section 3. The topological organization underlying the Gamma
programming language and the chemical abstract machine (CHAM), P systems, L systems and cellular
automata are formally defined in section 4. TheMGS presentation is then completed by some examples
covering the previous formalisms in section 5. All examples are processed using the current version of
theMGS interpreter. The last section finishes by the review of some directions opened by this research.
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2. Cell Complex, Chain Complex and Topological Collections

2.1. Cell Complex

Instead of using a partial order to represent the hierarchichal structure of the membrane’s containments,
our idea is to use a partial order< to represent the adjacency relationships between the various parts
of the membranes. Membranes are supposed to be of any dimension. The mathematical tools we will
use are the basic definitions at the start of homology theory. A good introduction is [13] and a standard
reference text is [17].

It is convenient to describe the complex shape formed by the membranes together as build from basic
blocs calledk-cells. A k-cell is an homeomorphic image of an open ball inRk. However, the precise
nature of the cellc is not stressed in a purely combinatorial approach until no link is made with point set
topology notion. Here, we need only to grad the cells by their dimension and to focus on the connection
of cells. A0-cell is also called apoint or avertex, a1-cell is anedgeand a2-cell is aface. A collection
of cells that are fitted together in an appropriate way forms larger structures calledcomplexes. Examples
of complexes are given in Fig. 4. If an edgee is a side of a facef , we say thate andf areincidentand
we writee < f . The incidence relation is a partial order between cells. LetP be the poset of cells and
x, y ∈ P such thatx < y and there is noz such thatx < z andz < y. Then we writex ≺ y and we say
thatx is apredecessorof y or thaty is asuccessorof x.

Definition 2.1. (Abstract Complex)
An abstract complexK is a poset with a functiondim : K → Z such thate ≺ e′ implies dim e′ =
1 + dim e. The setKp = {e | e ∈ K, dim e = p} are thep-cells ofK. ThedimensiondimS of a subset
S ⊂ K is the biggest of the dimensions of the elements ofS if it exists.

Given a poset and its partial order<, we define the derived≤ and¹ relationships. We defines now
some operations on subsets of complexes. For a subsetS ⊆ P , the smallest poset containingS is its
closureS. There is two ways for a cellx to be connected with a celly: because they share a common
boundary or because they are both boundaries of a “ bigger ” cell. Finally, considering an infinite complex
may be useful, for instance to represent an unbounded grid. However, each element (vertex or edge) in
this grid is connected to only a finite set of other elements. Then, we say that the grid is locally finite.

Definition 2.2. (Subcomplex, Star and Shape, Connections and Local Finiteness)
Let (K, <) be an abstract complex andS ⊆ K be a subset ofK. Then the setS = {y| y ∈ K, y ≤ x ∈ S}
with the relation< is the subcomplex generated byS. It is called theclosureof S. Thestar Stx of a
cell x ∈ K is Stx = {y | x ≤ y ∈ K}. We define the star of a subsetS ⊆ K to beStS =

⋃
x∈S Stx

and theclosed staris StS = StS . An elementx is abovea setS ⊂ K iff x ∈ S or if the elements of
the set{y | y ≺ x} are all aboveS. TheshapeShape(S) of a subsetS ⊂ K is the set of the elements
aboveS. These notions are illustrated in figure 5.

Two cellsx andy of an abstract complexK areconnected, and we writex , y, iff it exists a cellz
such that bothx andy belongs toSt z. In other words,x connected toy requires thatx ∩ y 6= ∅ or that
Stx ∩ St y 6= ∅. Given a setS ⊆ K, we define(,\S) as the restriction of, onS: (,\S) = ,∩(S × S).
Let (,\S)∗ be the transitive closure of this relation. A subsetS of K is connectedif (,\S)∗ has only one
equivalence class.

A complexK is closure-finiteif for all cell x ∈ K, x is a finite set. It isstar-finiteif Stx is a finite
set for allx in K. A complex which is both closure-finite and star-finite, is said to belocally finite.
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Figure 4. Top diagrams.The schema in the right hand side gives the Hasse diagram of the incidence relation of
the complex in the left hand side. Faces are denoted by capital letters A, B and C. Edges are denoted by small
letters and vertices by numbers. For instance, the face B is bounded by two edges i and j which are themselves
bounded by vertices2 and3. This example shows also that an abstract complex is generally not alattice: there
is for instance no least upper bound for edges e and f: both faces A and C are incomparable successors of e and
f. Bottom diagrams.The moebius strip on the left gives the same poset as the cylinder on the right (they are both
composed of 3 faces, 3 edges and 6 vertices).
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Figure 5. Connection and shape of a set.Left figure.We figure symbolically a posetK by a triangle. The coloured
triangle below elementa is the subcomplexa generated bya. It is also called theconebelowa. An elementx
is in the cone belowy iff x ≤ y. The set{a, b, c, d, e} is connected because elements are connected two by two.
Fo example,a andb are connected becausea ≤ b, idem forc andb. The elementsc ande are connected because
d ≤ c andd ≤ e. Let A = a, C = c andE = e be the closure of{a}, {c} and{e} respectively. Then the set
A ∪ C ∪ E ∪ {b} is also connected because a closure of a connected set is connected.Right figure. The setS
consists of three internal vertices of a line graph. We have figuredSt(S) andShape(S).
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2.2. Chain Complex

Figure 4 shows that the poset structure alone is not enough to represent the connections of cells. A
cell is not completely described by the simple set of its predecessors. One must represent also some
organisation of these predecessors: for example an orientation, or a count if some subcells are identified,
etc. This organisation of the set of the predecessors is represented by the notion ofchain: a chain is a
“ structured set ” of cells. This structure is specified through an abelian group structure and a boundary
operator. The abelian group structure is used to describe the gluing of two cells using the group operation
(written additively). The boundary operator gives the chain that describes the boundary of a cell, and by
extension, the boundary of any chain.

