
Additional Booklet to the Habilitation

Olivier Michel

Évry – October 9, 2007.

Foreword

This document includes all required publications for the reading of the habilitation’s document.

i

Contents

I Declarative Unconventional Languages 1

1 IJUC: Challenging questions for the rationales of non-classical programming languages 3

2 W21: Introducing dynamicity in the data-parallel language 81/2 17

3 Semantics and compilation of recursive sequential streams in 81/2. 29

4 Data structure as topological spaces 49

5 Group based fields 65

6 Declarative definition of group indexed data structures and approximation of their domains 73

7 The topological structures of membrane computing. 87

II Modelling and Simulation of Dynamical Systems – Applications 113

8 81/2 and Simulation of Genetic Networks 115

9 Computation in Space and Space in Computation 133

10 Rewriting Systems and the Modelling of Biological Systems 151

11 Modelling the Topological Organization of Cellular Processes 159

12 Using Rewriting Techniques in the Simulation of Dynamical Systems 177

13 Stochastic P Systems and the Simulation of Biochemical Processes with Dynamic Com-
partments 187

14 An Analysis of a Public-Key Protocol with Membranes 205

15 Algorithmic Self-Assembly by Accretion and by Carving in MGS 227

III Elements of Implementation 241

16 Design and implementation of 81/2, a declarative data-parallel language 243

17 MGS: a rule-based programming language for complex objects and collections. 261

18 Pattern-matching and rewriting rules for group indexed data structures. 283

19 Incremental Extension of a Domain Specific Language Interpreter 297

iii

Part I

Declarative Unconventional Languages
for the Modelling and the Simulation

of Dynamical Systems

1

Chapter 1

IJUC: Challenging questions for the
rationales of non-classical programming
languages

[1] Olivier Michel, Jean-Pierre Banâtre, Pascal Fradet, and Jean-Louis Giavitto. Challenging questions for the
rationales of non-classical programming languages. International Journal of Unconventional Computing,
2006.

3

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

Int. J. of Unconventional Computing, Vol. X, pp. 1–11
Reprints available directly from the publisher
Photocopying permitted by license only

©c©2006 Old City Publishing, Inc.
Published by license under the OCP Science imprint,

a member of the Old City Publishing Group

Challenging Questions for the Rationale of
Non-Classical Programming

Languages

Olivier Michel1, Jean-Pierre Banâtre2, Pascal Fradet3

and Jean-Louis Giavitto1

1IBISC – CNRS – Université d’Évry – Genopole, France.
E-mail: michel@ibisc.univ-evry.fr
E-mail: giavitto@ibisc.univ-evry.fr

2IRISA – Université de Rennes 1, France.
E-mail: Jean-Pierre.Banatre@irisa.fr

3INRIA Rhône-Alpes, Grenoble, France.
E-mail: pascal.fradet@inria.fr

Received: December 4, 2005. In Final Form: March 20, 2006.

In this position paper, we question the rationale behind the design of
unconventional programming languages. Our questions are classified
in four categories: the sources of inspiration for new computational
models, the process of developing a program, the forms and the
theories needed to write and understand non-classical programs and
finally the new computing media and the new applications that drive
the development of new programming languages.

Keywords: unconventional programming language, computing metaphors, syntax,
semantics, program development.

1 INTRODUCTION

In this position paper, we do not take a definite position on non-classical
programming languages nor do we address a particular concept or approach.
Instead, we ask questions and put forward key issues about the design of
future programming languages. The questions we have selected emphasize
the issues which should guide the development of new programming
languages. The field of unconventional “computing models”, which is
devoted to the study of the complexity of problems using a predefined set
of (more or less exotic) basic operations, is not under focus here.

1

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

2 Michel, et al.

We postulate that the development of new programming languages is
driven by the quest of new expressive power. The literature on programming
language contains a wealth of informal claims on the relative expressive
power of programming languages. However, this very notion remains
difficult to formalize: for instance, we cannot compare the set of computable
functions that a programming language can represent, because nearly all
programming languages are universal. As far we know, there are only a
few attempts to formalize this notion of expressiveness, see [13, 20]. These
works mainly rely on the idea of translating a language into another, using
a limited and predefined form of translation (if any translation is allowed,
a universal language can be the target of the translation of any other
one). However, these notions fail to explain why object-oriented languages
(like C++ or Java) are usually considered as more expressive than their
imperative counterpart (like C).

We do not try here to develop a theoretical framework able to formalize
this kind of concept. We investigate the programming language design space
by other means. We advocate that the expressiveness of a programming
language can be informally evaluated by considering four criteria :

• the notion of computation embodied into the language,
• the support of the development process,
• the support for reasoning on programs,
• the applications for which it is well suited.

In the rest of this paper, we will try to discuss these four criteria with respect to
the recent development of non-classical (natural) computational paradigms:
the sources of inspiration for new computational models (section 2), the
process of developing a program (section 3), the forms and the theories
needed to write and understand non-classical programs (section 4) and
finally the new computing media and the new applications that drive the
development of non-classical programming languages (section 5). Examples
of non-classical (natural) computational paradigms we have in mind are
given by the amorphous computing project [7], the autonomic computing
initiative [17] and the development of various bio-inspired and chemical
computing approaches [6, 8].

2 METAPHORS FOR COMPUTATIONS

Programming paradigms, or their concrete instantiations in programming
languages, do not come “out of the blue”. They are inspired either by
the peculiarities of a computer or by a metaphor of what a computation
should be. As sources of inspiration, we can cite: the typewriter for the
Turing machine; desk, scissor and trash can for user-interfaces; classification
and ontology for the object based languages; building and architecture

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

Challenging Questions for the Rationale 3

for design patterns; meta-mathematical theory (λ-calculus) for functional
programming. Considering the programming languages history, it seems
that the most fruitful metaphors have been based on artifacts, notions and
concepts that structure a domain of abstract activities (office, mathematics).
For example, logic programming is based on the slogan “computation
is deduction”, while functional programing relies on the “computation is
function application” manifesto.

We are now experiencing a renewed period of proposals based on
“natural metaphors”: artificial chemistry [12], DNA computing [4], quantum
computing [21], P systems [1], PPSN (parallel problem solving from nature:
simulated annealing, evolutionary algorithms, etc.) [3], cell and tissue
computing [5]. . . to name a few. This is not to say that the metaphors of
the biological and physical world were absent until now. On the contrary,
formal neurons and cellular automata, both inspired by biological notions
and motivated by biological abilities, have been elaborated from the very
origin of computer science with names like W. Pitts and W. S. McCulloch
(formal neurons, 1943), S. C. Kleene (inspired by the previous for the notion
of finite state automata, 1951), J. H. Holland (connectionist model, 1956),
J. Von Neumann (cellular automata, 1958), F. Rosenblatt (the perceptron,
1958), etc.

This opposition between the relatively few impacts of natural metaphors
in everyday programming language compared to the large widespread of
metaphors of other human specific activities, asks the following questions:

• What are the benefits of natural metaphors compared to metaphors of
human activities ? To answer which needs, to support which applications,
to answer which failures ?

• What are the links between Physics and Computation ? Physics obviously
determines the phenomena that can be used for computing (the hardware).
However, to what extent can it be a source of inspiration for programming ?
For instance, what is the impact on programming of Feynman’s lectures
on the physics of the computation [14] ? What lessons have we learned
from the “analog computation” developed during the 50’s and the 60’s ?

• What are the links between Biology and Computation ? Biology is
obviously a source of inspirations for new computational models.
Computer scientists are desperately looking for design principles to
achieve systems with properties usually attributed to life: self-sustaining
systems, self-healing systems, self-organizing systems, autonomous
systems, etc. However, do we understand and agree on the meaning of
these characteristics ? For example, the properties of living organisms
are often exhibited at a collective level at a large scale and on the long
time, not at the level of an individual: a species, robust against the
variations of its environment, does not mean that the individuals adapt
easily to these variations.

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

4 Michel, et al.

• Have we exhausted the metaphor of human activities (engineering,
liberal art, economics, math, literature, philosophy, etc.) ? For instance,
logic and meta-mathematics are tightly coupled with computer science.
What about geometry or topology ? The geometrization of physics since
the end of the nineteenth century is a major trend but it does not seem
to appear in computation (however, see [15]).

• Is the physical world a good source of inspirations ? In other words,
are the relationships between physical objects a good framework to
conceptualize the relationships between immaterial objects like software
or computation ? For example, synchronous languages [10] make the
assumptions that the reaction to events are instantaneous. Despite the
apparent violation of physical laws, this model is very successful to
reason and implement real-time applications.

3 PROGRAMMING IN THE SMALL AND PROGRAMMING IN
THE LARGE

3.1 Programming in the Small
The slogan [23]:

program = data-structures + algorithms

has shaped our approach of what a program is.

• Is this manifesto still relevant to the new programming, paradigms,
problems and applications ?

• What are the new data-structures offered by the chemical, tissue and
other computing paradigms ?

• May unconventional languages suggest new algorithms or only a
speed-up of existing ones ?

Control structures are the means by which we organize the set of
computations that must be done to achieve a given task. Organizing
natural computations seems very difficult: think about how to implement
sequentiality in chemical computation (e.g. how to start a given chemical
reaction in a test tube only whenever the equilibrium of another one has
been reached ?). This issue is perhaps related to Landin’s splitting of a
programming language into two independent parts: (a) the part devoted to
the data and their primitive operations supported by the language, and (b)
the part devoted to the expression of the functional relations amongst them
and the way of expressing things in terms of other things (independently
of the precise nature of these things) [18]. An example of the latter is
the notion of identifier and the rule about the contexts in which a name
is defined, declared or used. The appropriate choice of data and primitive

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

Challenging Questions for the Rationale 5

yields an “API” or a “problem-oriented”, “domain specific”, “dedicated”
language. A good choice of the features in the second part can make a
language flexible, concise, expressive, adaptable, reusable, general. So,

• What are the new control structures of non-classical programming
languages ?

• Are the new programming paradigms concentrating only on dedicated
and specialized data-structures and operations well fitted to optimize
some costly specialized task ? Or is there also some emergence of new
ways of expressing things in term of other things ?

3.2 Programming in the Large
Research on chemical computing, biological computation, quantum com-
puting, etc., mainly focuses on the complexity of small algorithmic tasks
(sorting, prime factorization, etc.). These studies illustrate only the
“programming in the small” task and do not address the problem of the
“programming in the large”, that is the issues raised by the support of
large software architecture, the interconnection of modules, the hiding
of information, the capitalization and the reuse of existing code, etc.
Programming in the large is certainly one of the major challenges a
programming language must face.

Concepts of modules, packages, functors, classes, objects, mixins, design
patterns, framework, components, middleware, software buses, etc., have
been developed to face these needs. And, following some opinions, have
failed to produce flexible and robust systems1:

• Is this “failure” a consequence of the existing programming languages
or of our methods of software development ?

• Why are the programming paradigms discussed here, more fitted to
fight against this fragility and inflexibility ?

• Which features help to discover/localize/correct program errors or
reliably to live with ?

1 Gerald Jay Sussman, in 1999, has written as a justification of the amorphous computing
project: “Computer Science is in deep trouble. Structured design is a failure. Systems, as
currently engineered, are brittle and fragile. They cannot be easily adapted to new situations.
Small changes in requirements entail large changes in the structure and configuration. Small
errors in the programs that prescribe the behavior of the system can lead to large errors in the
desired behavior. Indeed, current computational systems are unreasonably dependent on the
correctness of the implementation, and they cannot be easily modified to account for errors in
the design, errors in the specifications, or the inevitable evolution of the requirements for which
the design was commissioned. (Just imagine what happens if you cut a random wire in your
computer!) This problem is structural. This is not a complexity problem. It will not be solved
by some form of modularity. We need new ideas. We need a new set of engineering principles
that can be applied to effectively build flexible, robust, evolvable, and efficient systems.” [22].
See also the notes of the debate “Object have failed” organized by R. Gabriel at OOPSLA
2002: www.dreamsongs.org.

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

6 Michel, et al.

3.3 The Disappearing “Software Life Cycle”
For many reasons, the notion of monolithic, standalone, single author
program is vanishing. The classic “separate compilation and linking”
model of compiler-based languages is not suitable for very large and
heterogeneous systems. After the use of preprocessing and code generation
tools, programmers have invented dynamic linking, templates, multi-stage
compilation, aspects weaving, just-in-time compilation, automatic update,
push and pull technologies, deployment, etc. In the same time, our systems
must include thousands of disparate components, partial applications,
services, sensors, actuators on a variety of hardware, written by many
developers around the world (and not always in a cooperative fashion).

• In which ways can the new programming paradigms contribute to these
trends ?

4 THE FUTURE OF SYNTAX, SEMANTICS, ETC.

4.1 The Future of Syntax
The question of syntax always causes intemperate reactions. There is a
large trend to become “syntax independent”. For example, standards like
XML provide flexible and generic tools to translate a deep representation
to various surface expressions. In programming languages, features like
overloading, preprocessor, macro, combinators, . . . , are also used to tailor
the syntax in order to offer to the user an interface close to the standard
of the application domain. The Mathematica system is a good example of
such achievement. However, the deep representation is exclusively relying
on the notion of terms.

• Do new programming paradigms require new syntax such as dia-
grammatic, visual, kinesthetic, . . . , representations ? Or does a program
necessarily need to be represented as a tree of symbols ?

4.2 Semantics and Theoretical Models
The influence of logic in the study of the semantics of programming
languages is preeminent. However, the new programming models seem to
put an emphasis on the notion of dynamical systems. So:

• What is “the right” mathematical framework allowing the manipulation
of dynamical systems in conformity with the concepts of software
architectures ?

• Can we expect a cross fertilization between theoretical computer science
and control system theory ?

• Considering the distributed nature of computer resources and applications,
can we develop a theory of distributed dynamical systems without a
global time or a global state ?

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

Challenging Questions for the Rationale 7

• Are the new paradigms suited to the development of a notion of
“approximate”, “probabilistic”, “fuzzy”, “non-deterministic” computa-
tions ? Can they handle in a better way uncertainty and incomplete
information ?

• Is it possible to define a useful notion of open systems2 within the
new paradigms ? What are the mechanisms and control structures of
openness ? How can we maintain coherence and adequate behaviour
of open systems ?

4.3 Validation and Verification
A program’s destiny is to be executed in order to accomplish some task.
But in order to be sure that the task will be well accomplished, we have
developed several concepts and techniques like: typing, static analysis,
abstract interpretation, bisimulation, model checking, testing, proofs,
validation, correctness by construction. . . These techniques consider the
program as an object of study.

• Are these techniques adaptable to the new paradigms ? For instance,
what can be the type of a DNA in a test tube ? What can be the
“correctness by construction” of an amorphous program ? Is it possible
to model-check P systems ?

These techniques share the same approach: establishing efficiently
and as automatically as possible, some assertions about programs. This
will undoubtedly imposes some (severe ?) limitations on the kind of
assertions which can be proved or inferred. Assertions should not to
be larger than programs or more difficult to establish than to develop
programs.

• Are there opportunities for other approaches ? Instead of ensuring
statically and a priori the correct execution of a program, would not it
be possible to modify it incrementally so that it achieves its prescribed
task ? This approach [2, 16] is tightly coupled with notions like evolution,
emergence, self-organization, learning. . . What other approaches of
program correction can be supported by the new paradigms ?

• More generally, how can the programmer be helped in creating,
understanding, proving, enhancing, debugging, testing and reusing
programs in the new paradigms ?

It would be also very interesting to investigate how very high-level
languages can bridge the gap between specification languages and lower-level
implementation oriented languages. In this context, we consider as very
promising methods which allow to derive programs from specifications in a

2 i.e., a system that interacts with an unpredictable environment

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

8 Michel, et al.

systematic way. Such methods can rely on specific calculi and disciplines as
proposed by E.W. Dijstra in [11] or as applied in the Chemical Programming
setting [9].

5 NEW APPLICATIONS, NEW OPPORTUNITIES

5.1 New Computing Resources
Most programming languages often reflect a sequential dogma: they modify
a global state step-by-step. This is also true at the hardware level, even in
our parallel machines: we partition the processing element between a very
big passive part: the memory, and a few very fast processing parts: the
processors. While this dogma was adapted to the early days of computers
(it can be implemented with as little as 2250 transistors), it is likely to
become obsolete as the numbers of resources increases (109 transistors by
2007). New developments such as nano-technologies or 3D circuits, or
more simply parallel multichips systems can potentially provide thousand
times more resources.

• Can new programming paradigms take profit from all this available
computational power ? The technological progress focused on quantitative
improvements of current hardware architecture and little effort has been
spent on investigating alternative computing architecture. The point
here is not to change from the silicon medium to another one, but to
fully exploit the silicon potential! What can we do with this “ocean of
gates” ?

Advances in nanosciences and in biological sciences are being used
to drive innovation in the design of novel computing architectures based
on biomolecules. The ability of DNA and RNA nucleotides to perform
massively parallel computations to solve difficult, NP-hard, computational
problems are now recognized and DNA molecules will be utilized to
construct two- and three-dimensional physical nanostructures, thus providing
the ability to self-assemble physical scaffolds. However, we already met
such opportunities in the past, for instance with optoelectronics: FFT comes
at virtually no cost, switching too, etc. But until now, optoelectronic devices
have had little impact on computation. An explanation can be that the
operations provided are too rigid and cannot be integrated easily into a
more generic framework to allow ease of use and the generality of the
applications.

• Are the new paradigms generic enough ? Can they be integrated into
mixed-paradigms languages ? Can we harness the computational power
of the new paradigms within more classical languages ? What is the price
of mixing them ? If they are supported by dedicated new hardware, can
we interconnect these hardware and make them cooperate at a little cost ?

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

Challenging Questions for the Rationale 9

• Should we draw a line between bio-inspired (quantum-inspired,
chemistry-inspired, xxx-inspired. . .) programming languages and
bio-based (quantum-based, chemistry-based, xxx-based. . .) hardware ?

• If hardware evolves towards bioware, should software evolve towards
wetware ?

5.2 Programming Immense Interaction Networks
An area of explosive growth in computing is that of the Internet or the
World Wide Web. Computing over the Web provides challenges asking for
the development of new paradigms. One important challenge is to ensure
global properties of the network as a whole. This challenge exactly meets
the challenge raised by the programming of smart materials or biological
devices: “how do we obtain coherent behavior from the cooperation of large
numbers of unreliable parts that are interconnected in unknown, irregular,
and time varying ways ?”3.

• Is there an unified framework that can be useful to reason generically
on the collective behavior at a population level, both at a very large
scale (the mobile phone network, the WWW) and at the small scale
(nanodevice) ?

• What is missing in the current established algorithmic approach,
architecture design and formal methods, to handle the issues of tolerance,
trust, cooperation, antagonism and control of complex global systems
properly ?

6 CONCLUDING REMARKS

In this position paper, we have considered the impact of new computing
hardware and metaphors (e.g. bio-inspired, DNA, chemical or quantum
computing) on programming languages issues. These unconventional point
of views trigger new questions on basic notions such as data structures,
algorithms, syntax and semantics and lead up to reconsider the software
development cycle, the verification, reasoning and implementation of
programs. Clearly, non-classical programming languages are becoming an
ebullient area of research. We believe that the most interesting developments
are yet to come.

The formulation of these questions have benefited from the numerous
interactions that have taken place between the participants of the “Unconven-
tional Programming Paradigms” (UPP04) workshop4 [8] as well as the “ The
Grand Challenge in Non-Classical Computation International Workshop”5.

3 Gerald L. Sussman, speaking about the programming of programmable materials [19].
4http://upp.lami.univ-evry.fr
5http://www.cs.york.ac.uk/nature/workshop

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

10 Michel, et al.

We would like to thank P. Dittrich at the University of Jena, P. Prusinkiewicz
at the University of Calgary and Antoine Spicher at the University of Evry
for stimulating discussions, thoughtful remarks and warm support. The
comments of the anonymous reviewers have greatly improved the english
of the paper.

REFERENCES

[1] (2002) The P Systems Web Page. http://psystems.disco.unimib.it/.

[2] (2004) The Organic Computing Page. http://www.organic-computing.org.

[3] (1990) PPSN - Parallel Problem Solving from Nature. Proceedings published from
1994 as LNCS volumes. http://ls11-www.cs.uni-dortmund.de/PPSN/.

[4] (1995) International Meeting on DNA Computing. Proceedings published from
1995 to 2000 as AMS DIMACS volume and then published as LNCS volume.
http://hagi.is.s.u-tokyo.ac.jp/dna/.

[5] (1995) IPCAT - Information Processing in Cells and Tissues. Proceedings published
by World Scientific and as special issues of the Biosystems journal.

[6] (1998) UMC - Unconventional Computation. Proceedings published at Springer.
http://www.cs.auckland.ac.nz/CDMTCS/conferences/uc/uc.html.

[7] Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman and Weiss.,
(2000). Amorphous computing. CACM: Communications of the ACM, 43.

[8] Banâtre, Jean-Pierre; Fradet, Pascal; Giavitto, Jean-Louis and Michel, Olivier; editors,
(2005). Unconventional Programming Paradigms, Revised Selected and Invited Papers of
the International Workshop UPP 2004, Le Mont-Saint-Michel, France. Springer-Verlag,
LNCS, 3566.

[9] Banâtre, Jean-Pierre and Le Métayer, Daniel., (1990). The GAMMA model and its
discipline of programming. Science of Computer Programming, 15,(1): 55–77.

[10] Benveniste, Albert; Caspi, Paul; Edwards, Stephen; Halbwachs, Nicolas; Le Guernic,
Paul and de Simone, Robert., (2003). The synchronous languages twelve years later.
Proc. of the IEEE, Special issue on embedded systems, 91,(1): 64–83.

[11] Dijkstra, Edsger W., (1976). A Discipline of Programming. Prentice-Hall.

[12] Dittrich, Petter; Ziegler, Jens and Banzhaf, Wolfgang., (2001). Artificial chemistries -
a review. Artificial Life, 7,(3): 225–275.

[13] Felleisen, Matthias., (1991). On the expressive power of programming languages.
Science of Computer Programming, 17,(1–3): 35–75.

[14] Feynman, Richard P., Hey, Anthony J. G. and Allen, Robin W., editors, (1996).
Feynman Lectures on Computation. The Advanced Book Program. Addison-Wesley,
Reading, MA.

[15] Giavitto, Jean-Louis and Michel, Olivier., (2002). The topological structures of
membrane computing. Fundamenta Informaticae, 49: 107–129.

[16] Heiss, Janice., (2003). Coding from Scratch: A Conversation with Virtual Reality
Pioneer Jaron Lanier. Sun Developper Network (SDN). Cf.
http://java.sun.com/features/2003/01/lanier qa1.html.

[17] Horn, Paul., (2001). Autonomic computing: IBM’s perspective on the state of
information technology. Technical report, IBM Research. http://www.research.
ibm.com/autonomic/manifesto/autonomic computing.pdf%.

[18] Landin, Peter J., (1966). The next 700 programming languages. Communications
of the ACM, 9,(3): 157–164. Originally presented at the Proceedings of the ACM
Programming Language and Pragmatics Conference, 1965.

IJUC-SUSAN-04-BANATRE International Journal of Unconventional Computing September 5, 2006 16:18

Challenging Questions for the Rationale 11

[19] MIT Project Mac., (2003). The Amorphous Computing Home page.
http://www.swiss.ai.mit.edu/projects/amorphous.

[20] Mitchell, John C., (1993). On abstraction and the expressive power of programming
languages. In TACS’91: Selected papers of the conference on Theoretical aspects of
computer software, 141–163, Amsterdam, The Netherlands, The Netherlands. Elsevier
Science Publishers B. V.

[21] Rieffel, Eleanor and Polak, Wolfang., (2000). An introduction to quantum computing
for non-physicists. ACM Comput. Surv., 32,(3): 300–335.

[22] Sussman, Gerald Jay., (1999). Robust design through diversity (position paper). In
Workshop on Amorphous Computing, Cambridge. DARPA ITO – MIT Lab,
Cf. http://swiss.csail.mit.edu/projects/amorphous/workshop-
sept-99/.

[23] Wirth, Niklaus., (1976). Algorithms + Data Structures = Programs. Prentice-Hall.

Chapter 2

W21: Introducing dynamicity in the
data-parallel language 81/2

[1] Olivier Michel. Introducing dynamicity in the data-parallel language 81/2. In Luc Bougé, Pierre Fraigniaud,
Anne Mignotte, and Yves Robert, editors, EuroPar’96 Parallel Processing, volume 1123 of Lecture Notes
in Computer Science, pages 678–686. Springer Verlag, August 1996.

17

Introducing Dynamicity in
the Data-Parallel Language 81/2 �

Olivier Michel

LRI u.r.a. 410 du CNRS
Btiment 490, Universit de Paris-Sud, F-91405 Orsay Cedex, France.

