
Introducing Dynamicity in
the Data-Parallel Language 81/2 �

Olivier Michel

LRI u.r.a. 410 du CNRS
Btiment 490, Universit de Paris-Sud, F-91405 Orsay Cedex, France.

Tel: +33 (1) 69 41 76 01 email: michel@lri.fr

Abstract. The main motivation of 81/2 is to develop a high-level lan-
guage that supports the parallel simulation of dynamical processes [1, 2].
To achieve this goal, a new data-structure, that merges the concept of
stream and collection is introduced in a declarative framework. After a
brief description of 81/2 basics, we describe the introduction of dynamicity
and symbolic values in the language. We focus on the expressivity and is-
sues brought by the new dynamic possibilities of the language and show,
through several paradigmatic examples, that our computation model is
able to support parallel symbolic processing.

1 The Declarative Data-Parallel Language 81/2

1.1 Motivations: the Implicit Data-Parallel Approach to
Parallel Symbolic Processing

81/2 is an experimental language combining features of collection and stream
oriented languages in a declarative framework. It tries to promote the construc-
tion of parallel programs by isolating the programmer from the complexities of
parallel processing. To let the designer concentrate on the modeling aspects, we
advocate the use of a high-level language, where the entities expressed are close
to the concepts used in the target application [3, 4] and hiding implementation
details.

The use of functions and lists to provide parallel symbolic processing capa-
bilities has been advocated for a long time and largely demonstrated. However,
from the point of view of parallelism exploitation, this approach naturally leads
to control-parallelism with some drawbacks: a) lists are sequentially accessed
even in a distributed implementation, inducing some unnecessary bottlenecks;
b) there is an “impedance mismatch” problem between tasks and functions: b.1)

function invocations are fine-grained entities while task activations are more
heavy weight. Using tasks to implement functions is therefore too expensive,
even when using light-weight threads [5]; b.2) mapping only some functions to
tasks, while using a more standard sequential implementation for other func-
tions, can be achieved on an explicit or implicit basis. The explicit approach
� This research is partially supported by the operation “Programmation parallle et distribue”

of the french “GDR de programmation”.

looses the benefits of the implicit expression of parallelism and comes close to
the traditional task-oriented languages. The implicit approach encounters the
difficulties of the dynamic load-balancing strategies [6, 7].

So, we propose to explore an alternative approach focussed on data-types
rather than on control-structures, through the concept of fabric, embedded into
a declarative programming style. This new structure, allows the programmer to
write programs as mathematical expressions and to implicitly express control
and data parallelism.

In the next section, we briefly detail the concepts of collection, stream and
fabric needed to understand the concepts and examples appearing in the paper
(see [2] for a complete description of the language).

1.2 A Brief Introduction to the 81/2 Concepts

The concept of Collection in 81/2. A collection is a data structure that
represents a set of elements as a whole [8]. From the point of view of the parallel
implementation, the elements of a collection are distributed over the processing
elements (PEs).

Here we consider collections that are ordered sets of elements. An element
of a collection, also called a point in 81/2 can be accessed through an index (the
T � ǹ´ operation gives the nth point of T) or a label. If necessary, the type system
implicitly and automatically coerces a collection with one point into a scalar and
vice-versa [1].

Geometric operators change the geometry of a collection, i.e. its structure.
The geometry of the collection is the hierarchical structure of point values.
Collection nesting allows multiple levels of parallelism and can be found, for
example, in ParalationLisp and NESL. It is possible to pack fabrics together:
the {a, b} expression computes a nested collection from the collections a and b.
Elements of a collection may also be named and the result is a system. Assum-
ing rectangle = {height = 5, width = 3} the elements of this collection can be
reached through the dot construct using either their label, e.g. rectangle �height,
or their index: rectangle � 0̀́ .

The concatenation operator # (also called and “amalgam”, see Sect. 2.2 for
the use of this operator in symbolic computations) concatenates the values and
merges the systems: box = rectangle # {length = 3} =⇒ {height = 5, width =
3, length = 3}.