Using an abelian group operation to represent the “ gluing ”c of two cellsx in positiong andy
in positiong′ means that we can writec = g + g′ or c = g′ + g: the order of the gluing does not
matter. The neutral element0 corresponds to the empty set. And if we add a cellx to a partc, one
must be able to “ detach ” latter the cellx from c. This justifies the use of a group structure for the
set of chains. Furthermore, one of the main objectives of the theory is to compute the boundary of an
arbitrary part of a space, from the boudary defined for an “ isolated ” cell (to compute the neighbors of
an arbitrary membrane). Then, it is natural to require the boundary operator∂ to be an homomorphism:
∂(g + g′) = ∂(g) + ∂(g′). These considerations motivate the following definitions.

Definition 2.3. (Chain Group with Coefficients and Chain Complex)
LetK be an abstract complex, and letG denotes an arbitrary abelian group written additively. The neutral
element ofG is written0. The setCp(K, G) of p-chain on the complexK with coefficients inG is the set
of total functionscp from the setKp to G that are zero almost everywhere, that is,cp(x) = 0 for all but
a finite number ofp-cells ofK. The setCp(K, G) is an abelian group for the addition of functions.The
chain group with coefficients inG is defined by:Chains(K, G) = C0(K, G) ⊕ C1(K, G) ⊕ . . . where
⊕ is the direct sum of abelian groups.

A chain complexC(K, G, ∂) is a sequence(Cp(K, G), ∂p)p∈Z of the abelian groupsCp and connect-
ing homomorphism∂p : Cp → Cp−1, calledboundary maps.

An elementc of Cp(K, G) is called ap-chain. Cp(K, G) represents all the way to gluep-cells
together. Sometimes we use a subscriptp to indicate that a chainc is ap-chain:cp. In the opposite, for
convenience in notation, we shall sometimes delete the dimensional subscriptp on the boundary operator
∂p, and rely on the context to make clear which of these operators is intended. We also abbreviate
Cp(K, G) by Cp, C(K, G, ∂) by C and use uniformly0 to denote the neutral element of any abelian
group.

An abelian groupCp is trivial when its onlyp-chain is0 (the element zero of the group of functions).
It this case we writeCp = 0. A finite dimensionalchain complexC is such that theCp are trivial
except for at most a finite number ofp. If Cp is the trivial group forp < 0, we say thatC is a non-
negativechain complex. Thecarrier of cp is the set ofp-cells with a nonzero coefficient in the chain:
|cp| = {x ∈ Kp | cp(x) 6= 0}.

It is customary to use a linear additive notation for a chaincp: cp =
∑

x∈|cp| cp(x).x . Indeed,
Cp(K, G) can alternatively be defined as the formal sums with variablex ∈ Kp and coefficients inG.
Let cp = α1x1 + · · · + αnxn be a chain ofCp(K, G). Thenαi ∈ G and we suppose in addition that
αi 6= 0 for all i and thati 6= j impliesxi 6= xj .
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Example of theC(K,Z/2, ∂) Chain Complex. Z/2 denotes the module of relative integers modulo
2. UsingZ/2 as the chain coefficients enables the representation of the presence,cp(x) = 1, or the
absence,cp(x) = 0, of ap-cell x in a chaincp. A chain ofC(K,Z/2) is then simply the characteristic
function of a subset ofK. An example is given in figure 6. A chainc = e+f corresponds to the function
c defined byc(e) = c(f) = 1 andc(x) = 0 for x 6= e andx 6= f . This chain can also be written
c = 1.e + 1.f + 0.g + 0.h + . . . . It is customary not to write thep-cells with a zero coefficient (in
accordance with the additive notation). Thus we havec = 1.e + 1.f or more ambiguouslyc = e + f .
Suppose that the chainc ∈ Cp(K,Z/2) is composed of twok-cellss ands′; this is denoted byc = s+s′.
Suppose thans ands′ share only one celld ∈ Kp−1, see Fig. 6. Thend is not in the border ofs because
s ands′ are glued alongd: d is an interior cell. Butd is in the boundary ofs and in the boundary ofs′.
Let ∂ps = d+

∑
x′j and∂ps

′ = d+
∑

x′′k. Then we must have:d+
∑

x′j + d+
∑

x′′k =
∑

x′j +
∑

x′′k
which isautomaticallyachieved becaused + d = 2d = 0.

2.3. Arbitrary Labeling the Cells of a Complex

Suppose we want to labelsomeof the cells of a complex with values taken in an arbitrary setVal . Such
labeling can be represented by apartial function` fromK toVal . This partial function can be extended
into a total function given the value⊥,⊥ 6∈Val , to the cells that have no image by`. Then, the function
` can be seen as a chainif we give an abelian group structure toVal ∪ {⊥}.