Tel: +33 (1) 69 41 76 01 email: michel@lri.fr

Abstract. The main motivation of 81/2 is to develop a high-level lan-
guage that supports the parallel simulation of dynamical processes [1, 2].
To achieve this goal, a new data-structure, that merges the concept of
stream and collection is introduced in a declarative framework. After a
brief description of 81/2 basics, we describe the introduction of dynamicity
and symbolic values in the language. We focus on the expressivity and is-
sues brought by the new dynamic possibilities of the language and show,
through several paradigmatic examples, that our computation model is
able to support parallel symbolic processing.

1 The Declarative Data-Parallel Language 81/2

1.1 Motivations: the Implicit Data-Parallel Approach to
Parallel Symbolic Processing

81/2 is an experimental language combining features of collection and stream
oriented languages in a declarative framework. It tries to promote the construc-
tion of parallel programs by isolating the programmer from the complexities of
parallel processing. To let the designer concentrate on the modeling aspects, we
advocate the use of a high-level language, where the entities expressed are close
to the concepts used in the target application [3, 4] and hiding implementation
details.

The use of functions and lists to provide parallel symbolic processing capa-
bilities has been advocated for a long time and largely demonstrated. However,
from the point of view of parallelism exploitation, this approach naturally leads
to control-parallelism with some drawbacks: a) lists are sequentially accessed
even in a distributed implementation, inducing some unnecessary bottlenecks;
b) there is an “impedance mismatch” problem between tasks and functions: b.1)

function invocations are fine-grained entities while task activations are more
heavy weight. Using tasks to implement functions is therefore too expensive,
even when using light-weight threads [5]; b.2) mapping only some functions to
tasks, while using a more standard sequential implementation for other func-
tions, can be achieved on an explicit or implicit basis. The explicit approach
� This research is partially supported by the operation “Programmation parallle et distribue”

of the french “GDR de programmation”.

looses the benefits of the implicit expression of parallelism and comes close to
the traditional task-oriented languages. The implicit approach encounters the
difficulties of the dynamic load-balancing strategies [6, 7].

So, we propose to explore an alternative approach focussed on data-types
rather than on control-structures, through the concept of fabric, embedded into
a declarative programming style. This new structure, allows the programmer to
write programs as mathematical expressions and to implicitly express control
and data parallelism.

In the next section, we briefly detail the concepts of collection, stream and
fabric needed to understand the concepts and examples appearing in the paper
(see [2] for a complete description of the language).

1.2 A Brief Introduction to the 81/2 Concepts

The concept of Collection in 81/2. A collection is a data structure that
represents a set of elements as a whole [8]. From the point of view of the parallel
implementation, the elements of a collection are distributed over the processing
elements (PEs).

Here we consider collections that are ordered sets of elements. An element
of a collection, also called a point in 81/2 can be accessed through an index (the
T � ǹ´ operation gives the nth point of T) or a label. If necessary, the type system
implicitly and automatically coerces a collection with one point into a scalar and
vice-versa [1].

Geometric operators change the geometry of a collection, i.e. its structure.
The geometry of the collection is the hierarchical structure of point values.
Collection nesting allows multiple levels of parallelism and can be found, for
example, in ParalationLisp and NESL. It is possible to pack fabrics together:
the {a, b} expression computes a nested collection from the collections a and b.
Elements of a collection may also be named and the result is a system. Assum-
ing rectangle = {height = 5, width = 3} the elements of this collection can be
reached through the dot construct using either their label, e.g. rectangle �height,
or their index: rectangle � 0̀́ .

The concatenation operator # (also called and “amalgam”, see Sect. 2.2 for
the use of this operator in symbolic computations) concatenates the values and
merges the systems: box = rectangle # {length = 3} =⇒ {height = 5, width =
3, length = 3}.

Four kinds of function applications can be defined. The first one, the appli-
cation: f(c1, . . . , cn) is the standard function application. The second one is the
extension: f^(c1, . . . , cn) produces a collection whose elements are the “point-
wise” application of the function to the elements of the arguments. For instance,
using a scalar addition, we obtain an addition between collections. Extension is
implicit for the basic operators (+, ∗, . . .) but is explicit for user-defined func-
tions to avoid ambiguities between application and extension. The third type of
function application is the reduction : f\c. Reduction of a collection using the
binary scalar addition, results in the summation of all the elements of the col-
lection. The last function application is the scan: f\\c, which application mode

is similar to the reduction but returns the collection of all partial results. For
instance: +\\{1, 1, 1} =⇒ {1, 2, 3}. Reductions and scans can be performed in
O(log2(n)) steps on SIMD architecture, where n is the number of elements in
the collection, if the number of PEs is greater than n.

The Concept of Stream in 81/2. Streams in 81/2 are infinite series of values
as in LUCID [9]. Streams in 81/2 are computed in a strict ascending order, and at
a given instant of the computation, there is always only one value (the “current”
value) of the stream stored in the memory. No dynamic allocation of memory
nor garbage-collector is required.

Two streams may have different clocks, that is, their elements are not com-
puted at the “same speed”; it is nevertheless possible to perform operations
between them. Here, we assume that all streams share the same clock (the op-
erator X when Y is used to constraint the clock of the stream X to be that of
Y). The concept of stream in 81/2 is close to the synchronous stream found in
LUSTRE [10] and SIGNAL [11].

81/2 expresses relations between data, it does not describe how to produce
them. For instance, the definition C = A+B means that the stream C is always
equal to the sum of values in the stream A and B (we assume that the changes
of the values are propagated instantaneously). When A (or B) changes, so does
C at the same logical instant.

Scalar operations are extended to denote elementwise application of the op-
eration on the values of the streams. The delay operator, $, shifts the entire
stream to give access, at the current time, to the previous stream value. This
operator is the only operator that does not act in a pointwise fashion.

Fabrics: a New Data Structure for the Declarative Simulation of Time-
Evolving Processes. A fabric is a stream of collections or a collection of
streams. In fact, we have to distinguish between two kinds of fabrics: static and
dynamic. A static fabric is a collection of streams where every element has the
same clock. It is equivalent to say that, a static fabric is a stream of collections
where every collection has the same geometry. Fabrics that are not static are
called dynamic. The compiler detects the kind of the fabrics and accepts the
static ones. At that time, programs involving dynamic fabrics are interpreted.

81/2 is a declarative language: a program is a set of equations representing a
set of fabric definitions. A fabric definition has a syntax similar to T = A + B.
This equation is an expression defining the fabric T from the fabric A and B (A
and B are the parameters of T). This expression can be read as a definition (the
naming of the expression A + B by the identifier T) as well as a relationship,
satisfied at each moment and for each collection element of T , A and B.

Running an 81/2 program consists in solving the fabric equations. Solving a
fabric equation means “enumerating the values of the fabric”. This set of values
is structured by the stream and collection aspects of the fabric: let a fabric be
a stream of collections; in accordance to the time interpretation of streams, the
values constituting the fabric are enumerated in the stream’s ascending order.

Therefore, running an 81/2 program means enumerating, in sequential order, the
values of the collections making the stream. The enumeration of the collection
values is not subject to some predefined order and may be done in parallel.

1.3 Example: Three Ways of Computing a Factorial

The paradigmatic example of the computation of a factorial is used to illustrate
the possibilities of 81/2. Through the same example, we exhibit the expression
of sequentiality, recursion and data-parallelism. It is also an example of three
different programming styles.

The Iterative Way. The first way of computing a factorial is to enumerate
the values of the function in time, that is:

fact@0 = 1; fact = counter ∗ $fact;
counter@0 = 1; counter = $counter + 1 when Clock;

counter is a stream that enumerates the integers at the speed of Clock. The
quantified equation counter@0 = 1 gives the initial value of the counter. In
this example, n! is computed as the nth value of the fabric fact. This way of
computing factorial is iterative. There is no parallelism to be exhibited because
the stream elements are computed sequentially (and fact cannot be computed
in parallel with counter because of data dependences).

The Space Mapping of Data: the Use of Collections. The second way
of computing a factorial relies on collections: iota[n] = +\\1 computes a vector
of size n with element i equal to (i + 1): the scalar constant 1 is implicitly
coerced into a vector of n elements of value 1 (see [1]) and then scanned using
the + operation. It is then possible to define fact as: fact = ∗\\iota. The pth

element of vector fact is p!. This definition exhibits data-parallelism (in the scan
operations) and has complexity of log(n) in a SIMD implementation [12].

The Recursively Defined Collection. The third way of computing a factorial
is also in space, using a recursively defined collection: fact = 1 #(fact : [n−1]∗
iota) where : [n] is the take operator which truncates (or extends, if needed) its
argument to size n. To convince ourselves that this expression really computes
the factorial values, we can see that (using transparential referency):

fact � 0̀́ ≡ 1 (because of #)
fact � ì́ ≡ (1# (fact : [n − 1] ∗ iota)) � ì́ (and subsequently, for i > 0)

≡ (fact : [n − 1] ∗ iota) � (̀i − 1)́
≡ fact � (̀i− 1)́ ∗ iota � (̀i− 1)́ (extension of ∗)
≡ fact � (̀i− 1)́ ∗ i (value of iota) �

Note that although computed as a collection, this definition of factorial has a
linear complexity because there are dependencies between the elements which
induce a sequential order of computation.

2 Introducing Dynamicity in 81/2

The three previous examples involve static fabrics, that is, fabrics with collections
of fixed geometry (see Sect. 1.2) defined before execution. The original restriction
to static fabric was motivated by the effective description and implementation
of a class of problems: the problems that have a static behaviour that could be
known at compile-time [13].

Nevertheless, this restriction is too firm to describe a whole class of phenom-
ena: the phenomena described by systems with a dynamical structure (mod-
elisation of plant growing, morphogenesis, . . .). To describe, manipulate and
simulate those dynamical processes, we propose an extension to the static fab-
rics: dynamically shaped fabrics.

2.1 Dynamic Collections in 81/2

Pascal’s Triangle. In this example, we use a dynamically shaped fabric to
accommodate a combinatorial data structure. The value of the point (line, col)
in the triangle is the sum of the point value (line − 1, col) and point value
(line−1, col−1). If we decide to map the rows in time, the fabric representation
of Pascal’s triangle is a stream of growing collections. We can identify that the
row l (l > 0) is the sum of row (l − 1) concatenated with 0 and 0 concatenated
with row (l − 1). The 81/2 program with its 4 first values is:

t@0 = 1; Top : 0 : {1} : int[1]
t = ($t # 0) + (0# $t) when Clock; Top : 1 : {1, 1} : int[2]

Top : 2 : {1, 2, 1} : int[3]
Top : 3 : {1, 3, 3, 1} : int[4]

Eratosthenes’s Sieve. The Eratosthenes’s sieve is a paradigmatic example of
the use of dynamically created tasks in the concurrent programming style: a task
is associated to each prime number and linked to the previous tasks, to increase
a filter. We describe here an alternative solution, in the data-parallel style, using
dynamically shaped collections.

The program used to compute prime numbers consists of a generator produc-
ing increasing integers and a collection of known primes numbers (starting with
the single element 2). Whenever a new number is generated, we try to divide
it with all previously computed prime numbers (a number that is not divisible
by a prime number is a prime number itself and is added to the list of prime
numbers). generator is a fabric that produces a stream of integers. extend is a
vector with the same size as the collection of already computed prime numbers.
modulo is a fabric where each element is the modulo of the produced number
and the prime number in the same column. zero is the fabric containing boolean
values that are true whenever the number generated is divisible by a prime
number. Finally, reduced is a reduction with an or operation, which result is
true if one of the computed prime numbers divides the generated number. The
x : |y| operator shrinks the fabric x to the rank specified by y. The rank of a
collection x is a vector where the ith element represents the number of elements

of x in the ith dimension. Table 1 presents the details of the computation of
prime numbers following Eratosthene’s method.

generator@0 = 2; generator = $generator + 1 when Clock;
extend = generator : |$sieve|;
modulo = extend % $sieve;
zero = (modulo == (0 : |modulo|));
reduced = or\zero;
sieve@0 = generator; sieve = $sieve # generator when (not reduced);

In this example, data-parallelism is found in the extension of the == operator,
modulo, in reductions, etc. There is no control-parallelism because sieve depends
on reduced which depends itself on zero, modulo, extend and finally generator.
Note that in the data-parallel version, the amount of parallelism grows with the
size of the collections. In the concurrent programming version, the speedup is due
to the pipeline effect between the tasks associated to the primes; this pipeline
effect also grows with the prime numbers.

0 1 2 3 4 5

generator {2} {3} {4} {5} {6} {7}
extend {3} {4, 4} {5, 5} {6, 6, 6} {7, 7, 7}
modulo {1} {0, 1} {1, 2} {0, 0, 1} {1, 1, 2}

zero {0} {1, 0} {0, 0} {1, 1, 0} {0, 0, 0}
reduced {0} {1} {0} {1} {0}

sieve {2} {2, 3} {2, 3} {2, 3, 5} {2, 3, 5} {2, 3, 5, 7}
Table 1. The computation of the Eratosthene’s sieve.

2.2 Symbolic Values in 81/2

We have seen, in the two previous examples, the possibility brought by the
dynamically shaped fabrics. These new possibilities have been made possible by
the removal of the static constraint on the fabrics. Furthermore, in 81/2, equations
defining fabrics have to involve only defined identifiers. Equations like T = a+1;
or U = {a = b + c, b = 2}; are rejected because they involve identifiers (a in
the first example and c in the second) with unknown values; these variables are
usually referred to as free variables (the same would happen with more complex
equations as long as identifiers appearing in the right hand-side of a definition
do not appear in a left hand-side of another definition in an enclosing scope).
We see that with little more work in the definition of the language, releasing the
constraint of allowing only closed equations, could lead us to define equations
with values of symbolic type. This extension, and its relevance to “classical”
symbolic processing, is presented in the next section.

We only have seen numerical systems so far, that is, collections with elements
of numerical value (possibly accessible through a label). We consider now that
a free variable has a symbolic value: namely itself. A symbolic expression is an
expression involving free identifiers or symbolic sub-expressions. Such a symbolic
expression is a first citizen value although it is not a numerical. An expression

E involving a symbolic value evaluates to a symbolic value except when the
expression E provides the missing definitions.

For example, assuming that S has no definition at top-level, equation X =
S+1; defines a fabric X with a symbolic value. Nevertheless, equation E = {S =
33; X}; evaluates to {33, 34} (a numeric value) because E provides the missing
definition of S to X . Remark that the evaluation process in 81/2 always tries to
evaluate all numerical values.

Factoring Computations: Building Once and Evaluating Several Times
a Power Series. A wide range of series in mathematics require to compute a
sequence of symbolic computation (e.g. a Taylor series) and then to instantiate
the sequence with numerical values to get the desired result. We exemplify this
through the computation of the exponential: ex = 1 + x + x2/2! + x3/3! + . . .
The 81/2 program computing the symbolic sequence is:

n@0 = 0.0; n = $n + 1.0 when Clock;
fact@0 = 1.0; fact = n ∗ $fact when Clock;
term@0 = 1.0; term = ($term ∗ x) when Clock;
exp@0 = 1.0; exp = ($exp + term/fact) when Clock;

The symbolic value exp corresponding to the series and computed only once, is
completed in a local scope and accessed through the dot operator: e = {x =
1.0; val = exp} � val. This method factorizes the computation of the call-tree
and can be used to a wide range of sequence of the same type. Once the initial
computation of the symbolic “tree of computations” has been achieved, various
results can be computed very easily through an “instantiation-like” mechanism.

3 Conclusions and Future Work

The examples in Sect. 2 have shown that the expressivity of dynamically shaped
fabrics with symbolic values is fairly efficient to express some paradigmatic ex-
amples in symbolic processing. In addition, 81/2 is able to concisely express
standard numerical processing problems, like numerical resolution of partial dif-
ferential equations [14]. The general idea is to use more specific and sophisticated
data-types to ease the programmer’s life. Nevertheless, further experimentations
have to be done to comfort the relevance of this approach.

A compiler for the static subset of 81/2 has already been implemented. All
the compiler phases assume a full MIMD execution model and we are currently
working on the MIMD code generation. The static examples of this article have
been processed by the existing compiler whereas the dynamic ones have been
interpreted by a sequential interpreter which triggers low-level vector operations
(currently implemented in C as a virtual SIMD machine). Data-parallelism could
be exploited by just adapting the low-level virtual machine. The current work on
the 81/2 language concerns the extension of the notion of collection (towards a
group structure [15]), the efficient treatment of dynamically shaped fabrics and
their relations to symbolic computation.

References

1. Jean-Louis Giavitto. Typing geometries of homogeneous collection. In Gaetan
Hains and L. M. R. Mullin, editors, ATABLE-92 Second International Workshop
on Array Structures, number 841, page (not numbered), Montral, 1992. Universit
de Montral, DIRO.

2. Olivier Michel. Design and implementation of 81/2, a declarative data-parallel
language. special issue on Parallel Logic Programming in Computer Languages,
1996. (to appear).

3. E. V. Zima. Recurrent relations and speed-up of computations using computer
algebra systems. In International Symposium, DISO’92, Bath, U.K., number 721
in Lecture Notes in Computer Sciences. Springer Verlag, April 1992.

4. P. Fritzson and N. Andersson. Generating parallel code from the equations in
the ObjectMath programming environment. In Second international ACPC con-
ference, Gmunden, Austria, number 734 in Lecture Notes in Computer Sciences.
Springer Verlag, October 1993.

5. J.-L. Giavitto, C. Germain, and J. Fowler. OAL: an implementation of an actor
language on a massively parallel message-passing architecture. In 2nd European
Distributed Memory Computing Conf. (EDMCC2), volume 492 of Lecture Notes in
Computer Sciences, Mnich, 22-24 April 1991. Springer-Verlag.

6. M. Lemaitre, M. Castan, M. H. Durand, G. Durrieur, and B. Lecussan. Mecha-
nisms for efficient multiprocessor combinator reduction. In Proc. of the 1986 ACM
Conference on LISP and Functionnal Programming, pages 113–121, Cambridge,
Ma., August 1986. ACM.

7. B. Hunberman and T. Hog. The ecology of computation, chapter The behavior of
computationnal ecologies. Studies in computer science and artificial intelligence.
North-Holland, 1988.

8. Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages. Proceedings
of the IEEE, 79(4):504–523, April 1991.

9. Edward A. Ashcroft, A. Faustini, R. Jagannathan, and W. Wadge. Multidimen-
sional Programming. Oxford University Press, February 1995. ISBN 0-19-507597-
8.

10. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative lan-
guage for programming synchronous systems. In Conference Record of the Four-
teenth Annual ACM Symposium on Principles of Programming Languages, pages
178–188, Munich, West Germany, January 21–23, 1987. ACM SIGACT-SIGPLAN,
ACM Press.

11. P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal, a dataflow
oriented language for signal processing. IEEE-ASSSP, 34(2):362–374, 1986.

12. W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Communications
of the ACM, 29(12):1170–1183, December 1986. HILLIS86.

13. F. Cappello, J.-L. Bchennec, and J.-L. Giavitto. PTAH: Introduction to a new par-
allel architecture for highly numeric processing. In Conf. on Parallel Architectures
and Languages Europe, Paris, LNCS 605. Springer-Verlag, 1992.

14. Olivier Michel, Jean-Louis Giavitto, and Jean-Paul Sansonnet. A data-parallel
declarative language for the simulation of large dynamical systems and its com-
pilation. In Institute for System Programming of the Russion Ac. of Sci., edi-
tor, SMS-TPE’94: Software for Multiprocessors and Supercomputers, Moscow, 21–
23September 1994. Office of Naval Research USA & Russian Basic Research Foun-
dation.

15. Jean-Louis Giavitto, Olivier Michel, and Jean-Paul Sansonnet. Group based fields.
In I. Takayasu, R. H. Jr. Halstead, and C. Queinnec, editors, Parallel Symbolic
Languages and Systems (International Workshop PSLS’95), volume 1068 of Lecture
Notes in Computer Sciences, pages 209–215, Beaune (France), 2–4October 1996.
Springer-Verlag.

This article was processed using the LATEX macro package with LLNCS style

Chapter 3

Semantics and compilation of recursive
sequential streams in 81/2.

[1] Jean-Louis Giavitto, Dominique De Vito, and Olivier Michel. Semantics and compilation of recursive
sequential streams in 81/2. In H. Glaser and H. Kuchen, editors, Ninth International Symposium on
Programming Languages, Implementations, Logics, and Programs (PLILP’97), volume 1292 of Lecture
Notes in Computer Science, pages 207–223, Southampton, 3–5 September 1997. Springer Verlag.

29

Semantics and Compilation of Recursive

Sequential Streams in 81/2

Jean-Louis Giavitto, Dominique De Vito, Olivier Michel

LRI u.r.a. 410 du CNRS,
Bâtiment 490, Université Paris-Sud, 91405 Orsay Cedex, France

Tel: +33 1 69 15 64 07 e-mail: giavitto@lri.fr

Abstract. Recursive definition of streams (infinite lists of values) have
been proposed as a fundamental programming structure in various fields.
A problem is to turn such expressive recursive definitions into an efficient
imperative code for their evaluation. One of the main approach is to re-
strict the stream expressions to interpret them as a temporal sequence of
values. Such sequential stream rely on a clock analysis to decide at what
time a new stream value must be produced. In this paper we present a de-
notational semantics of recursively defined sequential streams. We show
how an efficient implementation can be derived as guarded statements
wrapped into a single imperative loop.
Keywords: stream, clock, compilation of dataflow graphs.

1 Introduction

To simplify the formal treatment of a program, Tesler and Enea [1] have considered
single assignment languages. To accommodate loop constructs, they extend the concept
of variable to an infinite sequence of values rather than a single value. This approach
takes advantage of representing iterations in a “mathematically respectable way” [2]
and to quote [3]: “series expressions are to loops as structured control constructs are
to gotos”. Such infinite sequences are called streams and are manipulated as a whole,
using filters, transductors, etc.

This approach has led to the development of the stream data structure and the
dataflow paradigm, according to a large variety of circumstances and needs. Since
the declarative programming language Lucid [4], more and more declarative stream
languages have been proposed: Lustre [5] and Signal [6] in the field of real-time pro-
gramming, Crystal [7] for systolic algorithms, Palasm [8] for the programming of PLD,
Daisy [9] for VLSI design, 81/2 [10] for parallel simulation, Unity [11] for the design of
parallel programs, etc. Moreover, declarative definitions of streams can be a by-product
of the data-dependence analysis of more conventional languages like Fortran. In this
case, a stream corresponds to the successive values taken by a variable, e.g. in a loop.

1.1 Synchronous Streams

Synchronous streams in Lustre or Signal have been proposed as a tool for programming
reactive systems. In these two languages, the succession of elements in a stream is
tightly coupled with the concept of time: the evaluation order of the elements in a

stream is the same as the order of occurrence of the elements in the stream [12].
This is not true in Lucid, where the computation of element i in a stream A may
require the computation of an element j > i in A. In addition, synchronization between
occurrences of events in different streams is a main concern in Lustre and Signal. Lustre
and Signal rely on a clock analysis to ensure that synchronous expressions receive their
arguments at the same time (see [13] and [14] for a general introduction to synchronous
programming). For example, the expression A + B where A and B are streams, is
allowed in Lustre or Signal only if the production of the elements in A and B takes
place at the same instants (and so does the computation of the elements of A + B).
This requires that the streams A, B and A + B share a common reference in time:
a clock. Timed flow, synchrony, together with a restriction on stream expressions to
ensure bounded memory evaluation [15], make Lustre and Signal especially suitable
tools to face real-time applications.

1.2 Sequential Streams

Sequential streams in 81/2 share with the previous approach the idea of comparing the
order of occurrence of events in different streams. But, in contrast with the previous
approach, the expression A + B is always allowed in 81/2 emphasizing on a single
common global time. The instants of this time are called ticks. The 81/2 clock of the
stream is specified by the sequence of ticks where a computation must occurs to ensure
that, at each instant of the global clock, the relationship between the instantaneous
values of the streams A, B, and A + B is satisfied. Given streams A and B, it suffices
to recompute the value of A + B whenever a change happen to A or to B. The value
of a stream can be observed at any time and this value is the value computed at the
last change.

The idea of a clock in 81/2 corresponds more closely to the time where values
are computed rather than to the time when they must be consumed. In addition, a
stream value can be accessed at any time. This makes 81/2 unable to express real-
time synchronization constraints (for example, asserting that two streams must have
the same clock, like the synchro primitive in Signal), but makes more easy arbitrary
combinations of trajectories in the simulation of dynamical systems [16]. We call 81/2

streams sequential streams to stress that they have a strict temporal interpretation of
the succession of the elements in the stream (like Lustre and Signal and unlike Lucid)
without constraining to synchronous expressions.

1.3 Compiling Recursive Stream Equations into a Loop

The clock of a synchronous stream is a temporal predicate which asserts that the cur-
rent value of the stream is changing. The inference, at compile time, of the clock of
a stream makes the compiler able to check for consistencies (for example no temporal
shortcuts between stream definitions) and to generate straight code for the computa-
tion of the stream values instead of using a more expensive demand-driven evaluation
strategy.

Compiling a set of recursive stream equations consists in generating the code that
enumerates the stream values in a strict ascending order. The idea is just to wrap
a loop, that enumerates the ticks, around the guarded expression that computes the
stream values at a given tick. This is possible because we only admit operators on
streams satisfying a preorder restriction. The problem is to derive a static scheduling

of the computations and to generate an efficient code for the guards corresponding to
the clocks of the stream expressions.