Four kinds of function applications can be defined. The first one, the appli-
cation: f(c1, . . . , cn) is the standard function application. The second one is the
extension: f^(c1, . . . , cn) produces a collection whose elements are the “point-
wise” application of the function to the elements of the arguments. For instance,
using a scalar addition, we obtain an addition between collections. Extension is
implicit for the basic operators (+, ∗, . . .) but is explicit for user-defined func-
tions to avoid ambiguities between application and extension. The third type of
function application is the reduction : f\c. Reduction of a collection using the
binary scalar addition, results in the summation of all the elements of the col-
lection. The last function application is the scan: f\\c, which application mode

is similar to the reduction but returns the collection of all partial results. For
instance: +\\{1, 1, 1} =⇒ {1, 2, 3}. Reductions and scans can be performed in
O(log2(n)) steps on SIMD architecture, where n is the number of elements in
the collection, if the number of PEs is greater than n.

The Concept of Stream in 81/2. Streams in 81/2 are infinite series of values
as in LUCID [9]. Streams in 81/2 are computed in a strict ascending order, and at
a given instant of the computation, there is always only one value (the “current”
value) of the stream stored in the memory. No dynamic allocation of memory
nor garbage-collector is required.

Two streams may have different clocks, that is, their elements are not com-
puted at the “same speed”; it is nevertheless possible to perform operations
between them. Here, we assume that all streams share the same clock (the op-
erator X when Y is used to constraint the clock of the stream X to be that of
Y). The concept of stream in 81/2 is close to the synchronous stream found in
LUSTRE [10] and SIGNAL [11].

81/2 expresses relations between data, it does not describe how to produce
them. For instance, the definition C = A+B means that the stream C is always
equal to the sum of values in the stream A and B (we assume that the changes
of the values are propagated instantaneously). When A (or B) changes, so does
C at the same logical instant.

Scalar operations are extended to denote elementwise application of the op-
eration on the values of the streams. The delay operator, $, shifts the entire
stream to give access, at the current time, to the previous stream value. This
operator is the only operator that does not act in a pointwise fashion.

Fabrics: a New Data Structure for the Declarative Simulation of Time-
Evolving Processes. A fabric is a stream of collections or a collection of
streams. In fact, we have to distinguish between two kinds of fabrics: static and
dynamic. A static fabric is a collection of streams where every element has the
same clock. It is equivalent to say that, a static fabric is a stream of collections
where every collection has the same geometry. Fabrics that are not static are
called dynamic. The compiler detects the kind of the fabrics and accepts the
static ones. At that time, programs involving dynamic fabrics are interpreted.

81/2 is a declarative language: a program is a set of equations representing a
set of fabric definitions. A fabric definition has a syntax similar to T = A + B.
This equation is an expression defining the fabric T from the fabric A and B (A
and B are the parameters of T). This expression can be read as a definition (the
naming of the expression A + B by the identifier T) as well as a relationship,
satisfied at each moment and for each collection element of T , A and B.

Running an 81/2 program consists in solving the fabric equations. Solving a
fabric equation means “enumerating the values of the fabric”. This set of values
is structured by the stream and collection aspects of the fabric: let a fabric be
a stream of collections; in accordance to the time interpretation of streams, the
values constituting the fabric are enumerated in the stream’s ascending order.

Therefore, running an 81/2 program means enumerating, in sequential order, the
values of the collections making the stream. The enumeration of the collection
values is not subject to some predefined order and may be done in parallel.

1.3 Example: Three Ways of Computing a Factorial

The paradigmatic example of the computation of a factorial is used to illustrate
the possibilities of 81/2. Through the same example, we exhibit the expression
of sequentiality, recursion and data-parallelism. It is also an example of three
different programming styles.

The Iterative Way. The first way of computing a factorial is to enumerate
the values of the function in time, that is:

fact@0 = 1; fact = counter ∗ $fact;
counter@0 = 1; counter = $counter + 1 when Clock;

counter is a stream that enumerates the integers at the speed of Clock. The
quantified equation counter@0 = 1 gives the initial value of the counter. In
this example, n! is computed as the nth value of the fabric fact. This way of
computing factorial is iterative. There is no parallelism to be exhibited because
the stream elements are computed sequentially (and fact cannot be computed
in parallel with counter because of data dependences).