A natural choice is to useAbel(Val) the free abelian group generated by the elements ofVal . We rely
on the injectionx 7→ x to represent an element ofVal by an element ofAbel(Val) and⊥ is represented
by 0. This group has a richer structure thanVal and enables the association of a cell to a “ generalized
multiset ” ofVal elements. In a generalized multiset, an element can have a negative multiplicity. Alter-
natively,Abel(Val) can be defined as the set of total functions fromVal toZ.

Remark that ifVal has already a group structure+, the operation inAbel(Val) does not coincide
with the operation+Abel in Abel(Val). Take for exampleVal = Z, thenx +Abel (−x) 6= 0Abel. Indeed,
bothx and(−x) are generators ofAbel(Z) and they are distinct.

Boundary and Coboundary as Transport Operation. In an arbitrary labeling of a complex, we can
interpret the∂ operations astransportoperations, see figure 8 and the references [24, 25, 19].

Suppose that we want to valuate the cells of the chains by an element ofVal . We use the previous
encoding based onAbel(Val) for the chain coefficients. We define the boundary of a cell x by:

∂x =
∑
y≺x

y and extend∂ linearly: ∂(
∑

αxx) =
∑

αx∂x

Consider a cellx that has several successors in the chain. Then the effect of∂ as a transport operation
is to send tox the coefficients of theses successors. The result is conveniently gathered as a formal sum
in Abel(Val) and no coefficients are lost. We can then further interpret “ the collision at cellx of the
transported values ” using an homomorphism to resolve the “ collisions ” and to compute the final value
of x.

If operators∂p transport values from a cell to its predecessor, it exists a family of dual operator that
moves values from a cell to its successor. Such operators are the dual (in a precise sense, see [17]) of the
boundary maps∂p.
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of the functioǹ by writing next to each cell the value of the function on that cell. This function has for codomain
the setVal = {α, β, γ, δ, ρ, τ, σ, κ, ω} which a priori do not have an abelian group structure. The function` can
be written as a chain ofC(K, Abel(Val)): ` = δ.1 + α.2 + β.3 + γ.4 + ρ.a + κ.b + σ.c + τ.d + ω.s. However,
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Figure 8. Depiction of the boundary and coboundary operation on chains. We consider the abstract complex
already used in figure 7. The effect of taking the boundary operator∂ on`2 = ω.s+ω′.s′ is pictured by the diagram
in the left. The figure in the right gives the effect of taking the coboundaryδ of the1-chain`1 = ρ.a+κ.b+σ.c+τ.d.
The coboundary operatorsδp are the dual homomorphisms of the operators∂p (see [17]). In these two figures, the
curved arrow indicate values (in bold) being transferred from ap-cell to the preceding(p − 1)-cells (for∂) and
from a(p− 1)-cell to the succeedingp-cells (forδ).



1010 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

To be more concrete, suppose that the cells in figure 8 (left) are valuated by reals, that is, we consider
chains inC(K,Abel(R)). For instance, takeω = 1.6 andω′ = 3.1 in chain`2. Then

∂(1.6s + 3.1s′) = 1.6a + 1.6b + 1.6c + (1.6 +Abel 3.1)d + 3.1f + 3.1e

We say that the value1.6 coming froms and the value3.1 coming froms′, collide at celld. We want
to combine colliding values into a real to get again a real valued chain. Suppose that the combination
function is the sum of reals. Then we would use the homomorphismh from Abel(R) to (R, +) that
interprets the+Abel as the usual+R. The homomorphismh between the groups of values, is easily
extended into an homomorphism on chains, by definingh(αx) = h(α)x for all cell x and then using
linearity. Instead of using a functionh to combine the colliding values, we can work directly with
chains inC(K, (R,+)). In this way, the combining function is directly the group operation of the chain
coefficients. However, usingAbel(R) and then ana posteriorihomomorphismh is more general. For
instance, suppose that we work with coefficients in(R,+) but we want to combine the colliding values
by multiplication. This is not easily expressed. But usingAbel(R) at the first place, we have just to
change the functionh. The combination function must not depend on the order of the combinations and
then the chain(α+β)x must be equal to the chain(β +α)x. Intuitively, one can see the interest of using
an abelian group for the coefficients.

2.4. Topological Collection

A “ snapshot ” of a P system will be described by a topological collection. A topological collection
associates a value to some cells of a complex. In addition, we must be able to speak of the carrier of
the collection (the cells that have a value), of the neighbors of an element, of subcollections and of the
boundary of a subcollection. All these notions can be developed on top of the notion of chain complex
presented above.

Definition 2.4. (Simple Topological Collection)
A simple topological collection typeis a quadrupleT = (K, B, ∂,Val) such thatK is a finite-dimensional,
non-negative, locally-finite abstract complex andC(K, B, ∂) is a chain complex. Asimple topologi-
cal collectionis a pair(T , c) whereT is a topological collection type(K, B, ∂,Val) andc is a chain:
c ∈ Chains(K, B ¯Val). The productB ¯Val denotes the cartesian productB ×Abel(Val).