Structure of the paper. In the following section, we sketch L a declarative language
on sequential streams. In section 3 we give a denotational semantics of L based on an
extension of Kahn’s original semantics for dataflow networks [17]. The main difference
between our semantics and that of Plaice [18] or Jensen [19] relies in a simpler presen-
tation of clocks. Moreover, our proposition satisfies a property of consistency between
clock and stream values: if the clock ticks, the corresponding stream value is defined.
Section 4 presents the translation of the clock definitions from the denotational se-
mantics to a boolean expression using C as the target language. The process involves
the resolution of a system of boolean expressions. Section 5 presents a benchmarks
corresponding to the performances of a 81/2 program compiled using the previous tools
compared to an equivalent hand-coded C program: it compares quite well. Finally,
section 6 examines related works.

2 Recursively Defined Sequential Streams

Conventions. We adopt the following notations. The value of a stream is a function
from a set of instants called ticks, to values called scalar values. We restrict ourself in
this paper to totally ordered unbounded countable set of ticks and therefore we use
N to represent this set ([20] and [21] show possible uses of a partially ordered set of
instants). The current value of a stream A refers to the scalar value at some tick t and
is denoted by A(t). The current value of a stream may be undefined, which is denoted
by nil. A sequential stream is more than a function from ticks to scalar values: we have
to represent the instants where a computation takes place to maintain the relationship
asserted by the definition of the stream. The set of ticks characterizing the activity
of the stream A is called its clock and written cl(A). For t 6= 0, if t 6∈ cl(A), then
A(t) = A(t − 1) because no change of value occurs and therefore the current value is
equal to the previous value. If 0 6∈ cl(A), then A(0) = nil. So, a stream A described
by > ; ; 1; ; 2; ; 3; . . . > means that A(0) = nil, A(1) = nil, A(2) = 1, A(3) = 1,
A(4) = 2, A(5) = 2, A(6) = 3, etc. The clock of A is the set cl(A) = { 2, 4, 6 . . . }. With
this notation, ticks are separated by “;” and a value is given only if the corresponding
tick is in the clock of the stream.

2.1 A Sequential Stream Algebra

The language L represents the core of 81/2 w.r.t the definition of streams. The set of
expressions in L is given by the grammar:

e ::= c | Clockn | x | e1 op e2 | $e | e1 when e2

where c ranges over integer and boolean constants (interpreted as constant streams), n
ranges over N, x over the set of variables Id and op over integer and boolean operations
such as +,∧, ==, < etc.

Constant streams. Scalar constants, like 0 or true, are overloaded to denote also
a constant stream with clock reduced to the singleton {0} and current value always
equal to the scalar c: c(t) = c. A construct like Clockn represents a predefined boolean
stream with current value always equal to true and with an unbounded clock (the
precise clock is left unspecified).

Arithmetic expressions. An expression like e1 bop e2 extends the scalar operator
bop to act in a point-wise fashion on the elements of the stream: ∀t, (Abop B)(t) =
A(t) bop B(t). The clock of Abop B is the set of ticks t necessary to maintain this as-
sertion (in a first approximation, it is the union of the clocks of A and B, Cf. section
3).

Delay. The delay operator $, is used to shift “in time” the values of an entire stream.
It gives access to the previous stream value. This operator is the only one that does not
act in a point-wise fashion. Consequently, only past values can be used to compute a
current stream value, and references to past values are relative to the current one. So,
only the last p values of a stream have to be recorded where p is a constant computable
at compile time. This restriction enables a finite memory assumption and enforces a
temporal interpretation of the sequence of elements in a stream.

Sampling. The when operator is a trigger, corresponding to the temporal version of
the if then else construct. It appears also in Lustre and Signal. The values of the
stream A whenB are those of A sampled at the ticks where B takes the value true (Cf.
Tab. 1).

Table 1. Some examples of streams expression.

1 : > 1; ; ; ; ; . . . >
true : > true; ; ; ; ; . . . >

Clock 2 : > true; ; true; ; true; . . . >
1 when Clock 2 : > 1; ; 1; ; 1; . . . >

$1 : > ; ; ; ; ; . . . >
$(1 when Clock 2) : > ; ; 1; ; 1; . . . >

2.2 Recursively Defined Sequential Streams

A stream definition in L is given through an equation x = e where x is a variable and e
a stream expression. This definition can be read as an equation being satisfied between
x and the stream arguments of e.

A definition can be guarded to indicate that it is valid only for some ticks:

A@0 = 33, A = ($A + 1) when Clock 0 .

The first equation is guarded by @0 which indicates that this equation is only valid
for the first tick in the clock of A (that is, the first tick of A is also the first tick of
the constant stream 33, which is the tick t = 0). The second equation is “universally”
quantified and defines the stream when no guarded equation applies. In this paper,
the only language we consider for temporal guards is @n where n is an integer which
denotes the nth tick in a clock. A L program is a set of such definitions (i.e. guarded or
non-guarded equations). For a given identifier x, there can only be a single universally
quantified equation and at most one equation quantified by n.

An example of a reactive system using sequential streams. A “wlumf” is a “crea-
ture” whose behavior (mainly eating) is triggered by the level of some internal state
(see [22] for such model in ethological simulation) More precisely, a wlumf is hungry
when its glycaemia subsides under the level value 3. It can eat when there is some food
in its environment. Its metabolism is such that when it eats, the glycaemia goes up to
the level 10 and then decreases to zero at a rate of one unit per time step. Essentially,
a wlumf is made of counters and flip-flop triggered and reset at different rates. The
operator {. . .} is used to group sets of logically related stream definitions but we shall
not be concerned with this aspect of the language for the rest of the paper .

System wlumf = {

hungry@0 = false
hungry = glycemia < 3

glycemia@0 = 6
glycemia = if eat then 10
else max(0, $glycemia−1)when(Clock 0) fi

eat@0 = false
eat = $hungry && environment.food

}

System environment = {
t@0 = 0
t = $t + 1 when Clock − 4

food = (0 == (t%2))
}

Fig. 1. The dynamical behaviour of an artificial creature, the “wlumf”. The operator
% is for modulo and == for testing equality. So food is true or false depending on
the parity of the counter t which progresses randomly at an average rate of 1/4. The
operator && is the logical and.

3 A Denotational Semantics for L

For the sake of simplicity, we assume that guarded equations are only of the form
x@0 = e. Therefore, we replace a definition x@0 = e1, x = e2 by a single equation
x = e1 fby e2 where fby is a new operator waiting for the first tick in the clock of e1

and then switching to the stream e2. The denotational semantics of L is based on an
extension of Kahn’s original semantics for dataflow networks [17]. The notations are
slightly adapted from [23].

3.1 Stream Values and Clocks

The basic domain consists of finite and infinite sequences over the sets of integer
and boolean values extended with the value nil to represent the absence of a value:
ScValue = Bool ∪ Int ∪ {nil} and Value = ScValue

∗ ∪ ScValue
∞. The operation

“.” denotes the concatenation of finite or infinite sequences. In Value, u approximates
v, written u � v if v = u.w. This order is chosen against the more general Scott order
(e.g. used for defining domains of functions [23]) in accordance with our interpretation
of the succession of elements in the stream as the progression in time of the evaluation
process.

A first idea to describe timed stream is to associate to the sequence of values, a
sequence of boolean flags telling if an element is in the clock of the stream (flag true: ⊤)
or not (flag false: ⊥). In other words, a sequence of booleans {⊥,⊤} is used to represent
cl(). For example, the sequence representing the clock of Clock 2 is: ⊤ ⊥ ⊤ ⊥ ⊤ . . .
Thus: ScClock = {⊥,⊤} and Clock = ScClock

∗ ∪ScClock
∞. We choose to com-

pletely order ScClock by ⊥ < ⊤. The motivation to completely order the domain
ScClock is the following: there is no particular reason for a stream definition eval-
uating into a sequence of undefined values, not to have a defined clock (with no true
values). Moreover, if we cannot evaluate the current value of a clock, we obviously can-
not evaluate the current value of the corresponding stream and this is observationally
equivalent to the value ⊥ in the clock sequence.

By convention, if s is a Clock, then t ∈ s means s(t) = ⊤ and t 6∈ s means
s(t) = ⊥. We extend the logical or ∨ by ∨ and the logical and ∧ by ∧ to operate
point-wise on Clock: that is, (s ∧ s′)(t) = s(t) ∧ s′(t) and (s ∨ s′)(t) = s(t) ∨ s′(t)).
The ordering of clocks is also the prefix ordering.

In the work of Plaice [18] or Jensen [19], the definition of the clock of a stream is
loosely coupled with the value of the stream, in the following sense: a tick can be in
the clock of a stream while the current value of the stream is undefined. The simplest
example is the expression $e which has the same clock of e but with an undefined value
for the first tick in cl(e). On the contrary, we ask for a denotational semantics that
ensures that:

t ∈ cl(e) ⇒ e(t) 6= nil (1)

A property like (1) is natural and certainly desirable but cannot be directly achieved.
This is best shown on the following example. Consider the stream defined by:

A = 1 fby (($A + 1) when (Clock 0)) (2)

which is supposed to define a counter increasing every ticks. But, if we assume property
(1), then cl(A) can be proved to be {0}. As a matter of fact, 0 ∈ cl(A) because 0 ∈ cl(1)
and obviously the first tick in cl(e) is also in cl(efbye′). Furthermore, a delayed stream
$e cannot have a defined value the first time e has a defined value. So, using property
(1), it comes that 0 6∈ cl($A). Furthermore, the value of e when clock0 is defined only
when e has a defined value. So, again using property (1), we infer that

cl(A) = ⊤.Ok(cl($A + 1)) = ⊤.Ok(cl($A)) (3)

where the predicate Ok tells if the clock has already ticked: Ok(⊥.s) = ⊥.Ok(s) and
Ok(⊤.s) = True (the sequence True is the solution of the equation True = ⊤.T rue).
The clock of $A depends of the clock of A and more precisely, except for the first tick
in cl(A), we have cl($A) = cl(A). So, for t 6= 0, equation (3) rewrites in:

t 6= 0, cl(A)(t) = Ok(cl(A))(t) (4)

Equation (4) is a recursive equation with solutions in Clock. This equation admits
several solutions but the least solution, with respect to the structure of Clock, is
cl(A) = ⊤.False (where False = ⊥.False). This is a problem because we expect the
solution True.

The collapse of the clock is due to the confusion of two predicates : “having a
definite value at tick t” and “changing possibly of value at tick t”. Then, to develop
a denotational semantics exhibiting a property similar to (1), our idea is to split the
clock of a stream A in two sequences D(A) and C(A) with the following intuitive

interpretation: D(A) indicates when the first non nil value of A becomes available
for further computations and C(A) indicates that some computations are necessary to
maintain the relationship asserted by the stream definition.

3.2 Semantics of Expressions

We call environment a mapping from variables to Clock or Value. An element ρ of
Env is a mapping Id → Clock×Clock ×Value. Such an element really represents
three environments linking a variable to the two sequences representing its clock and
the sequence representing its value.

The semantics of L expressions is defined by the three functions:

D[[]], C[[]], V[[]] : Exp → Env → Value .

The reason of using an element of Env instead of an environment, is the value of an
expression involving variable may depend of the clocks D[[]] and C[[]] of this variable.
By convention, if ρ ∈ Env, then ρd, ρc and ρv represents the components of ρ, that is:
ρ(x) = (ρd(x), ρc(x), ρv(x)). In addition, we omit the necessary injections between the
basic syntactic and semantic domains when they can be recovered from the context.

A constant c denotes the following three sequences:

D[[c]]ρ = True, C[[c]]ρ = ⊤.False, V[[c]]ρ = c∞,

where c∞ denotes an infinite sequence of c’s, i.e. c∞ = c.c∞. The intuitive meaning is
that the current values of a constant stream are available from the beginning of time,
a computation being needed only at the first instant to build the initial value of the
constant stream and the current values being all the same. Some other constants are
needed if we want to have streams with more than singleton clocks. This is the purpose
of the constant stream Clockn which has an unbounded clock:

D[[Clockn]]ρ = True, C[[Clockn]]ρ = dev(n), V[[Clockn]]ρ = True,

where dev(n) is some device computing a boolean sequence depending on n, beginning
by ⊤ and with an unbounded number of ⊤ values. Variables are looked up in the
corresponding environment:

D[[x]]ρ = ρd(x), C[[x]]ρ = ρc(x), V[[x]]ρ = ρv(x) .

The predefined arithmetic and logical operators are all strict:

D[[e1 bop e2]]ρ = D[[e1]]ρ ∧ D[[e2]]ρ

C[[e1 bop e2]]ρ = D[[e1 bop e2]]ρ ∧ (C[[e1]]ρ ∨ C[[e2]]ρ)

V[[e1 bop e2]]ρ = V[[e1]]ρ bop V[[e2]]ρ

that is, the value of e1 bop e2 can be computed only when both e1 and e2 have a value.
This value changes as soon as e1 or e2 changes its value, when both are defined. Notice
that the definition of C[[e]]ρ takes the form D[[e]]ρ∧(. . .) in order to ensure the property:

∀t, C[[e]]ρ(t) ⇒ D[[e]]ρ(t) (5)

(Cf. section 3.3). For a delayed stream, the equations are:

D[[$e]]ρ = delD(D[[e]]ρ), C[[$e]]ρ = D[[$e]]ρ ∧ C[[e]]ρ

V[[$e]]ρ = delV (nil, nil;V[[e]]ρ,C[[e]]ρ)

where delD and delV are auxiliary functions defined by (s, s′′ are sequences and p, p′

are scalar values 6= nil):

delD(⊥.s) = ⊥.delD(s)

delD(⊤.s) = ⊥.s

delV (nil, nil; v.s,⊥.s′) = nil.delV (nil, nil; s, s′)

delV (nil, nil; v.s,⊤.s′) = nil.delV (v, v; s, s′)

delV (p, p′; v.s,⊥.s′) = p.delV (p, p′; s, s′)

delV (p, p′; v.s,⊤.s′) = p′.delV (p′, v; s, s′)

In other words, if t is the first tick for which A has a defined value, then the value
of $A becomes available at t + 1. The computation needed for $A takes place at the
same instants, as for A, except the first instant, and the values are shifted in time
accordingly.
The sampling operator is specified by:

D[[e1 when e2]]ρ = D[[e1]]ρ ∧ D[[e2]]ρ

C[[e1 when e2]]ρ = D[[e1 when e2]]ρ ∧ (C[[e2]]ρ ∧ V[[e2]]ρ)

V[[e1 when e2]]ρ = trigger(nil;V[[e1]]ρ,C[[e1 when e2]]ρ)

where trigger is defined as:

trigger(p;v.s,⊥.s′) = p.trigger(p;s, s′)

trigger(p;v.s,⊤.s′) = v.trigger(v;s, s′)

The value of the sampling operator can be defined only when both operands are defined.
The clock is defined by the (sub)clock of e2 when e2 takes the value ⊤.
Finally, the fby construct takes the first defined element in its first argument and then
“switches” to its second argument:

D[[e1 fby e2]]ρ = D[[e1]]ρ

C[[e1 fby e2]]ρ = D[[e1]]ρ ∧ fbyC(C[[e1]]ρ,C[[e2]]ρ)

V[[e1 fby e2]]ρ = fbyV (C[[e1]]ρ,V[[e1]]ρ,V[[e2]]ρ)

where:

fbyC(⊥.s, b.s′) = ⊥.fbyC(s, s′)

fbyC(⊤.s, b.s′) = ⊤.s′

fbyV (⊥.w, v.s, v′.s′) = v.fbyV (w, s, s′)

fbyV (⊤.w, v.s, v′.s′) = v.s′

3.3 Semantics of Programs

The semantics of a set of recursive equations {. . . , xi = ei, . . .} is composed of an
element ρ ∈ Env assigning domain, clock and values to each stream variables xi in the
program. It can be computed as the least fixed point of the function

F (ρ) = [. . . , xi 7→ (D[[ei]]ρ, C[[ei]]ρ, V[[ei]]ρ), . . .]

where [. . . , x 7→ v, . . .] stands for an environment which maps x to v. All auxiliary func-
tions involved are monotone and continuous. Then, the fixed point can be calculated
in the standard way as the least upper bound of a sequence of iterations F n starting
from the empty environments. We write (D(x),C(x),V(x)) for the value associated to
x in the meaning of a program.

The simple form of the semantics may accommodate several variations to specify
other stream algebra. The affirmation (5) holds for any environment ρ, and then it
holds also for the fixpoint:

∀t, C(e)(t) ⇒ D(e)(t) (6)

A proof by induction on the structure of an expression shows that a property similar
to (1) holds between C[[e]] and V[[e]] for any expression e in a program: ∀t, C(e)(t) ⇒
V(e)(t) 6= nil. Another result will be extremely useful for the implementation. Once
defined, the current value of a stream may change on tick t only if the clock of the
stream takes the value ⊤ at t:

∀t, D(e)(t− 1) ∧V(e)(t− 1) 6= V(e)(t) ⇒ C(e)(t) (7)

the proof is by induction on terms in L.

Example of a counter. As an example, we consider the semantics of the clock of the
program (2). We assume that dev(0) = True. The semantics of the counter A is defined
by the following equations:

D(A) = D(1 fby (($A + 1) when Clock 0)) = D(1) = True

C(A) = C(1 fby (($A + 1) when Clock 0))

= fbyC(C(1),C(($A + 1) when Clock 0))

= fbyC(⊤.False,D(($A + 1 when Clock 0) ∧ (C(Clock 0) ∧ True)) .

We have D(($A+ 1) when Clock 0) = D($A+ 1)∧D(Clock 0) = D($A+ 1) = D($A)∧
True = D($A) = ⊥.T rue because D(A) = True. So, as expected:

C(A) = True ∧ fbyC(⊤.False,⊥.T rue ∧ (C(Clock 0) ∧ True))

= fbyC(⊤.False,⊥.T rue) = True .

4 Compiling Recursive Streams into a Loop

We implement a sequence s as the successive values of one memory location associated
with (the current value of) s. We emphasize that successive means here successive in
time. The idea is to translate a set of equations {. . . , x = e, . . .} into the imperative
program (in a C like syntax):

for(;;) { ...; xd = ed; xc = ec; xv = ev; ...; }
where xd is associated to the current value of D(x), etc. This implementation is far
from the representation needed for Lucid (or for the lazy lists of Haskell) where several
elements of a sequence can be present at the same time in the memory so that a garbage
collector is involved to remove useless elements from the memory.

With the denotational semantics defined above, this representation implies the up-
date of the three memory locations at each tick (i.e. for each element in the sequence).
However, property (6) implies that it is sufficient to update the memory location rep-
resenting C(e) only when D(e)(t) evaluates to true. And property (7) implies that is

is sufficient to evaluate V(e)(t) when C(e)(t) evaluates to true. These two conditions
are sufficient but not necessary (e.g. Clock 0 has an unbounded clock but its current
value is always ⊤). So, a L program can be translated into the following C skeleton:

for(;;) { ...; if(xd = ed) { if(xc = ec) { xv = ev; }} ...; }
However, translating a set of definitions into imperative assignments is not straight-
forward because of the recursive definitions: how to evaluate fixed points of sequences
expressions without 1) handling explicitly infinite sequences and 2) iterations. In the
rest of the section, we will build the tools that are necessary for this translation.

4.1 LR(1) Functions

We say that a function f : ScValue×Value
n → Value is LR(1) if:

f(m; v1.s1, . . . , vn.sn) = f ′(m, v1, . . . , vn) . f(f ′′(m, v1, . . . , vn); s1, . . . , sn)

where f ′ and f ′′ are functions from scalar values to scalar values: f ′, f ′′ : ScValue
n+1 →

ScValue. Being LR(1) means that computing f on sequences can be a left to right pro-
cess involving only computation on scalars, with only one memory location, assuming
that the arguments are also provided from left to right.

Suppose F is LR(1); to solve the equation v.s = F (m; v.s) on sequences (v and s
are unknown, m is a parameter) it is then sufficient to solve the equation

v = F ′(m; v) (8)

on scalars and then to proceed with the resolution of s = F (F ′′(m, v); s). Thus we have
to consider the two sequences:

vi = F ′(mi; vi), mi = F ′′(mi−1, vi−1), i ≥ 1

obtained by enumerating the successive solutions of (8) starting from an initial value
m0. The sequence of vi’s is obviously a solution of s = F (s) and moreover, it is the least
solution for �. The equation (8) is called the I-equation associated with the equation
s = F (s) (I stands for “instantaneous”). It is easy to show that all the functions
involved in the semantics of an expression given in section 3 are LR(1). This provides
the basis for the implementation of declarative sequential streams into an imperative
code.

4.2 Guarded LR(1) Semantic Equations

It is easy to rephrase the semantic definition of each L construct given in section 3 to
make explicit properties (6), (7) and LR(1). The semantic equations are rephrased in
Fig. 2 but due to the lack of place, we omit to rephrase some auxilliary functions. We
have explicitly stated the values for a tick t in order to give directly the expressions ed,
ec and ev corresponding to C skeleton. The notation s(t) refers to the tth element in
sequence s, where element numbering starts 0. Semantics of systems remains the same.
We will omit the tedious but straightforward proof by induction on terms to check that
the two semantic definitions compute the same thing.

for commodity, let D[[e]]ρ(−1) = ⊥, C[[e]]ρ(−1) = ⊥, V[[e]]ρ(−1) = nil
for any expression e and environment ρ, and assume t > −1 below:

D[[c]]ρ(t) = ⊤ C[[c]]ρ(t) = (t == 0) V[[c]]ρ(t) = c

D[[Clockn]]ρ(t) = ⊤ C[[Clockn]]ρ(t) = dev(n, t) V[[Clockn]]ρ(t) = ⊤

D[[x]]ρ(t) = ρ(x)(t) C[[x]]ρ(t) = ρ(x)(t) V[[x]]ρ(t) = ρ(x)(t)

D[[e1 bop e2]]ρ(t) = D[[e1]]ρ(t) ∧ D[[e2]]ρ(t)
C[[e1 bop e2]]ρ(t) = if D[[e1 bop e2]]ρ(t) then C[[e1]]ρ(t) ∨ C[[e2]]ρ(t) else ⊥
V[[e1 bop e2]]ρ(t) = if C[[e1 bop e2]]ρ(t) then V[[e1]]ρ(t) bop V[[e2]]ρ(t)

else V[[e1 bop e2]]ρ(t− 1)

D[[$e]]ρ(t) = D[[e]]ρ(t− 1)
C[[$e]]ρ(t) = if D[[$e]]ρ(t) then C[[e]]ρ else C[[$e]]ρ(t− 1)
V[[$e]]ρ(t) = if C[[$e]]ρ(t) then delV (nil, nil;V[[e]]ρ,C[[e]]ρ)(t) else V[[$e]]ρ(t− 1)

D[[e1 when e2]]ρ(t) = D[[e1]]ρ(t) ∧ D[[e2]]ρ(t)
C[[e1 when e2]]ρ(t) = if D[[e1 when e2]]ρ(t) then C[[e2]]ρ(t) ∧ V[[e2]]ρ(t) else ⊥
V[[e1 when e2]]ρ(t) = if C[[e1 when e2]]ρ(t) then V[[e1]]ρ(t) else V[[e1 when e2]]ρ(t− 1)

D[[e1 fby e2]]ρ(t) = D[[e1]]ρ(t)
C[[e1 fby e2]]ρ(t) = if D[[e1 fby e2]]ρ(t) then fbyC(C[[e1]]ρ, C[[e2]]ρ)(t) else ⊥
V[[e1 fby e2]]ρ(t) = if C[[e1 fby e2]]ρ(t) then fbyV (C[[e1]]ρ,V[[e1]]ρ,V[[e2]]ρ)(t)

else V[[e1 fby e2]]ρ(t− 1)

Fig. 2. Semantics of L in an explicit LR(1) form.

4.3 I-system Associated with a Program

Each equation x = F (x) in a L program is directly interpreted through the semantics
of an expression, as three equations defining D[[x]], C[[x]] and V[[x]], the images of x
by the program meaning. Each right hand-side, written respectively Fd[x], Fc[x] and
Fv[x], corresponds to a LR(1) function and therefore can be decomposed into the F ′ and
F ′′ forms. In order to implement the various environments simply as a set of memory
locations, we write xd, xc and xv for the current value of D[[x]], C[[x]] and V[[x]] and
xmd, xmc and xmv for the first argument in F ′. The three I-equations associated with
x = F (. . .) can then be rephrased as:

xd = F ′

d[x](xmd; . . .), xc = F ′

c[x](xmc; . . .), xv = F ′

v [x](xmv; . . .) .

For each variable in the program there is one equation defining xd, one for xc and one
for xv. The expression defining xc has the form: if xd then . . . else xmc and the
expression defining xv follow the pattern if xc then . . . else xmv, except for the
constants. The variables xmc and xmv are in charge to record the value xc or xv at the
previous tick (or equivalently, they denote the one-tick shifted sequence that appears
in the right hand side of the semantic equations). The expressions “. . . ” that appear
in the if then else expression are also LR(1) functions of the sequences xmd, xmc,
xmv, xd, xc and xv. Thus they may require some additional scalar variables x′m.