The Space Mapping of Data: the Use of Collections. The second way
of computing a factorial relies on collections: iota[n] = +\\1 computes a vector
of size n with element i equal to (i + 1): the scalar constant 1 is implicitly
coerced into a vector of n elements of value 1 (see [1]) and then scanned using
the + operation. It is then possible to define fact as: fact = ∗\\iota. The pth

element of vector fact is p!. This definition exhibits data-parallelism (in the scan
operations) and has complexity of log(n) in a SIMD implementation [12].

The Recursively Defined Collection. The third way of computing a factorial
is also in space, using a recursively defined collection: fact = 1 # (fact : [n−1]∗
iota) where : [n] is the take operator which truncates (or extends, if needed) its
argument to size n. To convince ourselves that this expression really computes
the factorial values, we can see that (using transparential referency):

fact � 0̀́ ≡ 1 (because of #)
fact � ì́ ≡ (1# (fact : [n − 1] ∗ iota)) � ì́ (and subsequently, for i > 0)

≡ (fact : [n − 1] ∗ iota) � (̀i − 1)́
≡ fact � (̀i − 1)́ ∗ iota � (̀i − 1)́ (extension of ∗)
≡ fact � (̀i − 1)́ ∗ i (value of iota) �

Note that although computed as a collection, this definition of factorial has a
linear complexity because there are dependencies between the elements which
induce a sequential order of computation.

2 Introducing Dynamicity in 81/2

The three previous examples involve static fabrics, that is, fabrics with collections
of fixed geometry (see Sect. 1.2) defined before execution. The original restriction
to static fabric was motivated by the effective description and implementation
of a class of problems: the problems that have a static behaviour that could be
known at compile-time [13].

Nevertheless, this restriction is too firm to describe a whole class of phenom-
ena: the phenomena described by systems with a dynamical structure (mod-
elisation of plant growing, morphogenesis, . . .). To describe, manipulate and
simulate those dynamical processes, we propose an extension to the static fab-
rics: dynamically shaped fabrics.

2.1 Dynamic Collections in 81/2

Pascal’s Triangle. In this example, we use a dynamically shaped fabric to
accommodate a combinatorial data structure. The value of the point (line, col)
in the triangle is the sum of the point value (line − 1, col) and point value
(line−1, col−1). If we decide to map the rows in time, the fabric representation
of Pascal’s triangle is a stream of growing collections. We can identify that the
row l (l > 0) is the sum of row (l − 1) concatenated with 0 and 0 concatenated
with row (l − 1). The 81/2 program with its 4 first values is:

t@0 = 1; Top : 0 : {1} : int[1]
t = ($t # 0) + (0# $t) when Clock; Top : 1 : {1, 1} : int[2]

Top : 2 : {1, 2, 1} : int[3]
Top : 3 : {1, 3, 3, 1} : int[4]

Eratosthenes’s Sieve. The Eratosthenes’s sieve is a paradigmatic example of
the use of dynamically created tasks in the concurrent programming style: a task
is associated to each prime number and linked to the previous tasks, to increase
a filter. We describe here an alternative solution, in the data-parallel style, using
dynamically shaped collections.

The program used to compute prime numbers consists of a generator produc-
ing increasing integers and a collection of known primes numbers (starting with
the single element 2). Whenever a new number is generated, we try to divide
it with all previously computed prime numbers (a number that is not divisible
by a prime number is a prime number itself and is added to the list of prime
numbers). generator is a fabric that produces a stream of integers. extend is a
vector with the same size as the collection of already computed prime numbers.
modulo is a fabric where each element is the modulo of the produced number
and the prime number in the same column. zero is the fabric containing boolean
values that are true whenever the number generated is divisible by a prime
number. Finally, reduced is a reduction with an or operation, which result is
true if one of the computed prime numbers divides the generated number. The
x : |y| operator shrinks the fabric x to the rank specified by y. The rank of a
collection x is a vector where the ith element represents the number of elements

of x in the ith dimension. Table 1 presents the details of the computation of
prime numbers following Eratosthene’s method.

generator@0 = 2; generator = $generator + 1 when Clock;
extend = generator : |$sieve|;
modulo = extend % $sieve;
zero = (modulo == (0 : |modulo|));
reduced = or\zero;
sieve@0 = generator; sieve = $sieve # generator when (not reduced);

In this example, data-parallelism is found in the extension of the == operator,
modulo, in reductions, etc. There is no control-parallelism because sieve depends
on reduced which depends itself on zero, modulo, extend and finally generator.
Note that in the data-parallel version, the amount of parallelism grows with the
size of the collections. In the concurrent programming version, the speedup is due
to the pipeline effect between the tasks associated to the primes; this pipeline
effect also grows with the prime numbers.