Often we omit to mention the typeT of the topological collection when it is clear from the context;
we says directly that a chainc is a simple topological collection (or more simply is a collection) and we
write c ∈ T if T is the type ofc. The chain complexC(K, B, ∂) is called theformof the type.

If c is a collection, andx ∈ Kp, thenc(x) = (g, u) with g ∈ B andu ∈ Abel(Val) and we say
that the value ofc at x is u. The functionscb andcv are the first and second projection ofc. That is,
cb(x) = g andcv(x) = u for c(x) = (g, u). The functionscb andcv associate an element of a group
to a cell and then are chains:cb ∈ Chains(K, B) andcv ∈ Chains(K, Abel(Val)). For all collectionc
we have|cv| ⊂ |c| and|cb| ⊂ |c|. The setResidu(c) = {x ∈ K | cb(x) = 0B andcv(x) 6= 0Abel(Val)}
is called theresidueof the collection. A collectionc is residue-freeif Residu(c) = ∅. A topological
collectionc is flat if cv(x) = 0 or cv(x) ∈Val for all x ∈ K.
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2.5. Simple Transformation of a Topological Collection

Now, we want to state precisely the notion oflocal computation. A local computation would be done by
some kind of rewriting mechanism that substitutes a subcollectionc′ in c by another one. If onlyc′v is
changed, then there is no change in the structure of the P system. Deleting or creating new membranes
corresponds to a change inc′b (and accordingly inc′v).

The restrictionc\S of a topological collectionc by a setS is the chainc\S defined by(c\S)(x) =
c(x) if x ∈ S and by(c\S)(x) = 0 elsewhere. A restriction is too general to represent a subcollection:
a subcollection is a connected part of a collection. It must be represented by a chain too.

Definition 2.5. (Split, Patch and Subcollection)
Let c be a chain andc′ andc′′ be two chains such that|c′| ∩ |c′′| = ∅ andc = c′ + c′′. Then we say that
c′ andc′′ are asplit of the chainc and we writec D c′, c D c′′ andc′′ = {cc

′ or c′ = {cc
′′. A chainc′

is apatchof the chainc ∈ Chains(K, G), if c D c′ and if Shape |c′| is a connected set ofK. Let c be a
collection; a collectionc′ is a subcollection ofc if c′ = c\|c′| and if c′b is a patch ofcb.

Now, we can define the basic transformation step which is used in theMGS language. The basic
intuition hidden behind this definition is sketched in figure 9. Note that we do not describe a device
to select a subcollection into a collection, neither we give conditions on the gluing of the substituted
subcollection. We just specify that untouched parts of the collection must remain unchanged, both from
the value point of view (condition 1) and the shape point of view (condition 2).

Definition 2.6. (Simple Transformation)
Let c andd be collections with respective subcollectionsc′ andd′. Thend is asimple transformationof
c′ by d′ if the two following conditions hold:

1. {cc
′ = {dd

′

2. Shape |{cc
′| = Shape |{dd

′|
If a functionf such thatd′ = f(c\|St c′|) exists, then the substitution is saidcomputed byf .

Note that there is several possible variations on the notion of “ computed byf ” to accommodate the
possible variation on the neighborhood notion.

3. MGS: a Programming Language based on Topological Collections and
their Transformations

The experimental programming languageMGS1 instantiates the idea of topological collections and their
transformations into the framework of a simple dynamically typed functional language. Collections are
just new kinds of values and transformations are functions acting on collections and defined by a specific
syntax using rules.MGS is an applicative programming language: operators acting on values combine
values to give new values, they do not act by side-effect. In our context, dynamically typed means that
there is no static type checking and that type errors are detected at run-time during evaluation. Although
1MGS is the acronym of“ (encore) unModèleGéneral deSimulation (de syst̀eme dynamique) ”(yet another General Model for
the Simulation of dynamical systems).
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(c)

(b)

Shape({cc
′)

dim n

(a)

Shape(c′)

Figure 9. Parts of a complex involved in a substitution. We have pictured symbolically the abstract complexK
as a Hasse diagram (cf. Fig. 5). The carrier of the chainc consists in all then-cells pictured as circle (diagram
(a)). The three black circles in the middle specify the carrier of the subcollectionc′. Consequently, the four empty
circles are the carrier ofc′′ = {cc

′.
The shapeShape(c′) of c′ is sketched as the gray region in diagram (a): the subcomplex|c′| spanned byc′ is in
dark gray while thep-cells above this subcomplex are in light gray. The shapeShape(c′′) is sketched in gray in
diagram (b). This part of the complex must remain unchanged across a simple transformation.
The diagram (c) has two gray regions, one near the top and one near the bottom (each is composed of several parts).
The region near the bottom, corresponds to the intersectionShape(c′) ∩ Shape(c′′). Cells in this region have a
dimension less thann. The definition of a simple transformation says that this region must remain unchanged in
the final result (because it belongs to the shape ofc′′ and then must not be touched by the transformation).
The region near the top corresponds to thep-cellsx, p > n, such thatx has an intersection both in|c′| and|c′′|.
The definition of a simple transformation does not say anything about such cells.
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dynamically typed, the set of values has a rich type structure used in the definition of pattern-matching,
rules and transformations.