The set of I-equations associated with a program is called the I-system associ-
ated with the program. Suppose we can solve an I-system, then a sketch of the code
implementing the computation of a L program is given in Fig. 3.

data declarations corresponding to the xd, xc, xv’s

data declarations corresponding to the xmc, xmv’s

for(;;) {

solve the I-system and update the xd, xc, xv’s

update the xmd, xmc, xmv’s according to the function F ′′

...[x]
}

Fig. 3. Sketch of the code implementing the computation of a L program.

4.4 Solving Efficiently an I-system

The problem of computing the least fixed point of a set of equations on sequences has
now be turned into the simpler problem of computing the least solution of the I-system,
a set of equations between scalar values. A straightforward solution is to compute it by
fixed point iterations. If l is the number of expressions in the program, the iterations
must become stationary after at most l steps, because the scalar domains are all flat.
The problem is that this method may require l steps (l can be large) and that each
step may require the computation of all the l expressions in the program.

Consider the dependence graph of an I-system: vertices correspond to variables
and an edge from x to y corresponds to the use of x in the definition of y. This graph
may be cyclic if the given definitions are recursive. For instance in a@0 = b, a = $a or b
which defines a signal a always true after the first true value in b, C[[a]] depends of C[[a]]
(and also of C[[b]] which imposes its clock).

Without recursive equations, solving the I-system is easily done by simple substitu-
tions: a topological sort can be used to order the equations at compile time. Non strict
operators, like the conditional expression if...then...else..., can rise a problem be-
cause they induce a dependence graph depending on the value of the argument, value
which is known only at evaluation time. Most of the time, it is possible to consider the
union of the dependence graphs without introducing a cycle (which enables a static
ordering of the equations). For the remaining rare cases, more sophisticated techniques,
like conditional dependence graphs [24], can be used to infer a static scheduling. Solv-
ing the sorted system reduces to compute, in the order given by the topological sort,
each right hand side and update the variables in the left hand side. In addition, the
environment is implicitly implemented in the xd, xc, xv, . . . variables.

For cyclic dependence graphs, the vertices can be grouped by maximal strongly
connected components. The maximal strongly components form an acyclic graph cor-
responding to a partition of the initial I-system into several sub-systems. We call this
graph the c-graph of the system (c stands for “component”). A root in the c-graph is
a minimal element, that is, a node without predecessor (because c-graphs are acyclic,
at least a root must exist). Each root of the c-graph represents a valid sub-system of
the I-system, that is, a system where all variables present are defined (this is because
roots are minimal elements). The solution of the entire I-system can be obtained by
solving the sub-systems corresponding to the roots, propagating the results and then
iterating the process. The processing order of the components can be determined by a
topological sort on the c-graph.

So, we have turned the problem of solving an I-system into the problem of solving
a root, that is: solving a subsystem of the initial system that corresponds to a maximal
strongly connected component without a predecessor. In a root, we make a distinction

between two kinds of nodes: the V -nodes corresponding to expressions computing the
current value of some stream and the B-nodes generated by the computation of the
current boolean value for the clock of some stream. It can be seen that if there is a cycle
between V -nodes, there is also a corresponding cycle involving only B-nodes (because
the computation of D[[e]] and C[[e]] involves the same arguments as the computation of
V[[e]] for any expression e).

First, we turn our attention on cycles involving only B-nodes: they correspond to
λx.x, ∧, ∨ and if then else operations between ScClock. We assume that the
root is reduced, that is, each argument of a B-node is an output of another B-node in
the root (e.g., expressions like ⊤∧ x are reduced to x before consideration). Then, the
output of any node in the root reduces to ⊥. This is because a B-node op is strict (i.e.
op(. . . ,⊥, . . .) = ⊥). Consequently, the fixed point is reached after one iteration.

Now, we turn our attention on cycles involving only V -nodes. Circular equations
between values result also in circular equations between domains and clocks. The as-
sociated clock then evaluates to false so there is no need to compute the associated
value (which therefore remains nil).

A cycle involving both V -nodes and B-nodes is not possible inside a reduced root
because there is no operator that promotes a clock into a value (clocks are hidden
objects to the programmer, appearing at the semantical and implementation levels
only).

5 Evaluation

The approach described in this paper has been fully implemented in the experimen-
tal environment of the 81/2 language [25–27] (available at ftp://ftp.lri.fr/LRI/

soft/archi/Softwares/8,5). The current compiler is written in C and in CAML. It gen-
erates either a target code for a virtual machine implemented on a UNIX workstation
or directly a straight C code (no run-time memory management is necessary).

To evaluate the efficiency of our compilation scheme, we have performed some tests.
We have chosen to compare the sequential generated C code from the 81/2 equations
with the hand-coded corresponding C implementation (because the application domain
of 81/2 is the simulation of dynamical systems, tests include a standard example of
the numerical resolution of a partial differential equation through an explicit scheme
and an implementation of the Turing’s equations of diffusion-reaction). We details the
results of the benchmark for the numerical resolution of a parabolic partial differential
equation governing the heat diffusion in a thin uniform rod (Cf. Tab. 2).

The mean execution time corresponding to the compiler generated code without
optimization is about 2.9 times slower than the hand-written one. The slight variation
of the ratio with the number of iterations (which is the tick at which the program
stops) are explained by a cache effect [28].

Four optimizations can be made on the generated C code to improve the perfor-
mances. The first two concern the management of arrays (array shifting instead of
gather/scatter and array sharing instead of copying for the concatenation) and does
not interfere with the stream compilation scheme.

The last two optimizations have to do with the management of streams. For each
delay $F appearing in the 81/2 code, a copy has to be performed. The current value
of a stream F is copied as many times as F is referenced by the delay operator. So,
the sharing of delay expressions removes the useless copies. Moreover, the copy of
expressions referenced by a delay operator (xd into xmd, etc.) can be time-consuming,

Table 2. The heat diffusion resolution. Each element represents the ratio of the gen-
erated code execution time by the hand-written one. They both have been compiled
using the GNU C compiler with the optimization option set -O. The evaluation has
been performed on a HP 9000/705 Series under the HP-UX 9.01 operating system.
The first number represents the ratio without high-level optimizations, the second with
the four optimizations sketched. The ratio does not depend of the number of iterations,
i.e. the number of stream elements that are computed, which shows the strict temporal
nature of the stream evaluation scheme.

Number of iterations →
100 500 1000 5000 10000

Size of the rod ↓

10 5.66 5.13 4.87 4.96 4.93
3.89 3.59 3.65 3.70 3.66

100 2.27 2.17 2.17 2.15 2.15
1.34 1.26 1.26 1.25 1.25

1000 2.80 2.76 2.76 2.76 2.76
1.10 1.09 1.08 1.08 1.08

10000 2.62 2.60 2.61 2.60 2.61
1.01 1.01 1.01 1.00 1.01

especially when large arrays are manipulated. However, the copy of the value of a
stream F is not required, under some conditions (a similar optimization is described in
Lustre [29]). If these conditions are not met, it is however possible to discard the delay
copy. But it is necessary to have a temporary variable associated with the stream $F .
This kind of delay optimization consists in the definition of a single variable for each
of the streams F and $F and to alternatively let it play the role of F or $F (a similar
optimization is proposed in Sisal [30]).

The second number in Tab. 2 underlines the impact of these improvements: the
mean ratio decreases to 1.5. Actually, it goes as far as 1.1 if we do not take into
account the tests for which the rod has less than 100 elements, that is a size such that
control structures are not negligible. However, it must be noted that there is a large
room for further optimizations. More benchmarks can be found in [28].

6 Conclusion

Denotational semantics of recursive streams goes back to [17]. Equivalence between the
denotational semantics and the operational behavior of a dataflow networks is studied
in the work of [31]. Denotational semantics of timed flow begins in the framework
of Lustre with [32,18]. A very general framework has been formulated in [33] but its
sophistication makes its use uneasy. The work of Jensen [19] formalizes clock analysis
in terms of abstract interpretation and extends the works of Plaice and Bergerand.
We should mention the work of Caspi and Pouzet [34]: the clock calculus there is
different than most other in not using fixpoints. Our proposal fills a gap left open in
these approaches by providing a denotational semantics of clock tightly coupled with
the denotational semantics of values. Notice that there is a great difference between
our handling of time and the synchronous concept of time in reactive systems: our
clocks indicates when the value of a stream has to be recalculated as a result of other

changes in the system, while clocks in reactive systems tells when the value of a signal
is present.

If D(x) or C(x) reduces to False, there is no value produced in the sequence
V(x). This situation is a kind of deadlock. Deadlocks detection in declarative stream
definitions are studied in [35,36] and for lazy lists in [37]. Thanks to the ROBDD [38]
representation of clocks, it is possible to detect at compile-time some cases of such
definitions. Clock reducing to True can also be detected and their implementation
optimized. Signal has developed a sophisticated clock calculus to solve clock equations
(dynamical system over Z/3Z and Grobner bases). This approach is powerful but
computation consuming. Its extension to our own stream algebra is not obvious and
must be carefully studied.

The transformation of stream expressions into loops is extensively studied in [3].
The expressions considered do not allow recursive definitions of streams. Our propo-
sition handles this important extension as well as “off-line cycle” expressions and is
based upon the formal semantics of the expressions. We share the preorder restriction,
i.e.: the succession of stream elements must be processed in time ascending order (this
is not the case in Lucid). We focus also on unbounded streams and therefore we do not
consider operations like concatenation of bounded streams. The work in [39] considers
the static scheduling of a class of dataflow graphs used in digital signal processing. The
translation of a (recursive) stream definition into a (cyclic) dataflow graph is straight-
forward. Their propositions apply but are limited to the subset of “on-line” programs
[40]. This restriction excludes the sampling operator and requires the presence of, at
least, one delay on each cycle of the dataflow graph.

The benchmarks performed validate the approach used in the compilation of the
clock expressions although all the needed optimizations are not currently implemented.
When made by hand, the ratio between the C version and the 81/2 version lies between
1.1 and 2.3 (in favor of C) for the benchmark programs. As an indication, the hand-
written C program for the Turing example of diffusion-reaction has 60 lines of code
whereas the 81/2 program is only 15 lines long (which are the straight transcription
of the mathematical equations governing the process). Thus the price to pay for high
expressivity (declarative definition of high-level objects) is not always synonym of low
efficiency provided that some carefully tuned optimization techniques are used. Never-
theless, the cost of the control structures cannot be neglected and several optimizations
must be performed [27].

Acknowledgments. The authors wish to thank Jean-Paul Sansonnet, the members of the
Parallel Architectures team in LRI and the anonymous reviewers for their constructive
comments.

References

1. G. L. Tesler and H. J. Enea. A language design for concurrent processes. In AFIPS
Conference Proceedings, volume 32, pages 403–408, 1968.

2. W. W. Wadge and E. A. Ashcroft. Lucid, the Data flow programming language.
Academic Press U. K., 1985.

3. R. C. Waters. Automatic transformation of series expressions into loops. ACM
Trans. on Prog. Languages and Systems, 13(1):52–98, January 1991.

4. W. W. Wadge and E. A. Ashcroft. Lucid - A formal system for writing and proving
programs. SIAM Journal on Computing, 3:336–354, September 1976.

5. P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: A declarative lan-
guage for programming synchronous systems. In Conference Record of the Four-
teenth Annual ACM Symposium on Principles of Programming Languages, pages
178–188, Munich, West Germany, January 21–23, 1987. ACM SIGACT-SIGPLAN,
ACM Press.

6. P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal, a dataflow
oriented language for signal processing. IEEE-ASSSP, 34(2):362–374, 1986.

7. M. C. Chen. A parallel language and its compilation to multiprocessor machines
or VLSI. In Principles of Programming Languages, pages 131–139, Florida, 1986.

8. N. Schmitz and J. Greiner. Software aids in PAL circuit design, simulation and
verification. Electronic Design, 32(11), May 1984.

9. S. D. Johnson. Synthesis of Digital Designs from Recursion Equations. ACM
Distinguished Dissertations. ACM Press, 1983.

10. J.-L. Giavitto. A synchronous data-flow language for massively parallel computer.
In D. J. Evans, G. R. Joubert, and H. Liddell, editors, Proc. of Int. Conf. on Par-
allel Computing (ParCo’91), pages 391–397, London, 3-6 September 1991. North-
Holland.

11. K. Chandy and J. Misra. Parallel Program Design - a Foundation. Addison Wesley,
1989.

12. J. A. Plaice, R. Khédri, and R. Lalement. From abstract time to real time. In
ISLIP’93: Proc. of the 6th Int. Symp. on Lucid and Intensional programming, 1993.

13. A. Benveniste and G. Berry. Special section: Another look at real-time program-
ming. Proc. of the IEEE, 79(9):1268–1336, September 1991.

14. N. Halbwachs. Synchronous programming of reactive systems. Kluwer Academic
publishers, 1993.

15. Paul Caspi. Clocks in dataflow languages. Theoretical Computer Science, 94:125–
140, 1992.

16. O. Michel, J.-L. Giavitto, and J.-P. Sansonnet. A data-parallel declarative language
for the simulation of large dynamical systems and its compilation. In SMS-TPE’94:
Software for Multiprocessors and Supercomputers, Moscow, 21-23 September, 1994.
Office of Naval Research USA & Russian Basic Research Foundation.

17. Gilles Kahn. The semantics of a simple language for parallel programming. In
proceedings of IFIP Congress’74, pages 471–475. North-Holland, 1974.

18. J. A. Plaice. Sémantique et compilation de LUSTRE un langage déclaratif syn-
chrone. PhD thesis, Institut national polytechnique de Grenoble, 1988.

19. T. P. Jensen. Clock analysis of synchronous dataflow programs. In Proc. of ACM
Symposium on Partial Evaluation and Semantics-Based Program Evaluation, San
Diego CA, June 1995.

20. H. R. Andersen and M. Mendler. An asynchronous process algebra with multiple
clocks. In D. Sannella, editor, Programming languages and systems - ESOP’94,
volume 788 of Lecture Notes in Computer Sciences, pages 58–73, Edinburgh, U.K.,
April 1994. Springer-Verlag.

21. P.-A. Nguyen. Représentation et construction d’un temps asynchrone pour le lan-
gage 81/2, Avril-Juin 1994. Rapport d’option de l’Ecole Polytechnique.

22. Patti Maes. A bottom-up mechanism for behavior selection in an artificial crea-
ture. In Bradford Book, editor, proceedings of the first international conference on
simulation of adaptative behavior. MIT Press, 1991.

23. P. D. Mosses. Handbook of Theoretical Computer Science, volume 2, chapter De-
notational Semantics, pages 575–631. Elsevier Science, 1990.

24. A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with
events and relations: the SIGNAL language and its semantics. Science of Computer
Programming, 16:103–149, 1991.

25. O. Michel. Design and implementation of 81/2, a declarative data-parallel language.
Computer Languages, 22(2/3):165–179, 1996. special issue on Parallel Logic Pro-
gramming.

26. O. Michel, D. De Vito, and J.-P. Sansonnet. 81/2 : data-parallelism and data-flow.
In E. Ashcroft, editor, Intensional Programming II:Proc. of the 9th Int. Symp. on
Lucid and Intensional Programming. World Scientific, May 1996.

27. D. De Vito and O. Michel. Effective SIMD code generation for the high-level
declarative data-parallel language 81/2. In EuroMicro’96, pages 114–119. IEEE
Computer Society, 2–5September 1996.

28. D. De Vito. Semantics and compilation of sequential streams into a static SIMD
code for the declarative data-parallel language 81/2. Technical Report 1044, Lab-
oratoire de Recherche en Informatique, May 1996. 34 pages.

29. N. Halbwachs, P. Raymond, and C. Ratel. Generating efficient code from data-
flow programs. In Springer Verlag, editor, 3rd international symposium, PLILP’91,
Passau, Germany, volume 528 of Lecture Notes in Computer Sciences, pages 207–
218, August 1991.

30. D. C. Cann and P. Evripidou. Advanced array optimizations for high performance
functional languages. IEEE Trans. on Parallel and Distributed Systems, 6(3):229–
239, March 1995.

31. A. A. Faustini. An operational semantics of pure dataflow. In M. Nielsen and E. M.
Schmidt, editors, Automata, languages and programing: ninth colloquium, volume
120 of Lecture Notes in Computer Sciences, pages 212–224. Springer-Verlag, 1982.
equivalence sem. op et denotationelle.

32. J.-L. Bergerand. LUSTRE: un langage déclaratif pour le temps réel. PhD thesis,
Institut national polytechnique de Grenoble, 1986.

33. A. Benveniste, P. Le Guernic, Y. Sorel, and M. Sorine. A denotational theory
of synchronous reactive systems. Information and Computation, 99(2):1992–230,
1992.

34. Paul Caspi and Marc Pouzet. Synchronous Kahn networks. In Proceedings of
the 1996 ACM SIGPLAN International Conference on Functional Programming,
pages 226–238, Philadelphia, Pennsylvania, 24–26 May 1996.

35. W. W. Wadge. An extensional treatment of dataflow deadlock. Theoretical Com-
puter Science, 13(1):3–15, 1981.

36. E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proc. of the IEEE,
75(9), September 1987.

37. B. A. Sijtsma. On the productivity of recursive list definitions. ACM Transactions
on Programming Languages and Systems, 11(4):633–649, October 1989.

38. R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Trans. on Computers, C-35(8):677–691, August 1986.

39. K. K. Parhi and D. G. Messerschmitt. Static rate-optimal scheduling of iterative
data-flow programs via optimum unfolding,. IEEE Trans. on Computers, 40(2),
February 1991.

40. A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of computer algo-
rithms. Addison-Wesley, 1974.

—oOo—

Chapter 4

Data structure as topological spaces

[1] Jean-Louis Giavitto and Olivier Michel. Data structure as topological spaces. In Proceedings of the
3nd International Conference on Unconventional Models of Computation UMC02, volume 2509, pages
137–150, Himeji, Japan, October 2002. Lecture Notes in Computer Science.

49

Data Structure as Topological Spaces

Jean-Louis Giavitto and Olivier Michel

LaMI, umr 8042 du CNRS, Université d’Evry – GENOPOLE
523 Place des terasses de l’agora, Tour Evry-2

91000 Evry, France

{giavitto,michel}@lami.univ-evry.fr

Abstract. In this paper, we propose a topological metaphor for compu-
tations: computing consists in moving through a path in a data space and
making some elementary computations along this path. This idea under-
lies an experimental declarative programming language called mgs. mgs
introduces the notion of topological collection: a set of values organized
by a neighborhood relationship. The basic computation step in mgs relies
on the notion of path : a path C is substituted for a path B in a topologi-
cal collection A. This step is called a transformation and several features
are proposed to control the transformation applications. By changing
the topological structure of the collection, the underlying computational
model is changed. Thus, mgs enables a unified view on several compu-
tational mechanisms. Some of them are initially inspired by biological
or chemical processes (Gamma and the CHAM, Lindenmayer systems,
Paun systems and cellular automata).

Keywords. Topological collection, declarative and rule-based program-
ming language, rewriting, Paun system, Lindenmayer system, cellular
automata, Cayley graphs, combinatorial algebraic topology.

1 Introduction

Our starting point is the following intuitive meaning of a data structure: a data
structure s is an organization o performed on a data set D. It is customary to
consider the pair s = (o, D) and to say that s is a structure o of D (for instance
a list of int, an array of float, etc.) and to use set theoretic constructions to
specify o. However, here, we want to stress the structure o as a set of places
or positions, independently of their occupation by elements of D. Following this
perspective, a data structure in [Gia00] is a function from a set of positions to
a set of values: this is the point of view promoted by the data fields approach.
Data fields have been mainly focussed on arrays and therefore on Zn as the set
of positions [Lis93]. One of our motivations is to define in the same framework
the set of positions representing a tree, an array or a multiset independently of
the set of values.

Data Structure and Neighborhood. To define a data organization, we adopt a
topological point of view: a data structure can be seen as a space, the set of
positions between which the computation moves. This topological approach relies

2 J.-L. Giavitto, O. Michel

on the notion of neighborhood to specify a move from one position to one of its
neighbor. Although speaking of neighborhood in a data structure is not usual,
the relative accessibility from one element to another is a key point considered
in a data structure definition:

1. In a simply linked list, the elements are accessed linearly (the second after
the first, the third after the second, etc.).

2. In a circular buffer, or in a double-linked list, computation goes from one
element to the following or to the previous one.

3. From a node in a tree, we can access the sons.
4. The neighbors of a vertex V in a graph are visited after V when traveling

through the graph.
5. In a record, the various fields are locally related and this localization can be

named by an identifier.
6. Neighborhood relationships between array elements are left implicit in the

array data-structure. Implementing neighborhood on arrays relies on an in-
dex algebra: index computations are used to code the access to a neighbor.
The standard example of index algebra is integer tuples with linear map-
pings λx.x ± 1 along each dimension (called “Von Neumann” or “Moore”
neighborhoods).

This accessibility relation defines a logical neighborhood. And the list of exam-
ples can be continued to convince ourselves that a notion of logical neighborhood
is fundamental in the definition of a data structure.

Elementary Shifts and Paths. The concept of logical neighborhood in a data
structure is not only an abstraction perceived by the programmer and vanishing
at the execution, but it does have an actual meaning for the computation. Very
often the computation indeed complies with the logical neighborhood of the
data elements. For example, the recursive definition of the fold function on
lists propagates an action to be performed from the the tail to the head of
the list. More generally, recursive computations on data structures respect so
often the logical neighborhood, that standard high-order functions (e.g. primitive
recursion) can be automatically defined from the data structure organization
(think about catamorphisms and others polytypic functions on inductive types
[MFP91]).

These considerations lead to the idea of path: in a sequential computation,
elements of the data structure are visited one after the other. We assume that
if element e′ is visited just after element e in a data structure s, then e′ must
be a neighbor of e. The move from e to e′ is called a shift and the succession of
visited elements makes a path in s. The idea of sequential path can be extended
to include parallel modes of computations: multi-dimensional paths must be used
instead of one-dimensional paths [GJ92].

Paths and Computations. At this point we can summarize our presentation:
we assume that a computation induces a path in a space defined by the neigh-
borhood relationship between the elements of a data structure. At each shift,

Data Structure as Topological Spaces 3

some elementary computation is done. Each topological operation used to build
a path can then be turned into a new control structure that composes program
fragments.

This schema is presented in an imperative setting but can be easily rephrased
into the declarative programming paradigm by just specifying the linking of com-
putational actions with path specifications. When a path specification matches
an actual path in a data structure, then the corresponding action is triggered.
It is very natural, especially in our topological framework, to require that the
results of the computational action be local : the corresponding data structure
transformation is restricted to the value of the the elements involved in the path
and eventually to the organization of the path elements and their neighborhood
relationships. Such transformation is qualified as local.

This declarative schema induces a rule-oriented style of programming: a rule
defines a local transformation by specifying the path to be matched and the
corresponding action. A program run consists in the transformation of a whole
data structure by the simultaneous application of local transformations to non-
intersecting paths. Obviously, such global transformation can then be iterated.

Organization of the paper. In section 2 we introduce the mgs programming lan-
guage. mgs is used as a vehicle to experiment our topological ideas. We start
by the definition of several types of topological collections. The notions under-
lying the selection of a path and path substitution are then sketched. Section 3
illustrates the previous constructions with two examples taken from the domain
of molecular computing and cellular automata. All examples given are real mgs
programs running on top of one or the other of the two available interpreters.
In the last section, we review some related works and some perspectives opened
by this research.

2 The MGS Programming Language

The topological approach sketched in section 1 is investigated through an ex-
perimental declarative programming language called mgs. mgs is aimed at the
representation and manipulation of local transformations of entities structured
by abstract topologies [GM01c, GM02]. A set of entities organized by an ab-
stract topology is called a topological collection. Topological means here that
each collection type defines a neighborhood relation specifying both the notion
of locality and the notion of sub-collection. A sub-collection B of a collection A
is a subset of elements of A defined by some path and inheriting its organization
from A. The global transformation of a topological collection C consists in the
parallel application of a set of local transformations. A local transformation is
specified by a rewriting rule r that specifies the change of a sub-collection. The
application of a a rewrite rule r = β ⇒ f(β, ...) to a collection A:

1. selects a sub-collection B of A whose elements match the path pattern β,
2. computes a new collection C as a function f of B and its neighbors,
3. and specifies the insertion of C in place of B into A.

4 J.-L. Giavitto, O. Michel

mgs embeds the idea of topological collections and their transformations into
the framework of a simple dynamically typed functional language. Collections are
just new kinds of values and transformations are functions acting on collections
and defined by a specific syntax using rules. Functions and transformations are
first-class values and can be passed as arguments or returned as the result of an
application. mgs is an applicative programming language: operators acting on
values combine values to give new values, they do not act by side-effect. In our
context, dynamically typed means that there is no static type checking and that
type errors are detected at run-time during evaluation. Although dynamically
typed, the set of values has a rich type structure used in the definition of pattern-
matching, rule and transformations.