0 1 2 3 4 5

generator {2} {3} {4} {5} {6} {7}
extend {3} {4, 4} {5, 5} {6, 6, 6} {7, 7, 7}
modulo {1} {0, 1} {1, 2} {0, 0, 1} {1, 1, 2}

zero {0} {1, 0} {0, 0} {1, 1, 0} {0, 0, 0}
reduced {0} {1} {0} {1} {0}

sieve {2} {2, 3} {2, 3} {2, 3, 5} {2, 3, 5} {2, 3, 5, 7}
Table 1. The computation of the Eratosthene’s sieve.

2.2 Symbolic Values in 81/2

We have seen, in the two previous examples, the possibility brought by the
dynamically shaped fabrics. These new possibilities have been made possible by
the removal of the static constraint on the fabrics. Furthermore, in 81/2, equations
defining fabrics have to involve only defined identifiers. Equations like T = a+1;
or U = {a = b + c, b = 2}; are rejected because they involve identifiers (a in
the first example and c in the second) with unknown values; these variables are
usually referred to as free variables (the same would happen with more complex
equations as long as identifiers appearing in the right hand-side of a definition
do not appear in a left hand-side of another definition in an enclosing scope).
We see that with little more work in the definition of the language, releasing the
constraint of allowing only closed equations, could lead us to define equations
with values of symbolic type. This extension, and its relevance to “classical”
symbolic processing, is presented in the next section.

We only have seen numerical systems so far, that is, collections with elements
of numerical value (possibly accessible through a label). We consider now that
a free variable has a symbolic value: namely itself. A symbolic expression is an
expression involving free identifiers or symbolic sub-expressions. Such a symbolic
expression is a first citizen value although it is not a numerical. An expression

E involving a symbolic value evaluates to a symbolic value except when the
expression E provides the missing definitions.

For example, assuming that S has no definition at top-level, equation X =
S+1; defines a fabric X with a symbolic value. Nevertheless, equation E = {S =
33; X}; evaluates to {33, 34} (a numeric value) because E provides the missing
definition of S to X . Remark that the evaluation process in 81/2 always tries to
evaluate all numerical values.

Factoring Computations: Building Once and Evaluating Several Times
a Power Series. A wide range of series in mathematics require to compute a
sequence of symbolic computation (e.g. a Taylor series) and then to instantiate
the sequence with numerical values to get the desired result. We exemplify this
through the computation of the exponential: ex = 1 + x + x2/2! + x3/3! + . . .
The 81/2 program computing the symbolic sequence is:

n@0 = 0.0; n = $n + 1.0 when Clock;
fact@0 = 1.0; fact = n ∗ $fact when Clock;
term@0 = 1.0; term = ($term ∗ x) when Clock;
exp@0 = 1.0; exp = ($exp + term/fact) when Clock;

The symbolic value exp corresponding to the series and computed only once, is
completed in a local scope and accessed through the dot operator: e = {x =
1.0; val = exp} � val. This method factorizes the computation of the call-tree
and can be used to a wide range of sequence of the same type. Once the initial
computation of the symbolic “tree of computations” has been achieved, various
results can be computed very easily through an “instantiation-like” mechanism.

3 Conclusions and Future Work

The examples in Sect. 2 have shown that the expressivity of dynamically shaped
fabrics with symbolic values is fairly efficient to express some paradigmatic ex-
amples in symbolic processing. In addition, 81/2 is able to concisely express
standard numerical processing problems, like numerical resolution of partial dif-
ferential equations [14]. The general idea is to use more specific and sophisticated
data-types to ease the programmer’s life. Nevertheless, further experimentations
have to be done to comfort the relevance of this approach.