The approach ofMGS, focusing on the notion of topological collection, emphasizes the spatial aspect
of a data structure: a collection is seen as a set ofplacesor positionsorganized by atopologydefining the
neighborhoodof each element in the collection. This approach is part of a long term research effort [12]
developed for instance in [8] where the focus is on the substructure and in [9] where a general tool for
uniform neighborhood definition is developed.

We will see in section 4 that several usual data structures have a natural topology. In the rest of this
section, we sketch some of the language constructs without relying on a particular collection type. Thus,
by collection we understand a topological collection, as described formally in the previous section. In
section 5, some examples illustrate the expressive power of the approach and give a more concrete flavor
of the language.

3.1. Computing with Topological Collections

The computation of a new collection is done by a structural combination of the results of more elemen-
tary local computations involving only a small and static subset of the initial collection. “Small and static
subset” makes explicit that only a fixed subset of the initial elements are used to compute a new element
value. “Structural combination”, means that the elementary results are combined into a new collec-
tion, irrespectively of their precise value. The global organization of the new collection results of the
combination of these local changes. These characteristics lead to the following abstract computational
mechanism:

1. a subcollectionA is selected in a collectionC;

2. a new subcollectionB is computed fromA and a local neighborhood;

3. the collectionB is substituted forA in C.

This process is pictured in Fig. 10 and is formalized by the notion ofsimple transformationdeveloped in
the previous section.

A transformation, without the “ simple ” qualifier, consists in several non interacting simple transfor-
mations applied in parallel to a collection. Back to our application area (Cf. section 1) a transformation
corresponds to one evolution step of a spatially distributedDS. Then, the iteration of transformations
builds the entireDS trajectory, Cf. Fig. 11.

BAC T(C)y = f(x’)x
T

Figure 10. A simple transformation of a collection. CollectionC is of some kind (set, sequence, array, cyclic grid,
tree, term, etc). A ruleT specifies that a subcollectionA of C has to be substituted by a collectionB computed
from A. The right hand side of the rule is computed from the subcollection matched by the left hand sidex and its
possible neighborsx′ in the collectionC.
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T T(T(C))T(C)C

...

Figure 11. Transformation and iteration of a transformation. A transformationT is a set of simple transforma-
tions applied “ in parallel ” to make one evolution step. The simple transformations do not interact together. A
transformation is then iterated to build the successive states of the system.

In addition to the specification of the underlying organization, the definition of a simple transforma-
tion requires the specification of the subcollectionA and the replacementB. This specification defines a
rule and must adapt several constraints and variations.

3.2. Patterns, Rules and Transformations

A transformationT is a set of rules:

trans T = { ... rule; ... }
When there is only one rule in the transformation, the enclosing braces can be dropped. A rule is a basic
transformation taking the following form:

pattern => expression

wherepatternin the left hand side (lhs) of the rule matches a subcollectionA of the collectionC on which
the transformation is applied. The subcollectionA is substituted inC by the collectionB computed by
theexpressionin the right hand side (rhs) of the rule. Each collection kind comes with its own specific
behavior for the pasting ofB into {CA.

We present the pattern expressions that have a generic meaning, that is, they can be interpreted against
any collection kind. The grammar of such pattern expressions is the following

Pat ::= x | {...} | p, p′ | p + | p ∗ | p : P | p/exp | p as x | (p)

wherep, p′ are patterns,x ranges over the pattern variables,P is a predicate andexp is an expression
with a boolean value. The explanations below give an informal semantics for these patterns.

variable: a pattern variablex matches exactly one element in the collection (i.e. ak-cell). The namex
can then occurs elsewhere in the rule.

state pattern: {...} are used to match one element (ak-cell) whose value is a record. The content of the
brackets can be used to match records with or without a specific field (eventually constrained to a
given field type or field value). For instance,

{a, b : string, c = 3, d̃}
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is a pattern that matches a record with fieldsa, b andc but no fieldd. In addition, the type of field
b must be “string” and the value of the fieldc must be the integer3.

neighbor: p, p′ is a pattern that matches two connected collectionsp andp′. For example,x, y matches
two connected elements. The connection relationship is introduced in section 2 and depends of the
collection kind.

repetition: patternp+ (resp.p∗) matches a non empty aggregate of connected elements (resp. a possibly
empty aggregate).

binding: a bindingp as x gives the namex to the collection matched byp. This name can be used in
the rest of the rule. For example,p + as x identifies under the namex the subcollection matched
by p+.

guard: p/exp matches the collections matched byp verifying the conditionexp. For instance,y / y > 3
matches a cell valued by an integer greater than3. Patternp : P abbreviates(p as x)/P (x) where
x is a fresh variable.

Here is a contrived example. Pattern

(x : int/x < 3) + as S / 10 < Fold((\a, b. a + b), 0, S)

selects a connected collectionS of integers less than 3, such that the sum of the elements inS is greater
than 10. (The generic operatorFold reduces a collection using a binary function, which is supposed to be
associative and commutative, and an initial value. The notation\a, b. exp denotes the lambda abstraction
of the variablea and b over the expressionexp.) If this pattern is used against a linear sequence,S
denotes a subsequence. If this pattern is used against a set, thenS denotes a subset. Etc. See section 4.