2.1 Collection Types

There are several predefined collection types in mgs, and also several means
to construct new collection types. The collection types can range in mgs from
totally unstructured with sets and multisets to more structured with sequences
and GBFs [GMS95, Mic96, GM01a] (other topologies are currently under devel-
opment and include Voronöı partitions and abstract simplicial complexes). This
paper focus on two families of collection types: monoidal collection and GBF.

For any collection type T, the corresponding empty collection is written ():T.
The name of a type is also a predicate used to test if a value has this type: T(v)
returns true only if v has type T. Each collection type can be subtyped:

collection U = T;;

introduces a new collection type U, which is a subtype of T. These two types
share the same topology but a value of type U can be distinguished from a value
of type T by the predicate U. Elements in a collection T can be of any type,
including collections, thus achieving complex objects in the sense of [BNTW95].

Monoidal Collections. Set, multiset (or bag) and sequences are members of the
monoidal collection family. As a matter of fact, a sequence (resp. a multiset)
(resp. a set) of values taken in V can be seen as an element of the free monoid
V ∗ (resp. the commutative monoid) (resp. the idempotent and commutative
monoid). The join operation in V ∗ is written by a comma “,” and induces the
neighborhood of each element: let E be a monoidal collection, then elements x
and y in E are neighbors iff E = u,x,y,v for some u and v. This definition
induces the following topology:

– for sets (type set), each element in the set is neighbor of any other element
(because the commutativity, the term describing a set can be reordered fol-
lowing any order);

– for multiset (type bag), each element is also neighbor of any other (however,
the elements are not required to be distinct as in a set);

– for sequence (type seq), the topology is the expected one: an element not at
one end has a neighbor at its right.

Data Structure as Topological Spaces 5

The comma operator is overloaded in mgs and can be used to build any monoidal
collection (the type of the arguments disambiguate the collection built). So, the
expression 1, 1+1, 2+1, ():set builds the set with the three elements 1, 2 and
3, while the expression 1, 1+1, 2+1, ():seq makes a sequence s with the same
three elements. The comma operator is overloaded such that if x and y are
not monoidal collections, then x,y builds a sequence of two elements. So, the
expression 1, 1+1, 2+1 evaluates to the sequence s too.

Group-Based Data Field. Group-based data fields (GBF in short) are used to
define organizations with uniform neighborhood. A GBF is an extension of the
notion of array, where the elements are indexed by the elements of a group,
called the shape of the GBF [GMS95, GM01a]. For example:

gbf Grid2 = < north, east >

defines a gbf collection type called Grid2, corresponding to the Von Neuman
neighborhood in a classical array (a cell above, below, left or right – not diagonal).
The two names north and east refer to the directions that can be followed to
reach the neighbors of an element. These directions are the generators of the
underlying group structure. The right hand side (r.h.s.) of the GBF definition
gives a finite presentation of the group structure. The list of the generators can
be completed by giving equations that constraint the displacements in the shape:

gbf Hexagon = < east, north, northeast; east + north = northeast >

defines an hexagonal lattice that tiles the plane, see. figure 1. Each cell has six
neighbors (following the three generators and their inverses). The equation east
+ north = northeast specifies that a move following northeast is the same
has a move following the east direction followed by a move following the north
direction.

A GBF value of type T is a partial function that associates a value to some
group elements (the group elements are the positions of collection and the the
empty GBF is the everywhere undefined function). The topology of T is easily
visualized as the Cayley graph of the presentation of T: each vertex in the Cayley
graph is an element of the group and vertex x and y are linked if there is a
generator g in the presentation such that x + g = y.

A presentation starting with < and ending with > introduces an Abelian
organization: they are implicitly completed with the equations specifying the
commutation of the generators g + g’ = g’ + g. Currently only free and Abelian
groups are allowed: free groups with n generators correspond to n-ary trees and
Abelian GBF corresponds to twisted and circular grids (the free Abelian group
with n generators generalizes n-dimensional arrays).

2.2 Matching a Path

Path patterns are used in the left hand side (l.h.s) of a rule to match a sub-
collection to be substituted. We give only a fragment of the grammar of the

6 J.-L. Giavitto, O. Michel

patterns:

Pat ::= x | <undef> | p , p′ | p |g> p′ | p * | p/exp | p as x

where p, p′ are patterns, g is a GBF generator, x ranges over the pattern variables
and exp is an expression evaluating to a boolean value.

Informally, a path pattern can be flattened into a sequence of basic filters
and repetition specifying a sequence of positions with their associated values.
The order of the matched elements can be forgotten to see the result of the
matching as a sub-collection. A pattern variable x matches exactly one element
(somewhere in the collection) and the identifier x can be used in the rest of the
rule to denote the value of the matched element. More generally, the naming
of the value of a sub-path is achieved using the construction as. The constant
<undef> is used to match an element with an undefined value (i.e., a position
with no value). The pattern p,p′ stands for a path beginning like p and ending
like p′ (i.e., the last element in path p must be a neighbor of the first element
in path p′). For example, x,y matches two connected elements (i.e., y must be
a neighbor of x). The neighborhood relationship depends of the collection kind
and is decomposed in several sub-relations in the case of a GBF. The comma
operator is then refined in the construction p |g> p′: the first element of p′ is the
g-neighbor of the last element in path p. The pattern p* matches a (possibly
empty) repetition p,..., p of path p. Finally, p/exp matches the path p only if
exp evaluates to true. For example

(
s/seq(s)

)
+ as S

/
size(S) == 5

selects a sub-collection S of size 5, each element of S being a sequence. If this
pattern is used against a set, S is a subset, if this pattern is used against a
sequence, S is a sub-sequence (that is, an interval of contiguous elements), etc.

2.3 Path Substitution and Transformations

There are several features to control the application of a rule: rules may have
priority or a probability of application, they may be guarded and depend on the
value of local variables, they “consume” their arguments or not, . . . , see [GM01b]
for more details.

Substitutions of Sub-collections. A rule β ⇒ c can be seen as a rule for substitut-
ing a path or a sub-collection (recall that a path can be seen as a sub-collection
by simply forgetting the order of the elements in the path). For example the rule

(x / x<3)+ as S ⇒ 3,4,5,():set

applied to the set 1,2,3,4,():set returns the set 3,4,5,():set because S
matches the subset 1,2,():set and is replaced by the set 3,4,5,():set. The
final result is computed as (3,4,():set) ∪ (3,4,5,():set).

Data Structure as Topological Spaces 7

Substitutions of Paths. Because the matched sub-collection is also a path, that
is a sequence of elements, the seq type has a special role when appearing in the
r.h.s. of a rule. If the r.h.s. evaluates to a sequence, and if this sequence has the
same length as the matched path, then the first element of the sequence is used
to replace the first element of the matched path, and so on. This convention
is coherent with the sub-collection substitution point of view and simplifies the
building of the r.h.s.

For example, suppose that in a GBF of type Grid2, we want to model the
random walk of a particle x. Then, two neighboring elements, one being x the
other undefined, must exchange their values. This is achieved with only one
simple rule

x, <undef> ⇒ <undef>, x

without the need to mention the precise neighborhood relationships between the
two elements.

Newtonian and Leibnizian Collections. We have mentioned above that the result
of replacing a sub-set by a set is computed using set union. More generally, the
insertion of a collection C in place of a sub-collection B depends on the “borders”
of the involved collections. For example, in a sequence, the sub-collection B
defines in general two borders which are used to glue the ends of collection C.
The gluing strategy may admit several variations. The programmer can select
the appropriate behavior using the rule’s attributes.

We discuss here only the flattening/nesting behavior linked with the Leib-
nizian/Newtonian kind of the involved collection. Consider the rule:

x ⇒ x, x

Intuitively, it defines the substitution of one element by two copies of it. However
the evaluation of the r.h.s. gives a couple and then, there are two possibilities
to replace x: one may replace the element matched by x by one element which
is a couple, or, one may “merge” the couple in place of x preserving the neigh-
borhood of x. For example, if this rule is used on the sequence 1,2,3, the first
interpretation gives the result (1,1), (2,2), (3,3) (a sequence of sequences of
integers) and the second interpretation returns 1,1,2,2,3,3 (a flat sequence of
integers).

The two possibilities, exemplified here for a sequence, hold for any monoidal
collection. For a GBF, e.g. Grid2, this rule has no meaning, because we cannot
insert arbitrary positions between two others without changing the topology of
Grid2. The set of positions of a GBF exists independently of the values involved
in the collection. GBF are Newtonian space: the positions exist a priori and can
be occupied or left empty by the values. In the opposite, monoidal collections
have a Leibnizian character in the sense that their topology exist only as a
relation between the actual values. A consequence is that there is no position
with an undefined value in a Leibnizian collection.

8 J.-L. Giavitto, O. Michel

Transformations. A transformation R is a set of rules:

trans R = { ... rule ; ... }
For example, the transformation trans Mf = { x ⇒ f(x); } defines a func-
tion Mf similar to the map(f) operator. The expression Mf(c) denotes the appli-
cation of one transformation step to the collection c and a transformation step
consists in the parallel application of the rules (modulo the rule application’s
features). Thus Mf(c) computes a new collection where each element e of col-
lection c is replaced with f(e). Transformations may have parameters, which
enables, e.g., the writing of a generic map: the transformation trans M[fct] = {
x ⇒ fct(x); } requires an additional argument when applied. The arguments
between brackets are passed to the transformation using a name as in [GAK94].
So, expression M[fct=\x.x+1](c) returns a collection where each element ofc
is increased by one. This transformation is polytypic in the sense that it can be
applied to any collection type. A transformation step can be easily iterated:

T[iter=n](c) denotes the application of n transformation steps
T[iter=fixpoint](c) application of T until a fixpoint is reached
T[iter=fixrule](c) the fixpoint is detected when no rule applies

3 Examples

Because the lack of space, we present here only two simple examples. However,
more examples can be found in [GM01b, GM01c, GGMP02] including the to-
kenization of a sequence of letters, the Eratosthene’s sieve, primitive recursion
operators on sequences and sets, the computation of the convex hull of a set of
points, the maximal segment sum and some other optimization problems, the
computation of the disjunctive normal form of a logical formula, direct coding
of Lindenmayer systems and Paun systems, Turing-like diffusion-reaction pro-
cesses, the simulation of a spatially distributed biochemical interaction networks,
examples in population dynamics, paradigmatic examples in the field of artificial
chemistry and cellular automata, etc.

3.1 Restriction Enzymes

This example shows the ability to nest different topologies to achieve the model-
ing of a biological structure. We want to represent the action of a set of restriction
enzymes on the DNA. The DNA structure is simplified as a sequence of letters
A, C, T and G. The DNA strings are collected in a multiset. Thus we have to
manipulate a multiset of sequences. The following declarations

collection DNA = seq;;
collection TUBE = bag;;

introduce a subtype called DNA of seq and a subtype of multisets called TUBE.
A restriction enzyme is represented as a rule that splits the DNA strings; for

instance a rule like:

Data Structure as Topological Spaces 9

EcoRI = x+ as X,
(cut+ as CUT / CUT = "G","A","A","T","T","C",():DNA),
y+ as Y

⇒ (X,"G") :: ("A","A","T","T","C",Y) :: ():TUBE ;

corresponds to the EcoRI restriction enzyme with recognition sequence G^AATTC
(the point of cleavage is marked with ^). The x+ pattern filters the part of the
DNA string before the recognition sequence and the result is named X (the +
operator denotes repetition of neighbors). Identically, Y names the part of the
string after the recognition sequence. The r.h.s. of the rule constructs a TUBE
containing the two resulting DNA subsequences (the :: operator indicates the
“consing” of an element with a sequence).

We need an additional rule Void for specifying that a DNA string without
a recognition sequence must be inserted wrapped in a TUBE. The two rules are
collected into one transformation:

trans Restriction = {
EcoRI = ...;
Void = x+ as X ⇒ X :: ():TUBE ;

}
In this way, the result of applying the transformation Restriction on a DNA string
is systematically a sequence with only one element which is a TUBE. Note that
the rule Void is applied only when the rule EcoRI cannot be applied.

The transformation Restriction can then be applied to the DNA strings
floating in a TUBE using the simple transformation:

trans React = { dna ⇒ hd(Restriction(dna)) }
The operator hd gives the head of the result of the transformation Restriction,
i.e. a TUBE containing one or two DNA strings. These elements are then merged
with the content of the enclosing TUBE. The transformation can be iterated until
a fixpoint is reached :

React[fixpoint]((
("C","C","C","G","A","A","T","T","C","A","A",():DNA),
("T","T","G","A","A","T","T","C","G","G","G",():DNA),
():TUBE));;

returns the tube ("A","A","T","T","C","A","A",():DNA), ("T","T","G",():DNA),

("C","C","C","G",():DNA), ("A","A","T","T","C","G","G","G",():DNA), ():TUBE.

3.2 The Eden Model

We start with a simple model of growth sometimes called the Eden model (specif-
ically, a type B Eden model [YPQ58]). The model has been used since the 1960’s
as a model for such things as tumor growth and growth of cities. In this model,
a 2D space is partitioned in empty or occupied cells (we use the value true for

10 J.-L. Giavitto, O. Michel

C C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C
C

C

C

C

C

C

C

C
C

C
C

C

C
C

C
C

C

C C
C

C

C

C
C C

C

C

C

CC
C

C

C

C

C

C
C C

C
C

C

C
C

C
C

CC

C

C

Fig. 1. Eden’s model on a grid and on an hexagonal mesh (initial state, and states after
the 3 and the 7 time steps). Exactly the same transformation is used for both cases.
These shapes correspond to a Cayley graph of Grid2 and Hexagon whit the following
conventions: a vertex is represented as a face and two neighbors in the Cayley graphs
share an edge in this representation. An empty cell has an undefined value. Only a part
of the infinite domain is figured.

an occupied cell and left undefined the unoccupied cells). We start with only one
occupied cell. At each step, occupied cells with an empty neighbor are selected,
and the corresponding empty cell is made occupied.

The Eden’s aggregation process is simply described as the following trans-
formation:

trans Eden = { x,<undef> / x ⇒ x,true ; }
We assume that the boolean value true is used to represent an occupied cell,
other cells are simply left undefined. Then the previous rule can be read: an
occupied element x and an undefined neighbor are transformed into two occupied
elements. The transformation Eden defines a function that can then be applied
to compute the evolution of some initial state. One of the advantages of the mgs
approach, is that this transformation can apply indifferently on grid or hexagonal
lattices, or any other collection kind.

It is interesting to compare transformations on GBFs with the genuine cellu-
lar automata (CA) formalism. There are several differences. The notion of GBF

Data Structure as Topological Spaces 11

extends the usual square grid of CA to more general Cayley graphs. The value of
a cell can be arbitrary complex (even another GBF) and is not restricted to take
a value in a finite set. Moreover, the pattern in a rule may match an arbitrary
domain and not only one cell as it is usually the case for CA. For example the
transformation:

gbf G2 = <X, Y >;;
trans Turn = { a|X> b |Y-X> c |-X-Y> d |X-Y> e ⇒ a,e,b,c,d; }

specify the 90◦-turn of a cross in GBF G2 (see illustration 2). The pattern frag-
ment b |Y-X> c specifies that c is at the north-west of element b if we take the
X dimension as the east direction and the Y dimension as the north direction.

a

0

b d
e

c

1
4

2
3

a

0
3

2
1

4

e
d

c
b

a b
c

d
e

0 1
2

3
4

X

Y

Fig. 2. First and second iteration of transformation Turn on the GBF to the left (only
defined values are pictured). In contrast with cellular automata, the evolution of a
multi-cell domain can be easily specified by a single rule.

4 Related and Future Work

This topological approach formalizing the notion of collection is part of a long
term research effort [GMS95] developed for instance in [Gia00] where the fo-
cus is on the substructure and in [GM01a] where a general tool for uniform
neighborhood definition is developed.

Related Works. Seeing a computation as a path in some abstract space is hardly
new: the representation of the execution of a concurrent program as a trajectory
in the Cartesian product of the sequential processes dates back to the sixties(in
this representation, semaphore operations create topological obstructions and
one can study the topology of theses obstructions to decide if a deadlock may
occur). However, note that the considered space is based on the elementary
computations, not on the involved data structure.

In the same line, the methods for building domains in denotational semantics
have clearly topological roots, but they involve the topology of the set of values,
not the topology of a value.

12 J.-L. Giavitto, O. Michel

Another example of topological inspiration is the approach taken in [FM97],
that rephrased in our perspective, uses a regular language to model the displace-
ments resulting from following pointers in C data structures.

There exists strong links between GBF and cellular automata, especially
considering the work of Z. Róka which has studied CA on Cayley graphs [Rók94].
However, our own works focus on the construction of Cayley graphs as the shape
of a data structure and we develop an operator algebra and rewriting notions
on this new data type. This is not in the line of Z. Róka which focuses on
synchronization problems and establishes complexity results in the framework
of CA.

Obviously, Lindenmayer systems [Lin68] correspond to transformations on
sequences, and basic Paun systems [Pau00] can be emulated using transforma-
tions on multisets.

Formalizations and Implementations. A unifying theoretical framework can be
developed [GM01b, GM02], based on the notion of chain complex developed
in algebraic combinatorial topology. However, we do not claim that we have
achieved a useful theoretical framework encompassing the cited paradigm. We
advocate that few (topological) notions and a single syntax can be consistently
used to allow the merging of these formalisms for programming purposes.

Currently, two versions of an mgs interpreter exist: one written in OCAML (a
dialect of ML) and one written in C++. There are some slight differences between
the two versions. For instance, the OCAML version is more complete with respect
to the functional part of the language. These interpreters are freely available
(see url http://www.lami.univ-evry.fr/mgs).

Perspectives. The perspectives opened by this preliminary work are numerous.
We want to develop several complementary approaches to defines new topologi-
cal collection types. One approach to extend the GBF applicability is to consider
monoids instead of groups, especially automatic monoids which exhibits good al-
gorithmic properties. Another direction is to handle general combinatorial spatial
structures like simplicial complexes or G-maps [Lie91].

At the language level, the study of the topological collections concepts must
continue with a finer study of transformation kinds. Several kinds of restriction
can be put on the transformations, leading to various kind of pattern languages
and rules. The complexity of matching such patterns has to be investigated.
The efficient compilation of a mgs program is a long-term research. We have
considered in this paper only one-dimensional paths, but a general n-dimensional
notion of path exists and can be used to generalize the substitution mechanisms
of mgs.

From the applications point of view, we are targeted by the simulation of
developmental processes in biology [GGMP02]. Another motivating application
is the case of a spatially distributed biochemical interaction networks, for which
some extension of rewriting as been advocated, see [FMP00].

Data Structure as Topological Spaces 13

Acknowledgments. The authors would like to thanks the members of the
“Simulation and Epigenesis” group at Genopole for fruitful discussions and bi-
ological motivations. They are also grateful to C. Godin, P. Prusinkiewicz, F.
Delaplace and J. Cohen for numerous challenging questions and useful com-
ments. This research is supported in part by the CNRS, the GDR ALP, IMPG
and Genopole/Evry.

References

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Prin-
ciples of programming with complex objects and collection types. Theo-
retical Computer Science, 149(1):3–48, 18 September 1995.

[FM97] P. Fradet and D. Le Mtayer. Shape types. In Proc. of Principles of
Programming Languages, Paris, France, Jan. 1997. ACM Press.

[FMP00] Michael Fisher, Grant Malcolm, and Raymond Paton. Spatio-logical pro-
cesses in intracellular signalling. BioSystems, 55:83–92, 2000.

[GAK94] Jacques Garrigue and H. At-Kaci. The typed polymorphic label-selective
lambda-calculus. In Principles of Programming Languages, Portland,
1994.

[GGMP02] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Biological
Modeling in the Genomic Context, chapter Computational Models for In-
tegrative and Developmental Biology. Hermes, July 2002.

[Gia00] Jean-Louis Giavitto. A framework for the recursive definition of data
structures. In Proceedings of the 2nd International ACM SIGPLAN Con-
ference on Principles and Practice of Declarative Programming (PPDP-
00), pages 45–55. ACM Press, September 20–23 2000.

[GJ92] E. Goubault and T. P. Jensen. Homology of higher-dimensional automata.
In Proc. of CONCUR’92, Stonybrook, August 1992. Springer-Verlag.

[GM01a] J.-L. Giavitto and O. Michel. Declarative definition of group indexed data
structures and approximation of their domains. In Proceedings of the 3nd
International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP-01). ACM Press, September 2001.

[GM01b] J.-L. Giavitto and O. Michel. MGS: a programming language for the trans-
formations of topological collections. Technical Report 61-2001, LaMI –
Université d’Évry Val d’Essonne, May 2001. 85p.

[GM01c] Jean-Louis Giavitto and Olivier Michel. Mgs: a rule-based programming
language for complex objects and collections. In Mark van den Brand and
Rakesh Verma, editors, Electronic Notes in Theoretical Computer Science,
volume 59. Elsevier Science Publishers, 2001.

[GM02] J.-L. Giavitto and O. Michel. The topological structures of membrane
computing. Fundamenta Informaticae, 49:107–129, 2002.

[GMS95] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. In
I. Takayasu, R. H. Jr. Halstead, and C. Queinnec, editors, Parallel Sym-
bolic Languages and Systems (International Workshop PSLS’95), volume
1068 of Lecture Notes in Computer Sciences, pages 209–215, Beaune
(France), 2–4 October 1995. Springer.

[Lie91] P. Lienhardt. Topological models for boundary representation : a com-
parison with n-dimensional generalized maps. Computer-Aided Design,
23(1):59–82, 1991.

14 J.-L. Giavitto, O. Michel

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in devel-
opment, Parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.

[Lis93] B. Lisper. On the relation between functional and data-parallel program-
ming languages. In Proc. of the 6th. Int. Conf. on Functional Languages
and Computer Architectures. ACM, ACM Press, June 1993.

[MFP91] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire. In 5th ACM Conference on
Functional Programming Languages and Computer Architecture, volume
523 of Lecture Notes in Computer Science, pages 124–144, Cambridge,
MA, August 26–30, 1991. Springer, Berlin.

[Mic96] O. Michel. Reprsentations dynamiques de l’espace dans un langage
dclaratif de simulation. PhD thesis, Universit de Paris-Sud, centre
d’Orsay, December 1996. N◦4596, (in french).

[Pau00] G. Paun. From cells to computers: Computing with membranes (p sys-
tems). In Workshop on Grammar Systems, Bad Ischl, austria, July 2000.

[Rók94] Zsuzsanna Róka. One-way cellular automata on Cayley graphs. Theoret-
ical Computer Science, 132(1–2):259–290, 26 September 1994.

[YPQ58] Hubert P. Yockey, Robert P. Platzman, and Henry Quastler, editors. Sym-
posium on Information Theory in Biology. Pergamon Press, New York,
London, 1958.

Chapter 5

Group based fields

[1] Jean-Louis Giavitto, Olivier Michel, and J.-P. Sansonnet. Group based fields. In I. Takayasu, R. H. Jr.
Halstead, and C. Queinnec, editors, Parallel Symbolic Languages and Systems (International Workshop
PSLS’95), volume 1068 of Lecture Notes in Computer Science, pages 209–215, Beaune (France), 2–4
October 1995. Springer Verlag.