A compiler for the static subset of 81/2 has already been implemented. All
the compiler phases assume a full MIMD execution model and we are currently
working on the MIMD code generation. The static examples of this article have
been processed by the existing compiler whereas the dynamic ones have been
interpreted by a sequential interpreter which triggers low-level vector operations
(currently implemented in C as a virtual SIMD machine). Data-parallelism could
be exploited by just adapting the low-level virtual machine. The current work on
the 81/2 language concerns the extension of the notion of collection (towards a
group structure [15]), the efficient treatment of dynamically shaped fabrics and
their relations to symbolic computation.

References

1. Jean-Louis Giavitto. Typing geometries of homogeneous collection. In Gaetan
Hains and L. M. R. Mullin, editors, ATABLE-92 Second International Workshop
on Array Structures, number 841, page (not numbered), Montral, 1992. Universit
de Montral, DIRO.

2. Olivier Michel. Design and implementation of 81/2, a declarative data-parallel
language. special issue on Parallel Logic Programming in Computer Languages,
1996. (to appear).

3. E. V. Zima. Recurrent relations and speed-up of computations using computer
algebra systems. In International Symposium, DISO’92, Bath, U.K., number 721
in Lecture Notes in Computer Sciences. Springer Verlag, April 1992.

4. P. Fritzson and N. Andersson. Generating parallel code from the equations in
the ObjectMath programming environment. In Second international ACPC con-
ference, Gmunden, Austria, number 734 in Lecture Notes in Computer Sciences.
Springer Verlag, October 1993.

5. J.-L. Giavitto, C. Germain, and J. Fowler. OAL: an implementation of an actor
language on a massively parallel message-passing architecture. In 2nd European
Distributed Memory Computing Conf. (EDMCC2), volume 492 of Lecture Notes in
Computer Sciences, Mnich, 22-24 April 1991. Springer-Verlag.

6. M. Lemaitre, M. Castan, M. H. Durand, G. Durrieur, and B. Lecussan. Mecha-
nisms for efficient multiprocessor combinator reduction. In Proc. of the 1986 ACM
Conference on LISP and Functionnal Programming, pages 113–121, Cambridge,
Ma., August 1986. ACM.

7. B. Hunberman and T. Hog. The ecology of computation, chapter The behavior of
computationnal ecologies. Studies in computer science and artificial intelligence.
North-Holland, 1988.

8. Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages. Proceedings
of the IEEE, 79(4):504–523, April 1991.

9. Edward A. Ashcroft, A. Faustini, R. Jagannathan, and W. Wadge. Multidimen-
sional Programming. Oxford University Press, February 1995. ISBN 0-19-507597-
8.

10. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative lan-
guage for programming synchronous systems. In Conference Record of the Four-
teenth Annual ACM Symposium on Principles of Programming Languages, pages
178–188, Munich, West Germany, January 21–23, 1987. ACM SIGACT-SIGPLAN,
ACM Press.

11. P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal, a dataflow
oriented language for signal processing. IEEE-ASSSP, 34(2):362–374, 1986.

12. W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Communications
of the ACM, 29(12):1170–1183, December 1986. HILLIS86.

13. F. Cappello, J.-L. Bchennec, and J.-L. Giavitto. PTAH: Introduction to a new par-
allel architecture for highly numeric processing. In Conf. on Parallel Architectures
and Languages Europe, Paris, LNCS 605. Springer-Verlag, 1992.

14. Olivier Michel, Jean-Louis Giavitto, and Jean-Paul Sansonnet. A data-parallel
declarative language for the simulation of large dynamical systems and its com-
pilation. In Institute for System Programming of the Russion Ac. of Sci., edi-
tor, SMS-TPE’94: Software for Multiprocessors and Supercomputers, Moscow, 21–
23September 1994. Office of Naval Research USA & Russian Basic Research Foun-
dation.

15. Jean-Louis Giavitto, Olivier Michel, and Jean-Paul Sansonnet. Group based fields.
In I. Takayasu, R. H. Jr. Halstead, and C. Queinnec, editors, Parallel Symbolic
Languages and Systems (International Workshop PSLS’95), volume 1068 of Lecture
Notes in Computer Sciences, pages 209–215, Beaune (France), 2–4October 1996.
Springer-Verlag.

This article was processed using the LATEX macro package with LLNCS style