3.3. Managing the Applications of a Transformation

A transformation is a set of rules. When a transformation is applied to a collection, the strategy is to
apply as many rules as possible in parallel. A rule can be applied if its pattern matches a subcollection.
Several features are used to have a control over the choice of the rules applied within a transformation.
For instance, a priority can be associated to each rule to specify a precedence order within each class (the
priority of inclusive rules may be used to specify the relative order of their applications).

A transformationT can be used like a unary function. For instance, a transformation can be passed
as an argument to another function. It makes able to sequence and compose transformations very easily.

The expressionT (c) denotes the application of one transformation step to the collectionc. As said
above, a transformation step consists in the parallel application of the rules (modulo the rule application’s
features). A transformation step can be easily iterated:

T [n] (c) denotes the application ofn transformation steps toc

T [fixpoint] (c) application of the transformationT until a fixpoint is reached

T [fixrule] (c) idem but the fixpoint is detected when no rule applies

In addition to the standard transformation step strategy, two otherapplication modesexist. In the
stochastic mode, the choice of the exclusive rule to apply is made randomly. The priorities of the ex-
clusive rules are then considered as the relative probability of their effective application (when they can
apply). Inasynchronous mode, only one exclusive rule is applied in one transformation step.
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4. The Topology of Sets, Multisets, Sequences and Arrays

In this section, we show that several classical data structures can be seen from a topological point of
view. The notion of transformation introduced in the previous section on such collection, allows us to
recover some well-known computational models. More precisely:

• using transformation on multisets, we recover Gamma [1] and P system like models;

• using transformation on sequences, we recover the L system formalism [23];

• using transformation on arrays, we retrieve cellular automata [26].

We sketch how these well known models can be roughly rephrased and mimicked in the framework of
topological collections. The representations given are only approximations of the exact computation
mechanisms, because we do not fully consider the very basic details (they are very relevant for the
study of the formal expressive power of each formalism but are not considered here, as a programming
language always embeds a lot of small extensions required to facilitate the programmer’s life). Section 5
gives examples ofMGS programs that have been initially proposed as paradigmatic examples of these
formalisms.

4.1. Monoidal Collections

Consider a monoidM over an alphabetA with an operation written “,”. Let m be an element ofM . If
M is free, thenm is a representation of a sequence of elements inA. Moreover, ifM is not free because
operation, is commutative, thenm represents a multiset of elements inA. And if , is also idempotent
(i.e. x ,x = x), thenm represents a set. See [14].

It is not a coincidence that the neighborhood relationship in definition 2.2 and the join operation
here are denoted by the same comma. We say thatx and y belonging toA are neighbors inm iff
m = u ,x , y , v or m = u , y ,x , v with u andv elements ofM . This implies that:

• In a set, an elementx is neighbor of any other elementy;

• The neighborhood relationship in a multiset is the same as the neighborhood relationship in a set:
two arbitrary elements are always neighbors. The difference is that the same element may appear
more than one time in the multiset.

• The neighborhood relationship in a sequence is the expected one: if the sequence has at least two
elements, then all elements except the first and the last have two neighbors (called theleft and the
right neighbor). The first and the last element have only one neighbor (respectively a right and a
left neighbor). If the sequence is reduced to a singleton, then this singleton as no neighbor.

These topologies can be described as abstract complexes in the following manner.

The topology of sets. A setV is represented by a topological0-collection on a one dimensional form
with verticesV and only one edge>. The function∂1 is defined by∂1> =

∑
V . With this definition, an

element ofV is connected with any other element. The chain group describing a set is then particularly
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simple: Cp = 0 for p 6= 0, K0 = V andC0 = C0(K,Z/2 ¯ V ). A setV corresponds to the chain∑
x∈V x.x.
Let c′ be the subcollection to be replaced byd′ into the collectionc to give a new collectiond. The

fixed strategy used to buildd from d′ andc′′ = {cc
′, is simply to set>d = |c′′| ∪ |d′|.

This description is only combinatorial and does not admit a geometric realization. Indeed, a geomet-
ric 1-cell is homeomorphic to the interval[0, 1] and then admits only two0-cells in its boundary. If one
insists to have a geometric realization of topological sets, then shifting the dimension of the cells by one
is enough: the elements ofV are the many edges of a unique polygonal face.

The topology of multisets. A multisetM of elementse ∈ E can be represented by a setM̂ ⊆ N×E.
If e ∈ M with multiplicity n, then then elements(p1, e), (p2, e), ..., (pn, e) where thepi aren arbitrary
distinct integers, belong tôM . The multisetM is represented as the1-collection associated to the setM̂ .

With this encoding, two arbitrary multiset elements are connected, in accordance with the fact that
any submultiset can be matched and replaced in a Gamma rule. Furthermore, the application of one
Gamma rule on a multisetM is the parallel application of simple transformation and therefore, anMGS
transformation.

The topology of sequences. A sequencè = <`1, `2, . . . , `n> is a0-collection whose form is a chain
complex of dimension1. Let ik ben rationals in increasing order; the underlying complexK is defined
by

K0 = {i1, . . . , in} such thatij < ij+1

K1 =
{
(i1, i2), (i2, i3), . . . , (in−1, in)

}

∂(i, j) = i + j

(the last sum is a formal sum, the operator+ is not the addition of rationals). The form of the sequences
is C(K,Z/2, δ). Hence,̀ is represented by the chain

∑
1≤j≤n `j .ij .