65

Group�based �elds

Jean�Louis Giavitto� Olivier Michel� Jean�Paul Sansonnet

LRI u�r�a� ��� du CNRS� B�atiment ���� Universit	e de Paris
Sud�
F
����� Orsay Cedex� France�

email� fmichel�giavitto�jpsg�lri�fr

� Introduction

This paper reports the preliminary work on extending the concept of collection
in ����� ���� is a declarative language that allows the functional de�nition of
streams and collections ��� 	
� In this paper� we focuss our interest on a high�
level programming abstraction which extends the concept of collection in �����
The new construct is based on an algebra of index set� called shape� and an
extension of the array type� the �eld type�

The rest of this paper has the following structure� Section 	 gives some back�
ground on collections and arrays� Some shortcommings of data�parallel arrays
are sketeched� Section � describes the ���� answers to the previous problem and
introduces group�based shapes and �elds� Section � is devoted to the shape alge�
bra� Section introduces the main �eld operations and �eld de�nitions� Section
� sketches the implementation� Related and futur works are discussed in the last
section�

� Arrays and collections

A collection is an aggregate of elements handled as a whole� no index manipu�
lation or iteration loop appear in expressions over collections� Collections have
been advocated as a good support for data�parallelism ��
� Usual structures of
aggregationare sets �SETL ��
�� bags �Gamma �
�� relations �set of tuples� e�g� in
SQL�� vectors ��LISP�� nested vectors �NESL ��
�� and multidimensional arrays

�HPF� MOA ��
� new Lucid ��
�� Typical operations on �arrays as collections� are
pointwise applied scalar functions� reductions� scans and various permutations
or rearranging operations that can be interpreted as communication operations
in a data�parallel implementation�

Nowadays� simulation of large dynamical systems �resolutionof PDE� discrete
events simulations� etc�� represents the majority of supercomputer applications�
Collections are often used in these algorithms to represent the variation of some
quantity over a bounded spatial or temporal domain� for example a vector can
be used to record the temperature at the discretisation points of a uniform
rod in the simulation of heat di�usion� Indeed� collection managed as a whole
are very well �tted to such computation because the same physical laws apply
homogeneously to each point in space or in time� The array data structure is
the most expressive �with respect to set� bag� � � � to implement space or time

discretisation because it matches canonically the grid lattice� They have a simple
and fast implementation on homogeneous random�access memory architectures�
Yet this generality has its costs� High�performance architectures do not have
a homogeneous memory model� On vector architectures� access to sequential
elements is faster than to random elements� The optimal storage layout for an
array depends on its access pattern� and a poor layout can have a dramatic
impact on execution speed� Moreover� while traditional arrays are shaped like
n�dimensional box� de�ned by a lower and an upper bound in each dimension�
grids may have more complex shapes� And simulation of growing processes �like
plant growing� requires dynamically bounded arrays�

� Shapes and �elds

This motivates the development of a new collection structure� ���� abandons the
concept of a general�purpose array type� and specializes it towards two direc�
tions� The �rst one is a specialization towards �nite di�erence algorithms and
space discretisations by considering more general grid topology and grid shape�
The second specialization we consider is towards the simulation of growing pro�
cesses by considering partial data�structure� The goal of theses extensions is to
relieve the programmer from making many low�level implementation decisions
and to concentrate in a sophisticated data�structure the complexity of the algo�
rithms� Certainly this implies some loss of run�time performance but in return
for programming convenience� Futur work must establish how much loss we can
tolerate and and what we do get in exchange�

���� introduces two new primitive types� shapes and �elds � A shape repre�
sents a set of coordinates� An example of coordinates is integer tuples� but more
generally� ���� uses a group element to index a point� A �eld is an array whose
index set is an arbitrary set in a shape� Operations on �elds are data�parallel
ones� A �eld is virtually de�ned over its entire shape� even if the shape has
an in�nite number of elements� but the values of the �eld are computed only if

needed � that is� a �eld is a lazzy data�structure�

� Shape constructs

A shape specify both the group used to denote the array elements and the
neighbourhood of an element� LetG be a group and S a subset of G� Space�G� S �
denotes the directed graph having G as its set of vertices and G � S as its set
of edges� For each edge �g� s� � G � S� the starting vertex is g and the target
vertex is g�s� The direction or the label of edge �g� s� is s� Each element of the
subgroup generated by S corresponds either to a path �a succession of elementary
displacements� and a point �the point reached starting from the identity point
e of G and following this path�� We use P�s for the s neighbour of P � In other
words� Space�G� S � is a graph where� � each vertex represents a group element�
� an edge labelled s is between the nodes P and Q if P�s � Q� and � the labels

of the edges are in S� If S is a basis of G� Space�G� S � is called the Cayley graph
of the group G�

We use a �nite presentation to specify a group� A �nite presentation gives
a �nite list of group generators and a �nite list of equations constraining the
equality of two words� An equation takes the following form� v � w where v

and w are products of generators and their inverses� The presentation of a group
is not unique� di�erent presentations may de�ne the same group� However� a
presentation uniquely de�nes the shape Space�G� S �� we use the generator list
in the presentation to specify S� So the generators in the presentation are the
distinguished group elements representing the elementary displacements from a
point towards its neighbours�

We gives some example of shapes� A free abelian groups corresponds to a n�
dimensional grid �n is the number of generators�� The hexagonal lattice� H� �
ha� b� c � b � a�ci is an abelian shape that can be used for example in image
processing �the underlying space has the Jordan property� which is not the case
for NEWS meshes�� A �non abelian� free group is simply a tree �n generators for
n soons�� Another example of non abelian shape is the triangular neighbourhood �
the vertices of T are at the centre of equilateral triangles� and the neighbours of a
vertex are the nodes located at the centre of the triangles which are adjacent side
by side� A possible shape is� T � hja� b� c � a� � b� � c� � e� �a�b�c�� � eji� Such a
lattice occurs for example in �ow dynamics because its symmetry matches well
the symmetry of �uid laws�

� Field de�nitions

A �eld F can be thought as a function over a group that complies with the shape
structure� the value of a �eld in some point depends only on the values of the
neighbours points� That is� for each point P of Space�G� S � we have

F �P � � f�F �P�a�� F �P�b�� � � ��

with a� b� � � � � in S and f the functional dependency between a point value and
the values of its neighbours� Because such a relationship must hold for every
point P � we make it implicit and write�

F �E
 � f�F�a� F�b� � � ��

for a �eld F over a shape E� Field expressions f are of three kinds� extension of
scalar functions� geometric operations and reductions�

Extension of a scalar function is just the pointwise application of the function
to the value of a �eld in each point�

A geometric operation on a collection consists in rearranging the collection
values or in selecting some part of the collection to build a new one� A main
geometric operation is the translation of the �eld values along the displacement
speci�ed by a generator�F�a where a � S� The shape of F�a is the shape of F � The
value of F�a at point w is �F�a��w� � F �w�a�� When the �eld F is non�abelian�
it is necessary to de�ne another operation a�F speci�ed as� �a�F ��w� � F �a�w��

Reduction of an n�dimensional array in APL is parameterised by the axis of
the operation ��
 �e�g� a matrix can be reduced by row or by column�� A normal

subgroup is used for axis in the case of group based shape� More details are given
in ���
�

When using recursive de�nition� �terminal cases� stop the recursion� For
group�based �elds� we will make a partition of the shape and de�ne the �eld
giving an equation for each element of the partition� It implies that each element
of the partition can be viewed as a shape in itself� We use cosets to partition the
shape� Cosets may overlap� so additional constraints are put on the partition�
Cf� ���
�

� Implementation

For the sake of simplicity� we suppose that �eld de�nitions take the following
form�

F�C� � c�� � � � � F�Cn � cn� F �G
 � h�F�g�� F�g�� � � � � F�gp�

where Ci are cosets� ci are constants and h is some extension of a scalar function�
F�Ci � � � � is the equation de�ning the �eld F on coset Ci whilst F �G
 � � � � is
the general de�nition valid for the remaining points�

We assume the existence of a mechanism for ordering the cosets and to
establish if a given word w � G belongs to some coset� We suppose further
that we have a mechanism to decide if two words are equal� For example� these
mechanisms exist for free groups and for abelian groups� There is no general
algorithm to decide word equality in general non�abelian groups� So our proposal
is that non abelian shapes are part of a library and come equipped with the
requested mechanisms� A future work is then to develop useful families of �non
abelian� shapes�

With these restrictions� a �rst strategy to implement lazy �elds is the use
of memoised functions� A �eld F �G
 is stored as a dictionary with entry w � G

and value F �w�� If the value F �w� of w is required� we check �rst if w is in
the dictionary �this is possible because we have a mechanism to check word
equality�� If not� we have to decide which de�nition applies� that is� if w belongs
to some Ci or not� In the �rst case� we �nish returning ci and storing �w� ci� in
the dictionary� In the second case� we have to compute the value of F at points
w�g�� � � � � w�gp� recurring the process� and then the results are combined by h�

We can do better if each word w can be reduced to a normal form �w� For
instance� a normal form can be computed for abelian groups �the Smith Normal
Form� or for free groups� In this case� the dictionary can be optimised to an
hash�table with key �w for w�

In case of an abelian group G� we can further improve the implementation
using the fundamental isomorphism between G and a product of ZZ�modules�
Confer ���� �	
� As a matter of fact� a function over a ZZ�module is simply imple�
mented as a vector� The only di�culty here is to handle the case of ZZn which
corresponds to an unbounded array�

� Conclusions

We advocate in this paper the use of theoretical group constructions for the
index set of an array� The resulting data�structure� called group�based �eld � is
managed in a lazy way and extends the traditional array type� More details
are given in ���
� We currently implement a C�� library for the management
of sets of bounded rectangular regions in ZZ

n� This library will be used for the
implementation of abelian �elds� It is itself based on AVTL ���
� a portable MPI
���
 based parallel vector template library�

There is a small number of research e�orts to extend the concept of array�
Lucid ��
� LPARKX ��
� In�del ���
� AMR�� ���
� They all consider more
general shapes for arrays but always rely on grids �that is� a point is indexed by
a tuple of integer�� This forbidd for example the natural representation of a tree
or a triangular lattice�

In �eld de�nitions� the decomposition of a �eld into sub�elds is a funda�
mental mechanism� The need of powerful decomposition mechanisms appears in
quanti�cation of de�nitions and in reduction expressions� We use respectively
cosets and normal subgroups� It is interesting to compare this situation with
the approach of Bird�Meertens algebra ���
 or with the power�list algebra ���
�
These theories develop a basis for the �recursive� de�nition of lists or arrays�
The decomposition relies on the concatenation leading to a divide�and�conquer
computation strategy� In group based �elds� the decomposition relies on cosets
or on a normal subgroup �which decomposes naturally the group into a product��
A direction for future work is to investigate other possible and useful decompo�
sitions of shapes� The use of a group as the underlying domain of a �eld gives
a rich structure to the computation dependencies� they can be interpreted as
paths in well�handled spaces� Another direction of work is then the use of tools
from algebraic topology to characterise the domain of computation �homotopy
theory� etc��� Such mathematical tools have already be proved useful �	�� 	�
�

Acknowledgements� We are grateful to the members of the Parallel Architectures
team in LRI for many fruitful discussions� and we thank especially Dominique
De Vito and Abderrahmane Mahiout�

References

�� J�
L� Giavitto� A synchronous data
�ow language for massively parallel computer�
In D� J� Evans� G� R� Joubert� and H� Liddell� editors� Proc� of Int� Conf� on Par�
allel Computing �ParCo����� pages �������� London� �
� September ����� North

Holland�

�� O� Michel and J�
L� Giavitto� Design and implementation of a declarative data

parallel language� In post�ICLP��	 workshop W
 on Parallel and Data Parallel
Execution of Logic Programs� S� Margherita Liguria� Italy� �� June ����� Uppsala
University� Computing Science Department�

�� J� M� Sipelstein and G� E� Belloch� Collection
oriented languages� Proc� of the
IEEE� ����� April �����

�� J� T� Schwartz� R� B� K� Dewar� E� Dubinsky� and E� Schonberg� Programming
with sets� and introduction to SETL� Springer
Verlag� �����

�� J�
P� B�anatre� A� Coutant� and D� Le Metayer� A parallel machine for multiset
transformation and its programming style� Future Generation Computer Systems�
���������� �����

�� G� E� Blelloch� NESL� A nested data
parallel language �version ���� Technical
Report CMU
CS
��
���� School of Computer Science� Carnegie Mellon University�
April �����

�� G� Hains and L� M� R� Mullin� An algebra of multidimensional arrays� Technical
Report ���� Universit	e de Montr	eal� �����

�� E� Ashcroft� A� Faustini� R� Jagannatha� and W� Wadge� Multidimensional Pro�
gramming� Oxford University Press� February ����� ISBN �
��
������
��

�� K� E� Iverson� A dictionnary of APL� APL quote Quad� ����� September �����
��� O� Michel� A guided tour to ���� and its dynamical extensions� Technical report�

Laboratoire de Recherche en Informatique� December �����
��� H� Cohen� A course in computational algebraic number theory� volume ��� of

Graduate Text in Mathematics� Springer
Verlag� �����
��� C� S� Iliopoulos� Worst
case complexity bounds on algorithms for computing the

canonical structure of �nite abelian groups and the hermite and smith normal
forms of an integer matrix� SIAM Journal on Computing� ������������� August
�����

��� T� J� Sche�er� A portable MPI
based parallel vector template library� Technical
Report ������ RIACS� �����

��� Message
Passing Interface Forum� MPI� a message
passing interface standard�
May �����

��� S� R� Kohn and S� B� Baden� A robust parallel programming model for dynamic
non
uniform scienti�c computation� Technical Report TR
CS
��
���� U� of Cali

fornia at San
Diego� March �����

��� L� Semenzato� An abstract machine for partial di�erential equations� PhD thesis�
U� of California at Berkeley� �����

��� D� Balsara� M� Lemke� and D� Quinlan� Adaptative Multilevel and hierachical
Computational strategies� chapter AMR��� a C�� object
oriented class library
for parallel adaptative mesh re�nment in �uid dynamics application� pages ����
���� Amer� Soc� of Mech� Eng�� November �����

��� R� S� Bird� An introduction to the theory of lists� In M� Broy� editor� Logic of
Programming and Calculi of Discrete Design NATO ASI Series vol� F�
� pages
�������� Springer
Verlag� �����

��� J� Misra� Powerlist� a structure for parallel recursion� ACM Trans� on Prog� Lan�
guages and Systems� ��������������� November �����

��� E� Goubault and T� P� Jensen� Homology of higher
dimensional automata� In
Proc� of CONCUR���� Springer
Verlag� �����

��� C� C� Squiers and Y� Kobayashi� A �niteness condition for rewriting systems�
Theoretical Computer Science� �������������� �� September �����

This article was processed using the LaTEX macro package with LLNCS style

Chapter 6

Declarative definition of group indexed
data structures and approximation of
their domains

[1] Jean-Louis Giavitto and Olivier Michel. Declarative definition of group indexed data structures and
approximation of their domains. In PPDP ’01: Proceedings of the 3rd ACM SIGPLAN international
conference on Principles and practice of declarative programming, pages 150–161, New York, NY, USA,
2001. ACM Press.

73

Declarative definition of group indexed data structures
and approximation of their domains

Jean-Louis Giavitto
giavitto@lami.univ-evry.fr

Olivier Michel
michel@lami.univ-evry.fr

LaMI umr 8042 du CNRS, Université d’Évry Val d’Essone
Tour Évry-2, 523 Place des terasses de l’agora, 91000 Évry, France

ABSTRACT
We introduce a new high-level programming abstraction which
extends the concept of data collection. The new construct,
called GBF (for Group Based Data-Field), is based on an
algebra of index sets, called a shap e, and a functional exten-
sion of the array type, the �eld type. Shape constructions
are based on group theory and put the emphasis on the log-
ical neighborhood of the data structure elements. A �eld
is a function from a shape to some set of values. In this
study, we focus on regular neigh borhood structures and we
show that arrays of an y dimensions, cyclic array and trees
are special kind of GBF.
The recursive de�nitions of a GBF are then studied and

we provide some elements for an implementation and some
computability results in the case of recursive de�nition.

Keywords
recursiv e de�nition of data-structures, data-�eld, Cayley graph,
extension analysis

1. INTRODUCTION AND MOTIVATIONS:
DATA STRUCTURE AS SPACES

In Haskell or CAML, or more generally in functional lan-
guages, the array type is very di�erent in nature from the al-
gebraic data types that can be speci�ed by the programmer.
For instance, there is no pattern for case-based function def-
inition on an array. The reason is that there is no natural
constructor for the array type. In con tradiction with this
fact, it is possible to de�ne in a natural way the notion of
catamorphisms [9] for the arrays types. Therefore, there is
ob viously a need for a uni�ed formalism that enable the def-
inition of such functions smoothly on both data structures.
In this paper, we presen t a possible approach to answer this
need in a declarative framework.
In [13] we have developed a general framework for the re-

cursiv e de�nition of data structures. In this framework, we

rely upon the following intuitivemeaning of a data structure:
a data structure s is an organization or an arrangement o
performed on a data set D. It is customary to consider the
pair s = (o;D) and to say that s is a structure o of D (for
instance a list of int, an array of o at, etc.). How ever, we
w an t to stress the structureo as a set of places or positions,
independently of their occupation by elements of D. F ol-
lowing this perspective, a data structure in [13] is a function
from a set of places to a set of values.
Now, w e are interested to study various \set of places"

independently of the set of values. For example, one of our
motivations is to de�ne in the same framework the set of
places representing a tree or an array.

1.1 Data Structure and Elementary Moves
In order to separate sets places from values they contain,

our main idea is to abstract the data and computation move-

ments that occur within a data structure. The point of view
is geometric: a data structure can be seen as a space, the set
of places or positions betw een which the programmers, the
computation and the values, move.
The notion of move relies on some notion of neighbor-

hood: moving from one point to a neighbor point. Although
speaking of neighborhood in a data structure is notusual,
the relativ e accessibilit y fromone element to another is a
key point usually considered in a data structure. For exam-
ple:

� In a simply linked list, the elements are accessed lin-
early (the second after the �rst, the third after the
second, etc.).

� In a circular bu�er, or in a double-linked list, compu-
tation goes from one element to the follo wingor to the
previous one.

� From a node in a tree, we can access the sons.

� The neighbors of a vertex V in a graph are visited after
V when traveling through the graph.

� In a record, the various �eld are locally related and
this localization can be named by an identi�er.

� Neighborhood relationships betw een array elements are
left implicit in the arra ydata-structure. Implement-
ing neighborhood on arrays relies on an index algebra:
index computations are used to code the access to a
neighbor.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
PPDP 01 Florence, Italy
© ACM 2001 1-58113-388-x/01/09…$5.00

150

For example (i � 1; j) is the index used to access the
\north neighbor" of point (i; j) (we assume that the
\north" direction is mapped to the �rst element of the
index tuple). The standard example of index algebra
is integer tuples with linear mappings �x:x � 1 along
each dimension (called \Von Neumann" or \Moore"
neighborhoods). More than 99% of array references
are aÆne functions of array indexes in scienti�c pro-
grams [11].

This list of examples can be continued to convince ourselves
that a notion of logical neighborhood is fundamental in the
de�nition of a data structure. The concept of logical neigh-
borhood in a data structure is not only an abstraction per-
ceived by the programmer and vanishing at the execution,
but it does have an actual meaning for the computation.
The computation indeed complies with the logical neighbor-
hood structure of the elements. For example, the recursive
de�nition of the map function on lists propagates an action
to be performed from the head to the tail. More generally,
recursive computations on data structure respect so often
the logical neighborhood, that standard high-order functions
can be automatically de�ned from the data structure orga-
nization (think about catamorphisms and others polytypic
functions on inductive types [9, 24]).

1.2 Formalizing the Elementary Displacements
in a Data Structure

Our goal is to make the neighborhood de�nition explicit
by specifying several spatial elementary moves (we will call
them equivalently shifts or displacements) to de�ne the neigh-
borhood for each element.
Such a structure of displacements will be called a shape.

A shape is part of the type of a data structure type, like
[100] is part of the C vector type int [100]. However, the
shape embeds much more information than just a size.
What we want is to give a uniform description of the

shapes appearing in various data structures focusing on the
geometrical nature of a shape. The purpose is to enable the
explicit representation and the reasoning on the data move-
ments and to develop a geometry of computation patterns.
The expected bene�ts are twofold:

� From the programmer's point of view, describing vari-
ous shapes in a uniform manner enhances the language
expressiveness and proposes a new programming style.

� From the implementor's point of view, a uniform han-
dling of the shapes enables to reason on dependencies
and data movements independently of the data struc-
ture.

In the following we restrict ourselves to regular data struc-
tures. A data structure is called regular if every element
of the data structure has the same neighborhood structure
(like for example a \right neighbor" and a \left neighbor").
The consequence of this assumption is examined below.

The Group Structure of Elementary Moves. To stress
the analogy made between a data structure and a (discrete)
space, we call points the elements of a data structure. Let
\a", \b", \c", : : : the directions taken on a point to go to
the point's neighbors and let P<a> be the \a" neighbor of
a point P . One can think about a as the displacement from
a point towards one of its neighbors (see Fig. 1). Displace-
ment operations can be composed: using a multiplicative

notation, we write P<a:b> for (P<a>). Displacement
composition is associative. We note e the null displacement,
i.e. P <e>= P . Furthermore we will de�ne a unique in-
verse displacement a�1 for each displacement a such that
P<a:a�1>= P<a�1:a>= P .
In other words, the displacements constitute a group for

the displacement composition, and the application of the
displacements to points is the action of the group over the
data structure elements.

1.3 Rationales of Using a Group Structure to
Model the Displacements

The reader who follows our analogy between space and
data structure may be surprised by the choice of a group
structure to formalize the displacements. For instance, why
choosing a group structure instead of a monoid? Another
example, is the approach taken in [10], that rephrased in our
perspective, uses a regular language to model the displace-
ments resulting from following pointers in C data structures.
The group structure seems to have two drawbacks:

1. A group structure implies inverse displacements. But
in a simply linked list, if we know how to go from the
head to the tail, we cannot go back from the tail to the
head (else, the structure will be a doubly linked list).

Rectangular lattice,
Von-Neuman neighborhood

a point

the neighbors of this point

elementary
moves

“north
neighbor”

“east neighbor”

Hexagonal latticeRectangular lattice,
Moore neighborhood

Triangular neighborhood: a point is pictured as a non-uniform
surface element but each point is regularly linked to three

neighbors (except for the boundary elements)

1

2 3
4 5

6
8

9 10
11

12 13
14

15
16 17

18
19

20

21

22

23

24

25
26

27
28

29
30

31
32

33
34

35

36

37

38
39

40
41 42

43
44

45
46

47
48

49
50

51

52
53

54

55

56 57

58 59

60
61

62 63
64

65
66

67
68

69
70

71
72

73

Example of an heterogeneous space

the neighborhood of a point
depends on this point

Figure 1: Four examples of regular spaces and one
example of a non regular space.

151

2. The group structure implies regular displacement: each
displacement must apply on every point (e.g. on every
element of the data structure). This does not seem to
be the case for trees for example, where a distinction
is usually made between interior nodes (from which a
displacement is possible) and leaves (which are dead
ends).

The �rst remark relies implicitly on the idea that all the
possible displacements are coded in some way in the data
structure itself (e.g. by pointers). This is not the case: when
reversing a simply linked list, the inverse displacement is rep-
resented in a stack which dynamically records from where
the computation comes. This makes possible to access the
previous cons cell although there is only a forward pointer.
In a vector, accessing the element next to the element in-
dexed by i is done by computing its index, e.g. i + 1. The
inverse of function �i:i+1 can be computed given access to
the previous element (and at the same cost).
The second remark outlines that the parts of a (recur-

sive) data structure are generally not of the same kind and
considering regular displacements is a rough approximation.
However, consider more closely the case of a binary tree data
type T de�ned by:

T = A [(B � T � T) (1)

The interior nodes are valuated by elements of type B and
the leaf by elements of typeA. Intuitively, the corresponding
displacements are gl = \go to the left son" and gr = \go
to the right son" corresponding to the two occurrences of
T on the right hand side of the equation (1). These two
displacements cannot be applied to the leaves nodes. Now,
note that in an updatable data structure, a leaf may be
substituted to a sub-tree. So, from the shape point of view,
which focuses on the geometry of the structure and not on
the type of the elements, the organization of the elements is
similar to a regular binary tree

T = C � T � T (2)

where C = A [B. In a point valuated by A, applying a
displacement gl or gr is an error. Errors are exceptional
cases that derogate from the regular case. Checking at run
time if the value is of type A or B to avoid an error is
not di�erent from checking if the node is of type A or B �
T � T (in languages like ML, this check is done through the
dispatch mechanism of pattern matching the arguments of
a function).
What we have lost between equation (1) and equation (2)

is the relationship between the A type and the inapplica-
bility of the displacement. But we have gained a regular
description of the displacement structure.
To summarize the previous discussion, the idea is to em-

bed an irregular structure into a regular one and to avoid
some moves. In other words, the group structure does not
overconstrain the elementary displacements that can be ex-
pressed. In addition, the group structure is suÆciently gen-
eral and provides an adequate framework to unify data-
structures like arrays and trees (Cf. sections 2.2 and 2.3).

1.4 The Representation of the Points
The �rst important decision we have made is to consider

regular displacements. We have now to decide on what kind
of sets operates the group of displacements.

Our idea is that the value of an element, or point, P may
depend only on the value at the points reachable from P .
That is to say, the value at a point may depend only on
the value at the points of its orbit. The orbit of the point
P 2 E under the action of the elements of the group G is
the set fP <g>; g 2 Gg. The action of G on E is said
to be transitive if all elements of E have the same orbit.
If there are several distinct orbits, then the computation
involved in these sub-data structures are always completely
independent, and therefore, it is rather arti�cial to merge
all these sub data structures into a bigger one.
This leads to considering a set of points on which the

group of displacements acts transitively, which means that
there is a possible path between any two points.
The simplest choice is to consider the group itself as this

set of points and let

P<a> = P:a

as the group action on itself.