An MGS rulec′ => d′ applied to a topological sequencec corresponds to a substitution with resultd.
The strategy used to glue the new subcollectiond′ andc′′ = {cc

′ into the resultd is the following:

• if d′ = 0 (that is, theMGS rule cancelc′) thenShape(d) = Shape(c′′);

• if d′ 6= 0, thenδc′ = δd′ (operatorδ is the coboundary operator defined by:δik = (ik−1, ik) +
(ik, ik + 1) if ik−1 andik+1 exist; theδ in the left hand side must be taken in the form ofc while
the δ in the right hand side must be taken ind). This condition, together withd = d′ + c′′, is
sufficient to specify completelyShape(d): Shape(d) = Shape(d′) ∪ Shape(c′′) ∪ |δc′|.

These rules are just the formal expression of insertingd′ in place ofc′ and corresponds to the behavior
of L system rules on a word.

4.2. Arrays and their Extensions

We have showed in [12, 9] that usual arrays are a special case of labelled Cayley graphs. These structures
are called “group based fields” (GBF) and subsume arrays, trees, circular buffer, etc. There is no room
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to develop this approach here, but it is sufficient to consider the case of free abelian groups to handle
standard grids of cellular automata in any dimension.

Let Gn be the free abelian group generated byd1, . . . , dn. We associate to this group the abstract
complex(Gn, <) defined by:

Gn
0 = Gn

Gn
1 =

{
(x, y) | x ∈ Gn

0 , y ∈ {d1, . . . , dn}
}

∂1(x, y) = x +G0 (x +Gn y)

The abstract complexGn, which is simply the Cayley graph ofGn, is not finite but locally-finite. The
strategy used inMGS to paste the result of a simple transformation into the collectionc is very simple:
only the values of the chains are allowed to change, there is no change incb.

5. Examples

The following examples are freely inspired by examples given for Gamma, P systems and L systems and
term rewriting.

Erastothene’s Sieve on a Set. The idea is to generate a set with integers from 2 toN (with rules
GenerateandSucceed) and to replace anx and any such thatx dividesy by x (rule Eliminate). The
result is the set of the prime integers less thanN .

trans Generate = {x, true} => x, {x + 1, true};
trans Succed = {x, true} => x;

trans Eliminate = (x, y / y modx = 0) => x;

With these definitions, the expression

Eliminate[fixrule]
(
Succed

(
Generate[N ]({2, true}, set : ())

))

computes the primes up toN . The expression(a, set : ()) build a set by joining the elementa to the
empty setset : (). So the expressionGenerate[N ]({2, true}, set : ()) appliesN times the trans-
formation Generate to a singleton. The transformationSucced is applied only one times and then
transformationEliminate is applied until a fixpoint is reached.

Sorting a Sequence. A kind of bubble-sort is immediate:

trans Sort = (x, y / y < x) => y, x;

(This is not really a bubble-sort because swapping of elements can take at arbitrary places; hence an
out-of-order element does not necessarily bubble to the top in the characteristic way.)
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Eratosthene’s Sieve on a Sequence.The idea is to refine the previous algorithm using a sequence.
Each elementi in the sequence corresponds to the previously computedith primePi and is represented
by a record{prime = Pi}. This element can receive a candidate numbern, which is represented by
a record{prime = Pi, candidate = n}. If candidate is divisible by the stored numberprime, (rule
Test1), then the candidate number is deleted. If the candidate number passes the test (ruleTest2), then
the element transforms itself into a recordr = {prime = Pi, ok = n}. If the right neighbor ofr
matches{prime = Pi+1} without a fieldcandidate nor ok , then the candidaten skips fromr to the
right neighbor. When there is no right neighbor tor, thenn is prime and a new element is added at the
end of the sequence. The first element of the sequence is distinguished (it is just an integer, not a record)
and generates the candidates.

trans Eratos = {
Genere1 = n : integer / r̃ight n

=> n, {prime = n};
Genere2 = n : integer, {prime as x, c̃andidate, õk}

=> n + 1, {prime = x, candidate = n};
Test1 = {prime as x, candidate as y, õk} / y modx = 0

=> {prime = x};
Test2 = {prime as x, candidate as y, õk} / y modx <> 0

=> {prime = x, ok = y};
Next = {prime as x1, ok as y}, {prime as x2, õk , c̃andidate}

=> {prime = x1}, {prime = x2, candidate = y};
NextCreate = {prime as x, ok as y} as s / r̃ight s

=> {prime = x}, {prime = y};
}

prime = 7
candidate = 14

prime = 7

prime = 7 prime = 11 prime = 7 prime = 11
ok = 23 candidate = 23

prime = 7 prime = 7
ok = 23candidate = 23

prime = 7 prime = 11 prime = 13 prime = 17
ok = 19

prime = 19
ok = 23 candidate = 23

Test1

Test2

Next

Figure 12. TheEratosprogram. Some rule instantiations and a fragment of the sequence built by the transforma-
tion Eratos.
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Each rule has a name, and some rule applications are illustrated in figure 12. The functionleft (resp.
right) gives the left (resp. right) neighbor of its argument, if it exists, or else the undefined value.
Thus, this transformation can be applied only to topological collection which have a defined left and
right neighborhood relation. The expression

Erasto[N ]((2, seq : ()))

executesN steps of the Erastothene’s sieve. For instanceErasto[100]((2, seq : ())) computes the se-
quence:42, {candidate = 42, prime = 2}, {ok = 41, prime = 3}, {prime = 5}, {prime = 7}, {prime =
11}, {prime = 13}, {ok = 37, prime = 17}, {prime = 19}, {prime = 23}, {prime = 29}, {prime =
31}, seq : ().

The game of life. The game of life is a special kind of cellular automata. A cell of the cellular au-
tomaton (a vertex of the corresponding topological collection) takes one of the two values 0 and 1. The
evolution of this value depends on the values of the neighbors (if the sum of the neighbor’s value is be-
tween two given level, the current state is set to 1 and else it is set to 0). The correspondingMGS program
is the following. It begins by the declaration of a new topological collection type:

gbf Grid2 = < X, Y >

this statement declares a new collection type, based on the group based field topology described in
section 4.2, with anX and anY neighborhood relation. In this case, this declaration simply specify the
topology of an infinite grid with two dimensions namedX andY . The evolution function of the cellular
automata is given by the transformation:

trans evolve = x => let s = FoldNeighbors((\a, b. a + b), 0, x)
in if (s < 3) or (s > 4) then 0 else 1 fi

the functionFoldNeighbors(f, e, x) makes a fold between the values of the neighbors ofx with the
binary functionf and the initial valuee (f is supposed to be an associative-commutative function with
neutral elemente). The operatorFoldNeighbors is applicable in all topology (in a set it gives all the
elements in the set, in a sequence it gives the considered element together with its left and right neighbors,
etc.).

6. Summary and Final Remarks

We have shown in section 2 that most of the notions used to describe P systems (membrane structures,
local computations, moves between adjacent membranes) find a natural setting and a smooth extension
in the framework provided by topological notions developed in the field of homology theory.

We have defined a topological collectionc to be a chain on a given chain complex that describes the
topology of the collection and a labeling of the cells. A simple transformation replaces a subchainc′ by
another subchain, preserving the topological structure of the complement ofc′ in c.

This abstract view enabls the unification in a same programming language of several biologically or
biochemically inspired computational models, namely: Gamma and the CHAM, P systems, L systems
and cellular automata. These models can be rephrased as the iteration of simple transformations on a
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topological collection; the difference coming from the topology of the collection (section 4). However,
we do not claim that we have achieved a useful theoretical framework encompassing the four cited
formalisms. We advocate that few notions and a single syntax can be consistently used to allow the
merging of these formalismsfor programmingpurposes.

It leads to the development of an experimental programming language calledMGS. MGS is a vehicle
used to investigate general notions of collections and transformations and to study their adequacy to the
simulation of various biological processes. Simple examples ofMGS programs are given in section 5. All
examples are processed using the current version of theMGS interpreter.

Currently, two versions of anMGS interpreter exist: one written inOCAML (a dialect ofML) and one
written in C++. There are some slight differences between the two versions. For instance, theOCAML
version is more complete with respect to the functional part of the language. These interpreters are freely
available2. In these currentMGS implementations, sets, multisets, sequences and group based fields
(which generalize functional arrays) of elements are supported. The elements in a collection can be any
kind of values: basic types, records or arbitrary nesting of collections. The values of the record’s fields
are also of any kind, thus achieving complex objects in the sense of [3].

The interested reader will find in [10] a more complete presentation of the language. The technical
report [11] gives more details on the topological formalization of collections and transformations. As a
matter of fact, we have simplified the presentation given here. For instance, for the sake of the simplicity,
we have restricted ourself to avoid the dual notions of cochains and coboundaries. However, this is the
right general formal setting to fully develop the notion of topological collection.

The report [11] also develops several examples ofMGS programs (the tokenization of a sequence of
letters, the computation of the convex hull of a set of points inR3, the computation of the maximal
segment sum, a Turing diffusion-reaction process, a grow model of cellular tissues, the computation of a
disjonctive normal form of a set of clauses represented as nested sets, etc.).

At the language level, the study of the topological collections concepts must continue with a finer
study of transformations. Several kinds of restriction can be put on the transformations, leading to various
kind of pattern languages and rules. The complexity of matching such patterns has to be investigated. We
also want to develop a type system that can handle nested collections, along the lines developed in [2]. At
last but not least, we want to know if the topological spaces built by transformations can be characterized
through a non standard type system. We also begin the study of a generic implementation of topolog-
ical chain complex, based on theG-map data structure [15] to represent arbitrary join/neighborhood
relationships. The efficient compilation of aMGS program is a long-term research effort.

The applications opened by this preliminary work are numerous. From the applications point of view,
we are challenged by the simulation of the topological changes at the early development of the embryo.
This is an actual example of tissues formation and fusion requiring complex topology beyond what is
accessible using simple data-structures. Another motivating application is the case of a spatially dis-
tributed biochemical interaction networks, for which some extension of rewriting have been advocated,
see [4, 16].
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