1.5 Collection, Data Field and Group Based
Field

We have now all the necessary notions to de�ne a data
structure: informally, a data structure D associates a value
of some type V to the element of a group G. The group
G represents both the places of the data structure and the
displacements allowed between these places.
In consequence, a data structure s is a partial function:

s 2 SG = G ! V and a data structure type SG is the set
of partial functions from a given G to some set V. Because
the set G is a group, we call our model of data structures:
GBF for Group Based Field.
Because we use partial functions, a concrete data struc-

ture represents a bounded domain in the space de�ned by its
shape: the element of the shape with a de�nite image. For
instance, this enable the representation of usual (bounded)
arrays over an in�nite grid de�ned by an abelian group.
The formalization of a data structure as a function is not

new; it constitutes for instance, the basement of the theory
of data �elds [20] and is heavely used in [13]. In computer
science, it is usual to think about a function as a rule to be
performed in order to obtain a result starting from an ar-
gument. This is the intensional notion of functions studied
for instance by the � calculus. However, the current stan-
dard de�nition of a function in mathematics is a set of pairs
relating the argument and the result. This representation is
termed as extensional and is closer to the concept of a data
structure. For example, an array tabulates the relationship
between the set of indices and the array elements. So, we
insist here that the view of data structures as functions is
only logical and appears only at the level of the data struc-
ture de�nition. It does not assume anything on the data
structure implementation.

Organization of the paper. The rest of this work is de-
voted to a �rst study of the consequences of considering a
data structure under the geometric point of view of a group
operating on itself. It can be conceived as a study in data
�eld theory, where we have equipped the domain of the func-
tion with a group structure.
Shapes are de�ned in section 2. GBF and their operations

are introduced in section 3.
In section 4 we consider the recursive de�nition of GBF.

152

A clear distinction is made between GBF and functions, so
we do not accept any recursive de�nition scheme and we
consider only recursions that propagate the computations
along a natural displacement.
The implementation problems of recursive GBF are con-

sidered in section 6. The basis for an optimized implemen-
tation dedicated to abelian GBF are provided (a possible
underlying parallel virtual machine is described in [14]).
The tabulation of the GBF values require the computa-

tion or the approximation of the de�nition domain. Some
theoretical results are provided for this problem in section 7.
Finally, section 8 reviews some related works on data

�elds, collections and the representation of discrete spaces
in computer science.

2. THE DEFINITION OF A SHAPE
Let the group G represent the set of all possible moves

within a data structure. Furthermore, we characterize a
subset S � G of elementary displacements.
Let Shape(G;S) denotes the directed graph having G as

its set of vertices and G � S as its set of (directed) edges.
For each edge (g; s) 2 G � S, the starting vertex is g and
the target vertex is g:s. The direction or the label of edge
(g; s) is s. Each element of the subgroup generated by S
corresponds at the same time to a path (a succession of el-
ementary displacements) and to a point: the point reached
starting from the identity point e of G and following this
path:

e<P> = P<e> = P

(from here we use P:s instead of P<s> for the s neighbor
of P). In other words, Shape(G;S) is a graph where:

1. each vertex represents a group element,

2. an edge labeled s is between the nodes P and Q if
P:s = Q, and

3. the labels of the edges are in S.

This graph is called a Cayley graph. The following dictio-
nary, illustrated in �gure 2, gives the translation between
graph theory and group related concepts:

Cayley graphs Groups
vertex $ group element

labeled edge $ generator
path composition $ word multiplication

closed path (cycle) $ word equating to e
connexity $ solvability of P:x = Q

We can state some properties that link the global struc-
ture of Shape(G; S) and the relations between G and S. Let
us say that S is a basis of G if an element of G is a product
of elements of S. Let S�1 = fs�1; s 2 Sg. We say that S
generates G if S [S�1 is a basis of G (this terminology is
not standard). Then, the following facts are well known:

{ For Shape(G;S) to be connected, it is necessary and
suÆcient that S generates G. The connected compo-
nents of Shape(G;S) are the cosets g:H where H is
the subgroup generated by S (a coset g:H is the set
fg:h : h 2 Hg).

{ For Shape(G;S) to contain a loop (a directed cycle of
length 1), it is necessary and suÆcient that e belongs
to S.

{ A circuit is a directed cycle. Shape(G;S) has no circuit
of length � 2, if and only if S \ S�1 = ;.

In the following, we restrict ourselves to the case where the
subset S generates G. Usually the name Cayley graph for
Shape(G;S) is used if S is a basis of G. If S is not a basis
of G, Shape(G;S) is a subgraph of the Cayley graph of G.
Note that there exist regular connected graphs, i.e., graphs
where each vertex has the same number of adjacent nodes,
which are not the Cayley graphs of a group [30].

2.1 Specification of a Shape by a Presentation
What we want is to specify Shape(G;S), that is, the group

G and the generator set S, in an abstract manner.
We use a �nite presentation to specify the group. A �nite

presentation gives a �nite set of group generators and a �nite
set of equations constraining the equality of two words. An
equation takes the following form: v = w where v and w are
products of generators and their inverses.
The presentation of a group is given between enclosing hj

and ji:

hj g1; : : : ; gd ; w1 = w01; : : : ; wp = w0p ji

where gi are the generators of the presentation and wj = w0j
are the equations. A free group is a group without equation.
We associate to a presentation G = hjS ; : : : ji the shape

Shape(G;S). So the generators in the presentation are the
distinguished group elements representing the elementary
displacements from a point towards its neighbors in a shape.
In the following, a presentation denotes the corresponding

shape or the underlying group following the context.

a

a

a

b

b

b

b

a

b

e

w = a.b.a

w.(b-1.a)

b.a.a-1.b-1

a.b-1.a-1.b

P

w

Q

Figure 2: Graphical representation of the relation-
ships between Cayley graphs and group theory. A
vertex is a group element. The label a of an edge
corresponds to the generator a of the group. There
is an edge between vertices P and Q labelled by a
i� P:a = Q. A word (a product of generators) can
be seen a path. Starting from vertex P , a path
w ends in P:w. Path composition corresponds to
word multiplication. A closed path (a cycle) is a
word equal to e (the identity of the multiplication).
An equation v = w can be rewritten v:w�1 = e and
then corresponds to a cycle in the graph. There are
two kinds of cycles in the graph: the cycles that
are present in all Cayley graphs and correspond-
ing to group laws (intuitively: a backtracking path
like b:a:a�1:b�1) and closed paths speci�c to the own
group equations (e.g.: a:b�1:a�1:b). The graph con-
nexity (there is always a path going from P to Q) is
equivalent to say that there is always a solution x to
equation P:x = Q.

153

2.2 Examples of Abelian Shapes
Abelian groups are groups with a commutative law (that

is, the product of two generators commutes). Abelian groups
are of special interest and we speci�cally use the h i brackets
for the presentation of abelian groups, skipping the commu-
tation equations as they are implicitly declared.
For example,

G2 = hNorth ; East ; West ; South ;

South = North�1; West = East�1i

Because the last two equations, South and West are aliases
for the inverses of North and East and only two generators
are necessary to enumerate the group element. The corre-
sponding abstract group can be presented without equation
by

G2 0 = hNorth ; East i

and therefore, is a free group. These shapes correspond to
an in�nite NEWS grid. The di�erence between G2 and G2 0

is that in the shape G2 , two adjacent nodes are linked by an
edge and its opposite (the grid is \bidirectional"), while in
the shape G2 ', there is only one edge between two neighbors.

Here is another example that shows that the e�ect of
adding an equation to a presentation is to identify some
points. We start from the free abelian group with one gen-
erator: h a i that describes a discrete line. If we add the
equation aN = e, the presentation becomes:

ha ; aN = ei

which speci�es a cyclic group of order N . The shape can
be pictured by the discretization of a circle where N is the
number of points of the discretization. Along the circle,
we can always move in the same direction a and after N
a-moves, we are back to the starting position. The points
fak:N ; k 2 Zg are all identi�ed with the point e.
Since arrays (like PASCAL arrays) are essentially �nite

grids, our de�nition of group-based �elds naturally embeds
the usual concept of array as the special case of a bounded
region over a free abelian shape. For example, multidimen-
sional LUCID �elds, systolic arrays, Lisper's data-�elds [21]
and even lazy lists, �t into this framework. Furthermore,
this allows the reuse of most of the achievements in the im-
plementations of arrays (e.g. [8, 28]) to implement (bounded
regions over) in�nite abelian �elds, and with some additional
work, to adapt them to the handling of �nite abelian �elds.

2.3 An Example of a Non Abelian Shape
Abelian groups are an important but special case of groups.

We give here one signi�cant example of a non abelian shape.
The �rst example is simply a free group. The free non

abelian shape:

F2 = hjx; y ji

is pictured in Fig. 3. We see that the corresponding shape
can be pictured as a tree (i.e. a connected non-empty graph
without circuit). Actually, there is a general result stating
that if Shape(G;S) is a tree, thenG is a free group generated
by S.
This enables the embedding of some class of trees in our

framework. Let Shape(G;S) where G is a free group and
S is a minimal set of generators, i.e. no proper subset of

S generates G. Then Shape(G;S) is a tree. Observe that
this tree has no node without predecessor. This situation
is unusual in computer science where (in�nite) trees have a
root and \grow" by the leaves, but this graph embeds any
�nite binary tree by rooting them at some point. Figure 3.b
gives an illustration of the points accessed starting from a
point w in F2 : it is a binary tree with root w. We cannot
�nd a unique generator acting as the father accessor (for
node w:x, the father accessor is x�1, while it is y�1 for the
node w:y).

F2 = 〈|x, y|〉

x

y

ew.x-1

w

w.x2

x

x y

w

x y x y

x y

x y x y

y

w.x

w.x.y

w.y

w.y.x
w.y2

Figure 3: A free non abelian group with two gener-
ators. Bold lines correspond to the points that can
be reached starting from a point w and following the
elementary displacements x and y.

3. GROUP BASED FIELDS
A group based �eld (or �eld in short) is a partial function

from a shape to some values set. The elements of the shape
with a well de�ned value are called the index set of the GBF.
If g : F ! V, we write g[F] to specify that g is a GBF on
shape F and g(x) denotes the value of g at point x 2 F .
Because a shape F is simply a graph, a GBF is a function

over the vertices of this graph. The supplementary structure
of the graph is used to specify automatically some operations
that are available on a GBF over F .
Operations de�ned on �elds are intensional. We present

three kinds of GBF expressions: extensions of scalar func-
tions, geometric operations and reductions.
These operations are given as a �rst account to show how

a rich algebra of shape parameterized operations can be in-
troduced on GBF. In addition, all these operations have a
data parallel interpretation because they lead to manage
GBF as a whole.

3.1 Extension
Extension of a scalar function is just the point-wise appli-

cation of the function to the value of a �eld at each point.
So, if F has shape G, f(F) denotes the �eld of shape G
which has value f(F (w)) for each point w 2 G. Similarly,
n-ary scalar functions are extended over �elds with the same
shape.

154

3.2 Geometric operations
A geometric operation on a collection consists in rear-

ranging the collection values or in selecting some part of the
collection to build a new one.

Translation. The �rst geometric operation is the transla-
tion of the �eld values along the displacement speci�ed by a
generator: F:a where a 2 S. The shape of F:a is the shape of
F . The value of F:a at point w is (F:a)(w) = F (w:a). When
the �eld F is non-abelian, it is necessary to de�ne another
operation a:F speci�ed as: (a:F)(w) = F (a:w). Obviously,
this de�nition extends to the case where a 62 S: if u =
a1: : : : :an; ai 2 S, then (F:u)(w) = ((: : : (F:a1): : : :):an)(w) =
F (w:u).

Direct Product. Several group constructions enable the
construction of a group from previous ones. We just men-
tion the direct product of two groups that gives rise to the
direct product of two �elds: F1[G1]�h F2[G2]. Its shape is
the direct product G1 �G2 = f(u1; u2) : u1 2 G1; u2 2 G2g
equipped with multiplication (u1; u2):(v1; v2) = (u1:v1; u2:v2).
The value of the direct product F1 �h F2 at point (u; v) is
h(F1(u); F2(v)). This operation corresponds to the outer
product on vector space.

Restriction and Asymmetric Union. We say that a shape
F = Shape(G;S) is in�nite if G is not a �nite set. Only the
values of a �eld on a �nite set are practically computable.
This raises the problem of specifying the parts of a �eld
where the �eld values have to be computed. Our approach
is similar to the one of B. Lisper for data �elds on Zn: we in-
troduce an operation of restriction that speci�es the domain
of a �eld.
The restriction gjp of a �eld g by a boolean valuated �eld

p, speci�es a �eld unde�ned for the point x where p(x) is
false. For the point x where p(x) is true, the restriction
coincides with g. We de�ne also the restriction of a �eld g
to a coset C: gjC where C = u:H. The result is a GBF of
shape H such that (gjC)(x) = g(u�1:x).
It is convenient to introduce simultaneously to the restric-

tion, an operator for asymmetric union: (f#g)(x) = f(x) if
f has a de�ned value at point x and g(x) elsewhere.

Remark. In [14], we do not admit any predicate p but we re-
strict to expressions corresponding to some simple domains
with good properties: the points of such a domain can be
enumerated, and predicate expressions are closed for domain
intersection.
Translation, restriction and asymmetric union of such do-

mains are the basis of the implementation of data �elds on
Z
n studied in [14, 7].

3.3 Reductions
Reduction of a n-dimensional array in APL is parameter-

ized by the axis of the operation [16] (e.g. a matrix can be
reduced by row or by column). The projection of the array
shape along the axis is another shape, of dimension n-1, and
this shape is the shape of the reduction. We generalize this
situation in the following way (consider Fig. 4).

Normal Subgroup and Quotient Group. Let H be a sub-
group of G, speci�ed by its set of generators S0; we write

H = 〈 East 〉:G2

G2/H

h East

North

H = 〈 North.East 〉:G2

East

North

G2/H

h

East

North

H = 〈 East.East 〉:G2G2/H

h

Ea
st

North

h

Figure 4: Three examples of reduction over the G2
shape.

H = S0 : G. H will be the axis of the reduction.
For u; v 2 G, we de�ne the relation u �H v if there exists

x 2 H such that u:x = v. Let the quotient of G by H,
denoted by G=H, be the equivalence classes of �H . An
element w of G=H is the set u:H where u is any element in
w.
We need to ensure that G=H is a group. This is always

possible, through a standard construction, if we assume that
H is a normal subgroup of G, that is, for each x 2 G; x:H =
H:x (for an abelian group, any subgroup is normal). Then,
a possible presentation of G=H is the presentation of G aug-
mented by the set of equations fg = e; g 2 S0g.

The Reduction. The expression hnH F denotes the reduc-
tion of a �eld F [G] following the axis H and using a com-
bining function h.
It is assumed thatH is a normal subgroup of G and that h

is a commutative and associative binary function. The shape
of hnH F is G=H. The value of hnH F on a point w 2 G=H
is the reduction of fF (v) : v 2 wg by h (this set has no
canonical order, this is why we impose the commutativity
of h).
See �gure 4 for some examples of reductions over the G2

shape. Only the �rst example can be expressed in APL. An
interesting point is that H is not restricted to be generated
by only one generator; as an example, +nG F where G is
the shape of F computes the global sum of all elements in
G (G is always normal in itself).

Remark. As usual in data �elds, there is a problem with
the handling of reductions over an in�nite domain. The
idea is that unde�ned values are not taken into account. So
hnH (gjp) is de�ned even if G is in�nite, if the set fx; p(x) =
trueg is �nite.

4. RECURSIVE DEFINITION OF A GBF
We can see scan operations [5], or catamorphisms and

their variations, as computations propagating along the data
structure neighborhood. The recursive de�nition of a GBF,
introduced in the next section, is then a possible generaliza-
tion of such operations.
Here declarative de�nitions of GBF are considered. So

155

we restrict to recursive de�nitions of GBF preserving the
neighborhood relationships. This kind of GBF speci�cation
induces computation owing from a point to the neighbor
points, in a way reminiscent from the systolic computation
paradigm.
Let g[F] be a GBF such that F = Shape(G; fs1; : : : ; sng).

If g complies with the elementary neighborhood speci�ed by
F , then the value of g on a point x depends only on the
value of g at points x:si via a �xed function h. That is

9h; 8x 2 G; g(x) = h(g(x:s1); : : : ; g(x:sn)) (3)

where h is a scalar function that establishes the functional
relationship between the value at a point and the values at
its neighbors.
Equation (3) holds for all x 2 G so we make that implicit

and write

g[F] = h(g:s1; : : : ; g:sn) (4)

(the generators s1; : : : ; sn appearing in the equation are not
always suÆcient to infer the shape of g, for instance in g = 0;
this is why we may explicitly indicate [F]). This equation is
a functional equation between GBF and not between values.
The GBF g is said to be recursively de�ned or simply a
\recursive GBF". An example is given in Fig. 5.

Quantification of Definitions. Obviously equation (4) is a
kind of recursive de�nition and we need some \base case" to
stop the recursion. So, we introduce quanti�ed de�nitions;
the two equations:

g@C = 0 (5)

g[F] = 1 + g:d (6)

de�ne a GBF g on shape F . The equation (5) speci�es the
value of g(x) on a point x 2 C. In our example, the value of
g on C is 0. For point x 62 C, the equation (6) is used and
g(x) = (1 + g:d)(x).
We say that equation (5) is quanti�ed and that equation

(6) is the default equation. It is the set of these two equations
that makes the de�nition of g.
Using quanti�ed de�nitions do not enhance the expres-

sive power of recursive GBF. Indeed, equations (5+6) are
equivalent to

g[F] = (0 jC) # (1 + g:d)

Coset Quantified Definition. The problem is to specify
the kinds of domains we admit for the expression of C. Ide-
ally, we would make a partition of the shape and de�ne the
�eld giving an equation for each element of the partition. It
implies that each element of the partition can be viewed as
a shape itself. We may use subgroups of the initial group to
split the initial domain, but this is somewhat too restrictive,
thus we will use cosets.
A coset g:H = fg:h; h 2 Hg is the \translation" by g

of the subgroup H. In a non-abelian group, we distinguish
the right coset g:H and the left coset H:g. To specify a
coset we give the word g and the subgroup H. The notation
fg1; g2; : : : ; gpg : G de�nes a subgroup of G generated by
fg1; g2; : : : ; gpg (the gi are words of G). There is no speci�c
equation linking the generators of the subgroup but they are
subject to the equations of the enclosing group, if applicable.

Well formed shape partitions. The intersection of two
cosets is empty or a coset. For that reason, in a coset quan-
ti�ed de�nition like8>>><

>>>:

g@C1 = : : :

: : :

g@Cn = : : :

g[G] = : : :

(7)

there are ambiguities in the de�nition of g if Ci \ Cj 6= ;
for i 6= j. To avoid these ambiguities, we suppose that if
Ci\Cj 6= ; for i 6= j, then there exists k such that Ci\Cj =
Ck. That is, the set fCig is closed for the intersection. Then,
the value of g on a point x 2 Ci is de�ned by the equation
corresponding to the smallest Ck containing x.

Remarks:
� Note that the set of points where the default de�nition
applies is not a coset but the complement of a union
of cosets.

� The ambiguities involved by multiple cosets quanti�-
cation is similar to the ambiguities involved by the def-
inition of a function through overlapping patterns. For
instance, in the following ML-like function de�nition

let f = function (true,) -> 0 | (,) -> 1

the value of f(true, true) is either 0 or 1. An ad-
ditional rule giving the precedence to the �rst pattern
that matches in the pattern list, is used to �x the am-
biguity. The rule of cosets inclusion is used in the case
of GBF, but a rule based on the de�nition order can
be used if checking the inclusion of cosets has to be
avoided.

� The form (4) extends obviously to handle arbitrary
translation. This does not contradict the neighbor-
hood compliance because the introduction of interme-
diate �elds recovers the locality. For example,

g = 1 + g:d3

can be rewritten as8><
>:

g0 = g:d

g00 = g0:d

g = 1 + g00:d

5. A DENOTATIONAL SEMANTICS FOR
RECURSIVE GBF DEFINITIONS

As a matter of fact, a GBF is a function. Then, the seman-
tics of a system of recursive equations de�ning a set of GBF
is the same as the semantics of a system of recursive equa-
tions de�ning functions in the framework of denotational
semantics [29].
Let F be the Scott domain of functions over a group F .

The recursive expression g[F] = '(g) de�nes a continuous
operator ' on F , because ' is a composition of continuous
operators like: translation, restriction, asymmetric union
and extension of continuous functions. Therefore, solutions
of g[F] = '(g) exist and are called �xpoints of '. The least
�xed point of ' can be computed by �xpoint iteration from
�x: ? and is the limit of 'n(�x: ?) when n goes to in�nity.

156

Computability. An immediate question is to know if the
�xpoint iteration converges on a point in a �nite number
of steps. For general functions this amounts to solve the
halting problem but here we are restricted to group based
�elds. However, the expressive power of group based �elds
is enough to confront to the same problem: suppose a �eld
de�ned by:

g[F] = h(g:a; g:b; : : :)

the points accessed for the computation of the value of w
are: w:a; w:b; : : : ; w:a:a; w:a:b; : : : . As a matter of fact, if
the computation of a �eld value on a point w depends on
itself, the �xpoint iteration cannot converge; so we face the
problem of deciding if w:a = w, w:b = w, : : : ; w:a:b = w,
etc. That is to say, we have to decide if two words in a
�nite presentation represent the same group element. This
problem is known as the word problem for groups and is not
decidable (but it is decidable for �nitely presented abelian
groups, free groups and some other interesting families).

An Example. A possible program for a �eld on a one-
dimensional line, where the value at a point increases by
one between two neighbors, is:

G1 = hlefti (8)

A = left2:(hi : G1) (9)

iota@A = 0 (10)

iota[G1] = 1 + iota:left (11)

Equation (8) de�nes a one-dimensional, one-directional line.
Equation (9) de�nes the coset A = fleft2g because the sub-
group hi : G1 is reduced to feg by convention. Equation (10)
speci�es that the �eld iota has the value 0 for each point of
coset A and equation (11) is valid for the remaining points.
To de�ne a �eld iota with the value 0 �xed at the point

e, we set \iota@hi = 0" instead of (10). We write hi for
e:(hi : G1) because a subgroup H is also the coset e:H and
because here, after iota@, hi denotes necessarily a subgroup
of G1 .
The previous equations for iota de�ne a function over G1

that can be speci�ed in a ML-like style as:

let rec iota(leftn) = if n == 2 then 0

else 1 + iota(leftn+1);;

This function has a de�ned value for the points fleftn; n � 2g
and the value ? for the other points. Note that the use of
a displacement a instead of a�1 is mainly a convention.

6. IMPLEMENTING THE COMPUTATION
OF A RECURSIVE GBF

For the sake of simplicity, we suppose that �eld de�nitions
take the following form:

8>>><
>>>:

g@C1 = c1

: : :

g@Cn = cn

g[G] = h(g:r1; g:r2; : : : ; g:rp)

where Ci are cosets, ci are constants and h is some extension
of a scalar function. The set Rg = fr1; : : : ; rpg is called the
dependency set of g.

We assume the existence of a mechanism for ordering the
cosets and to establish if a given word w 2 G belongs to
some coset. We also suppose that we have a mechanism to
decide if two words are equal. For example, these mecha-
nisms exist for free groups and for abelian groups. There
is no general algorithm to decide word equality in any non-
abelian groups. So our proposal is that non abelian shapes
are part of a library and come equipped with the requested
mechanisms. A future work is then to develop useful families
of (non abelian) shapes.
With these restrictions, a �rst strategy to tabulate the

�eld values is the use of memoized functions. A �eld g[G]
is stored as a dictionary with entries w 2 G associated to
values g(w). If the value g(w) of w is required, we �rst
check if w is in the dictionary (this is possible because we
have a mechanism to check word equality). If not, we have
to decide which de�nition applies, that is, if w belongs to
some Ci or not. In the �rst case, we �nish returning ci and
storing (w; ci) in the dictionary. In the second case, we have
to compute the value of g at points w:r1; : : : ; w:rp, (that is
recursion) and then the results are combined by h.

Optimization when a Word Normal Form Exists. We
can do better if each word w can be reduced to a normal
form w. A normal form can be computed for abelian groups
(the Smith Normal Form) or for free groups. In this case,
the dictionary can be optimized into an hash-table with key
w for w.

Implementation of Recursive Abelian GBF. In the case
of an abelian group G, we can even improve the implemen-
tation using the fundamental isomorphism between G and
a product of Z-modules, see [6, 15]. As a matter of fact, a
function over a Z-module is simply implemented as a vec-
tor. The diÆculty here is to handle the case of Zn which
corresponds to an unbounded array. The computation and
implementation of data �elds over Zn is studied in [22, 12,
14].

7. APPROXIMATION OF THE DOMAIN OF
A RECURSIVE GBF

The algorithm presented in section 6 corresponds to a
demand-driven evaluation strategy. For example, to evalu-
ate iota(e), we have to compute iota(left) which triggers the
computation of iota(left2) which returns 0. So, there is a de-
pendency between the computation of iota(e) and iota(left)
that can be pictured by a dependency between e and left.
More generally, for a de�nition g[G] = h(g:r1; : : :) we can

associate to each point w 2 G a set Pw of directed paths
corresponding to the points visited to compute g(w). An
element p of Pw is a word of the subgroup generated by
Rg = fr1; : : : g (the converse is not true). These notions are
illustrated in �gure 5.
The evaluation of g(w) fails if some p 2 Pw has an in�nite

length. Two cases can arise:

� p is cyclic;

� p has an in�nite number of distinct vertices.

Bounding the number of vertices in a computation path is
similar to the \stack overow" limit. Static analysis can
be used to characterize the domains of G with �nite paths

157

H = <a,b,c; a.c = b>

F@<c>:H = …
F@<a>:H = …

F = F.a-2 + F.b-1 + F.c-1

AAA
AAA
AAA

AA
AA

AAA
AAA

AAA
AAA
AAA

AA
AA
AA

AA
AA
AA

a

b

c 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

chemin de
dépendance infini

a.c=b

Figure 5: This schema �gures a GBF based on an
hexagonal shape H = ha; b; c ; b = a:ci. The �eld F is
de�ned by a recursive expression. The cosets hai : H
and hci : H are the base case of the recursion. The
dependency set is RF = fa�2; b�1; c�1g. The integer
that appears in a cell corresponds to the maximal
length of a dependency path starting from the cell
and reaching a coset. This integer can be thought
as the early instant where the cell value can be pro-
duced (in a free schedule). The arrows picture the
inverse of a dependency: this translation can be used
to compute new points value starting from known
points. In this example, only one value can be pro-
duced at each time. The cells that have a value
di�erent from ? are in bold: they correspond to the
de�nition domain of F . The in�nite path that starts
from one cell shows the beginning of an in�nite de-
pendency path: this path \jump" over the cosets
and goes to in�nity, that is, the starting cell does
not have a de�ned value.

(Cf. [21] for a study in this line). SuÆcient conditions can
also be checked at compile-time to detect cyclic paths (e.g. a
raw criterion can be Rg\R

�1
g = ;) and/or it can be detected

at run-time using an occur-check mechanism.

The development of a data driven evaluation strategy, or
the development of some optimizations in the computation
of a GBF, require the computation or the characterization
of the de�nition domain of a recursive GBF. The de�nition
domain of a GBF is the set of points w such that 8p 2 Pw,
p is �nite (the set Pw is �nite if each of its element is �nite,
because on any point w there is only a �nite number of
neighbors that can be used to continue a path).
In the rest of this section, we give some results about this

problem.

7.1 Computability
The decidability of the word problem is not a suÆcient

condition to decide if a GBF g has a de�ned value on point
x. For instance, in Zn where the word problem is decidable
(Cf. section 6), the problem of deciding if a GBF g de�ned
by an equation of form (4) has a de�ned value on a point x
is still undecidable.
Informally, the example of iota shows that some kind

of primitive recursion is implementable in the GBF for-
malism. The equations g[hrighti] = if p then c else g:right
shows that some kind of minimization is also possible. Thus,

intuitively, arithmetic functions can be coded in the GBF
formalism. Note that for minimization, we use a conditional
which is the extension of a non strict function.
Note also that for �nite groups this problem is decidable

because it is suÆcient to explicitly compute the dependency
graph between the group elements. This graph is �nite and
it is suÆcient to check for the absence of cycle.

7.2 Approximation of the Definition Domain
of a strict GBF

We call strict GBF a recursive GBF g speci�ed by case on
cosets but without using restriction, asymmetric union and
with the help of only strict functions h in right hand side of
equation (4). The computability of a strict GBF does not
become a trivial problem. We give here some results on the
approximation of the de�nition domain of a strict GBF g
de�ned by

8>>><
>>>:

g@C1 = c1

:::

g@Cp = cp

g[G] = h(g:r1; : : : ; g:rq)

(12)

where h is a strict function. Let:

Rg = fr1; : : : ; rqg and D0 =
[
j

Cj

In the sequel, we reserve the index j to enumerate the cosets
Cj and the index i to enumerate the shifts ri.
We know that the solution g of equation (12) is the least

�xpoint of ' de�ned by:

'(f) = �x: if x 2 Ci then ci else h(f:r1; : : : ; f:rq)

Def (g) denotes the de�nition domain of g. As a matter
of fact, '(f)(x) is de�ned if x 2 D0. Because h is strict,
if x 62 D0 then x 2 Def (g)) x:ri 2 Def (g). That is,
the de�nition domain Def (g) is the least solution (for the
inclusion order) of equation

D = D0 [
\
i

(D=D0):ri (13)

where D=D0 = fx such that x 2 D ^ x 62 D0g.

7.2.1 The Lower Approximation Dn

The solution g is the limit of the sequence gn = 'n(�x:?).
If x 2 Def (gn), then we have two possibilities: x 2 D0 or
x:ri 2 Def (gn�1) because h is a strict function. In the last
case, it means that x 2 Def (gn�1):r

�1
i .

Suppose that the domain of gn�1 is a set Dn�1. We can
propagate the value to Dn�1:r

�1

i and because of the strict-
ness of h we need to satisfy all the dependencies ri. Thus,
we may compute new values on the set

T
i
Dn�1:r

�1
i .

We then obtain the de�nition domain of g as the limit D1
of the sequence:

D0 =
[
j

Cj (14)

Dn+1 = Dn [
\
i

Dn:r
�1

i (15)

Starting from the de�nition of Dn we have immediately:

D0 � D1 � ::: � Dn � ::: � D1 = Def (g) (16)

158

Therefore, the sequence Dn gives a lower approximation of
Def (g).

7.2.2 The Greater Approximation En

A Geometric Interpretation. To obtain a greater approxi-
mation of Def (g), we �rst interpret geometrically the prop-
erty of belonging to the de�nition domain of g. To each
point w 2 G we associate a set Pw of directed paths corre-
sponding to the points visited for the computation of g(w).
An element p of Pw is a word of the monoid Rg generated
by Rg:

Rg = f r
�i1

i1
: ::: : r

�i
k

ik
; with ril 2 Rg and �il 2 N g

The computation of g(w) fails if there exists a p 2 Pw with
an in�nite length. We have already noted that there are two
classes of in�nite path: cyclic paths and the others.

Computing a Greater Approximation E0. If g(w) is de-
�ned, then all the paths p 2 Pw starting from w must end on
a coset Cj . Amongst all these paths, there are some paths
made only with ri shifts. Let:

Ri = f r�ni ; n 2 N g (17)

E0 = D0 [
\
i

D0:Ri

The set Ri is the monoid generated by r�1i (warning: we
take the inverse of the dependency). The set E0 is made
of the points w 2 G that either belong to D0 or are such
that there exists a path made only from ri starting from
w and reaching D0. This last property is simply expressed
as: 8i; 9ni; w:r�nii 2 D0. This property is true for all
w 2 Def (g) and then:

Def (g) � E0 :

Refining the Approximation E0. The greater approxima-
tion E0 is a little rude. We can re�ne them on the basis of
the following remark. If w 2 Def (g), then we have either
w 2 D0 or w:ri 2 Def (g). We can deduce that:

Def (g) � E1 = D0 [(E0 \
\
i

E0:ri)

Obviously E1 � E0. Moreover, this construction starting
from E0 can be iterated, which introduces the sequence

E0 = D0 [
\
i

D0:Ri (18)

En+1 = D0 [(En \
\
i

En:ri) (19)

We always have Def (g) � En+1 � En.
Let E1 be the limit of En. For each w 2 E1, we have

either w 2 D0 or w:ri 2 E1. Therefore, E1 is a solution of
the equation (13). It should be checked that it is the least
solution which we admit (intuitively, the element of G are
equivalence classes of �nite words of generators and then, if
x 2 E1 it can be checked by induction on the number of
occurrences of ri in x that x 2 Def (g)).

7.3 Summary and a Conjecture
We can summarize the previous results by the formula:

D0 � ::: � Dn � ::: � D1 = Def (g) = E1 � :::

::: � En � ::: � E0 (20)

These results hold for any strict GBF (abelian or non abelian).
The recursive de�nition of a GBF g[G] can be generalized
without diÆculty by considering more general base case do-
mains. That is, we may replace the coset Ci by arbitrary
set Si in equation (7). Relations (20) remain true.
A monoid M generated by element g1; :::; gp of a group

G is the set of elements that can be written as product of
positive powers of the gi's. We call comonoid the translation
of a monoid, that is, a set x:M = fx:m;m 2 Mg where M
is a monoid. For all the examples we have worked out on
Z
n, we have veri�ed that the de�nition domain of a GBF g

is a �nite union of comonoids. We conjecture that this is
always true.

8. CONCLUSION
This paper reports some e�orts to extend the concept of

collection, in the line of [13], by specifying a structure for
an index set and independently of the element's value.
Considering a data structure independently of its underly-

ing set is interesting for many purposes. For instance, this is
the essence of the approach taken in the theory of species of
structures [3] for combinatorial enumeration. The approach
is functorial, which is also the case in [17], where B. Jay
develops a concept of shape polymorphism. In his point of
view, a data structure is also a pair (shape, set of data).
As above, the shape describes the organization of the data
structure and the set of data describes the content of the
data structure. However, his main concern is the develop-
ment of shape-polymorphic functions and their typing. Ex-
amples of shape polymorphic functions are the generalized
map or the generalized scan, that can be computed without
changing the data structure organization. More generally,
the shape of the result of a shape-polymorphic function ap-
plication depends only on the shape of the argument, not of
its content.
The framework presented here uni�es the tree and the

array data structures. There is a number of researches
to extend the concept of array: Indexical Lucid [1], In�-
del [27], AMR++ [2]. These approaches consider more gen-
eral shapes for arrays than n-dimensional bounding box, but
always rely on grids (that is, a point is indexed by a tuple of
integers). This forbids for example the natural representa-
tion of a tree or a triangular lattice. Cellular automata on a
Cayley graph have been studied by [25] but no �eld algebra
is worked out and the problem of recursive de�nition is out
of their scope.
Here, we propose to consider a collection as a partial func-

tion over a �nitely presented group. This approach makes
the de�nition of point neighborhood explicit and gives a
very rich algebra of function built on group theoretic con-
structions: examples of direct product, free product and
quotient have been given. It remains to extend these con-
structions (e.g. de�ning an amalgamated product) and to
check if, starting from groups owning the required proper-
ties (e.g. existence of a mechanism to test coset member-
ship), these properties can be constructively lifted through
the group constructions. Computational group theory is an

159

extensively studied area, see for example [26] and a large cor-
pus of results is available. The reader may �nd in [22, 12] a
review of the theoretical tools needed to solve the implemen-
tation problems we have discussed for abelian �elds. These
constitutes the basis of a parallel platform in JAVA [14] for
the computation of data �elds.
Shape speci�cation and construction �t naturally the frame-

work of type theory. For instance, presentations correspond
to ground types and group constructions to type expres-
sions. The parameterized shape D(N) in section 2.2 is an
example of a value dependent type. The group foundation of
shapes o�ers several tools to formulate various type equality.
For example, group isomorphism, which is solvable for �nite
abelian presentation, is a candidate for observational equal-
ity. But group isomorphism does not preserve the neighbor-
hood structure of a shape, which is central in our approach:
we have to check in addition that the image of a generator
is a generator, and conversely. There is also a natural in-
terpretation for subtyping: a shape S0 is a subtype of shape
S if they de�ne the same group and if the generators of S
are included in those of S0 (all �eld operations de�ned on
S are available on S0). This is decidable for abelian pre-
sentation. These examples corroborate our opinion that, in
addition to the gain in expressive power for the programmer,
the use of group theory gives also a gain for managing the
type structure.
For recursive �eld de�nitions, the decomposition of a �eld

into sub�elds is a fundamental mechanism. The need of
powerful decomposition mechanisms appears in quanti�ca-
tion of de�nitions and in reduction expressions. We use re-
spectively cosets and normal subgroups. It is interesting to
compare this situation with the approach of Bird-Meertens
algebra [4] or with the power-list algebra [23]. These theo-
ries develop a basis for the (recursive) de�nition of lists or
arrays. The decomposition relies on the concatenation: ap-
pending two lists gives another list and concatenating two
homogeneous arrays gives another array, leading to a divide-
and-conquer computation strategy. In group-based �elds,
the decomposition relies on cosets (the sets Lt giving the
decomposition of the computations) or on a normal sub-
group (which decomposes naturally the group into a prod-
uct). A direction for future work is to investigate other
possible and useful decompositions of shapes. An analogous
for the concept of list-homomorphism must also be worked
out for group based �elds.

9. REFERENCES
[1] E. A. Ashcroft, A. Faustini, R. Jagannathan, and

W. Wadge. Multidimensional Programming. Oxford
University Press, February 1995. ISBN 0-19-507597-8.

[2] D. Balsara, M. Lemke, and D. Quinlan. Adaptative,
Multilevel and hierachical Computational strategies,
chapter AMR++, a C++ object-oriented class library
for parallel adaptative mesh re�nment in uid
dynamics application, pages 413{433. Amer. Soc. of
Mech. Eng., Nov. 1992.

[3] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial
species and tree-like structures, volume 67 of
Encyclopedia of mathematics and its applications.
Cambridge University Press, 1997. isbn 0-521-57323-8.

[4] R. S. Bird. An introduction to the theory of lists. In
M. Broy, editor, Logic of Programming and Calculi of

Discrete Design, NATO ASI Series, vol. F36, pages
217{245. Springer-Verlag, 1987.

[5] G. Blelloch. Scans as primitive parallel operations.
IEEE Transactions on Computers, 38(11):1526{1538,
Nov. 1989.

[6] H. Cohen. A course in computational algebraic number
theory, volume 138 of Graduate Text in Mathematics.
Springer-Verlag, 1993.

[7] D. De Vito. Conception et impl�ementation d'un
mod�ele d'ex�ecution pour un langage d�eclaratif
data-parall�ele. Th�ese de doctorat, Universit�e de
Paris-Sud, centre d'Orsay, June 1998.

[8] P. Feautrier. Dataow analysis of scalar and array
references. Int. Journal of Parallel Programming,
20(1):23{53, Feb. 1991.

[9] L. Fegaras and T. Sheard. Revisiting catamorphisms
over datatypes with embedded functions (or, Programs
from outer space). In Conference Record of POPL '96:
The 23rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 284{294,
St. Petersburg Beach, Florida, 21{24 Jan. 1996.

[10] P. Fradet and D. L. M�etayer. Shape types. In Proc. of
Principles of Programming Languages, Paris, France,
Jan. 1997. ACM Press.

[11] D. Gautier and C. Germain. A static approach for
compiling communications in parallel scienti�c
programs. Scienti�c Programming, 4:291{305, 1995.

[12] J.-L. Giavitto. Scienti�c Repport for the HDR. PhD
thesis, LRI, Universit�e de Paris-Sud, centre d'Orsay,
Sept. 1999. Research Report 1226.

[13] J.-L. Giavitto. A framework for the recursive
de�nition of data structures. In ACM-Sigplan 2nd
International Conference on Principles and Practice
of Declarative Programming (PPDP'00), pages 45{55,
Montr�eal, Sept. 2000. ACM-press.

[14] J.-L. Giavitto, D. De Vito, and J.-P. Sansonnet. A
data parallel Java client-server architecture for data
�eld computations over ZZn. In EuroPar'98 Parallel
Processing, volume 1470 of Lecture Notes in Computer
Science, pages 742{??, Sept. 1998.

[15] C. S. Iliopoulos. Worst-case complexity bounds on
algorithms for computing the canonical structure of
�nite abelian groups and the hermite and smith
normal forms of an integer matrix. SIAM Journal on
Computing, 18(4):658{669, Aug. 1989.

[16] K. E. Iverson. A dictionnary of APL. APL quote
Quad, 18(1), Sept. 1987.

[17] C. B. Jay. A semantics of shape. Science of Computer
Programming, 25(2{3):251{283, 1995.

[18] W. Kelly, V. Maslov, W. Pugh, E. Rosser,
T. Shpeisman, and D. Wonnacott. The Omega
calculator and library, version 1.1.0. College Park,
MD 20742, 18 november 1996.

[19] W. Kelly, W. Pugh, E. Rosser, and T. Shpeisman.
Transitive closure of in�nite graphs and its
application. Technical Report UMIACS-TR-95-48,
CS-TR-3457, Univ. of Maryland, College Park, MD
20742, 14 Aprils 1994.

[20] B. Lisper. On the relation between functional and
data-parallel programming languages. In Proc. of the
6th. Int. Conf. on Functional Languages and

160

Computer Architectures. ACM, ACM Press, June
1993.

[21] B. Lisper and J.-F. Collard. Extent analysis of data
�elds. Technical Report TRITA-IT R 94:03, Royal
Institute of Technology, Sweden, January 1994.

[22] O. Michel. Repr�esentations dynamiques de l'espace
dans un langage d�eclaratif de simulation. PhD thesis,
Universit�e de Paris-Sud, centre d'Orsay, Dec. 1996.
NÆ4596, (in french).

[23] J. Misra. Powerlist: a structure for parallel recursion.
ACM Trans. on Prog. Languages and Systems,
16(6):1737{1767, November 1994.

[24] S. Nishimura and A. Ohori. A calculus for exploiting
data parallelism on recursively de�ned data
(Preliminary Report). In International Workshop
TPPP '94 Proceedings (LNCS 907), pages 413{432.
Springer-Verlag, Nov. 94.

[25] Z. R�oka. One-way cellular automata on Cayley
graphs. Theoretical Computer Science,
132(1{2):259{290, 26 Sept. 1994.

[26] M. Schnert. GAP 3.3. ftp
samson.math.rwth-aachen.de:/pub/gap, 7 Nov. 1993.

[27] L. Semenzato. An abstract machine for partial
di�erential equations. PhD thesis, U. of California at
Berkeley, 1994.

[28] T. Torgersen. Parallel scheduling of recursively de�ned
arrays: Revisited. Journal of Symbolic Computation,
16:189{226, 1993.

[29] J. van Leeuwen, editor. Handbook in theoretical
computer science. Elsevier Science Publishers, 1990.

[30] A. White. Graphs, groups and surfaces. Mathematics
Studies. North-Holland, 1973.

APPENDIX

A. COMPUTING THE DOMAIN APPROX-
IMATIONS OF AN ABELIAN GBF US-
ING THE OMEGA CALCULATOR

Equations (14, 15, 17, 18, 19) enable the explicit construc-
tion of Dn and En if it is known how to compute intersec-
tion, union and product of comonoid. We call comonoid a
set x:M = fx:m;m 2Mg where M is a monoid.
Indeed, a coset is a special kind of comonoid. Note that

the intersection of a comonoid is either empty or a comonoid.
If the product D:M of a comonoid D by a monoidM is also
a monoid (which is the case for abelian shape or if the ri
commutes with all group elements), then all arguments of
the intersections and unions in the previous equations are
comonoids. We may then express Dn and En for a given
n has a �nite union of comonoids. It is then clear that
the de�nition domain of g is an union of comonoids. The
conjecture only says that this union is �nite.
We have used the omega calculator, a software package

[18] that enables the computation of various operations on
convex polyhedra to make linear algebra in Zn and represent
comonoids. Linear algebra is not enough to compute Dn

and En because we have to compute the Ri. Fortunately,
the omega calculator is able to determine in some cases
the transitive closure of a relation [19] which enables the
computation of Ri as the transitive closure of [x, x.ri] (we
use here the syntax of the omega calculator). We plan to

develop a dedicated library under Mathematica to compute
these approximations systematically.
Here is in example, based on the de�nition illustrated in

�gure 5. Please refer to [18] for the omega calculator con-
cepts and syntax. We �rst de�ne the cosets in Z2

C1 := f [n, 0] g;
C2 := f [0, n] g;

then three relations that correspond to the dependencies:

r1 := f [x, y] -> [x, y+1] g;
r2 := f [x, y] -> [x+2, y] g;
r3 := f [x, y] -> [x+1, y+1] g;

and we need also the inverse of the dependencies:

ar1 := f [x, y] -> [x, y-1] g;
ar2 := f [x, y] -> [x-2, y] g;
ar3 := f [x, y] -> [x-1, y-1] g;

We may now de�nes the Di:

D0 := C1 union C2;

H1 := r1(D0) intersection r2(D0) intersection r3(D0);
D1 := D0 union H1;

H2 := r1(D1) intersection r2(D1) intersection r3(D1);
D2 := D1 union H2;

H3 := r1(D2) intersection r2(D2) intersection r3(D2);
D3 := D2 union H3;

We can ask omega to compute a representation of D3

f[x,0]g union f[0,y]g union f[4,1]g union
f[6,1]g union f[2,1]g

which is what it is expected. For the approximation Ei we
need to represent the monoids Ri which is done through a
transitive closure:

R1 := r1*;
R2 := r2*;
R3 := r3*;

The de�nition of E0 raise the computation of

E0 := R1(D0) intersection R2(D0) intersection R3(D0);

(we have ommited the union with D0 to avoid too compli-
cated term in the result). The evaluation of this de�nition
returns

f[x,y]: Exists (alpha : 0 = x+2alpha
&& 1 <= y && 2 <= x)g union f[x,0]g union f[0,y]g

This approximation is too large, we may re�ne it by com-
puting E1:

E1:= r1(ar1(E0) intersection E0) intersection
r2(ar2(E0) intersection E0) intersection

r3(ar3(E0) intersection E0);

The evaluation of E1 gives:

f[x,1]: Exists (alpha : 0 = x+2alpha
&& 4 <= x)g union f[2,1]g

which is also E1 minus D0.

Extensions. We may extend the result (20) to non abelian
forms simply by carefully taking care of the right or left
applications of a shift ri. We may also extend the previ-
ous results to the case of a system of recursive strict GBF
g; g0; g00; ::: by using Dn;D

0

n;D
00

n; ::: and En;E
0

n;E
00

n; ::: instead
of only Dn and En.

161

Chapter 7

The topological structures of
membrane computing.

[1] Jean-Louis Giavitto and Olivier Michel. The topological structures of membrane computing. Fundamenta
Informaticae, 49:107–129, 2002.

87

Fundamenta Informaticae XXI (2002) 1001–1023 1001

IOS Press

The Topological Structures of Membrane Computing

Jean-Louis Giavitto

CNRS – LaMI umr 8042, giavitto@lami.univ-evry.fr

Olivier Michel

LaMI – University of Evry, michel@lami.univ-evry.fr

Abstract. In its initial presentation, the P system formalism describes the topology of the mem-
branes as a set of nested regions. In this paper, we present an algebraic structure developped in
combinatorial topology that can be used to describe finer adjacency relationships between mem-
branes. Using an appropriate abstract setting, this technical device enables us to reformulate also the
computation within a membrane and proposes a unified view on several computational mechanisms
initially inspired by biological processes. These theoretical tools are instantiated inMGS, an exper-
imental programming language handling various types of membrane structures in a homogeneous
and uniform syntax.

Keywords: membrane computing, Gamma, CHAM, P system, L system, cellular automata, group
based fields, rewriting, topological collection, declarative programming language

1. Introduction and Motivations

The original motivation of this work lies in the modeling and the computer simulation of biologicaldy-
namical systems(DS) with a special focus onDS with a dynamical structure. StandardDS exhibit a static
structure, that is, the exact phase space of theDS can be known statically before the simulation. This is
usually not the case for theDS found in biology [5, 6, 7] like the models conceived for developmental
processes (e.g. embryogenesis, plant growing), integrative cell models, protein transport and compart-
ment simulation, etc. In this kind of situation, the dynamic of the system is often specified as several
local competing transformations occurring in an organized set of simpler entities. The organization of
this set is subject to possible drastic changes in the course of time.

Address for corespondance: LaMI, umr 8042 CNRS – University of Evry, Tour Evry 2, 523 Place des terasses de l’Agora,
91000 Evry, FRANCE.

1002 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

Considering the biological roots of this problem, the dynamical structure and the specification of the
dynamics, it is not surprising to consider the formalism of P system, and more generally the approach of
membrane computing, as a starting point for developping a dedicated programming language. P systems
are new distributed parallel computing models based on the notion of a membrane structure [20, 21].
A membrane structure is a nest of cells represented, e.g., by a Venn diagram without intersection and
with a unique superset: the skin. Objects are placed in the regions defined by the membranes and evolve
following various transformations subject to some conditions: an object can evolve into another object,
can pass trough a membrane or dissolve its enclosing membrane, etc. The computation is finished when
no object can further evolve.

The need of more accurate membrane structures. In its initial presentation, the P system formalism
describes the topology of the membranes asnesting. The nested structures of the membranes can be
specified in several ways: as a tree, a Venn diagram, a string of matching parentheses, see figure 1. With
respect to the modeling and simulation of concrete biological processes, this description is too rough and
presents three main shortcommings.

• Only the nesting of membranes is taken into account, not their adjacency (see figure 2). However,
the adjacency relationships of cells are of prime importance in the organization of biological tissues
(e.g. for the diffusion of morphogenetic gradient).

• There is an artificial distinction between a membrane and its enclosed region: only the enclosed
region is decorated with evolving objects. But in real biological compartments (like cells, vesicles,
cargo, organs, etc.) the boundary that defines the compartment is itself the place of active and
specific processes (reaction between anchored proteins, hyperstructure [18], ionic chanels, etc.)
that need the same computational representation as the region.

• Biological compartmentalization localizes processes at regions of various dimensions (active sites
are points and0-dimensionnal, gene’s promoters are localized on one-dimensional molecules, cell
membranes are two-dimensional and lumens are three-dimensional regions).

The point we want to emphasize here is that the topological organization of the membrane structure is
not fully taken into account in the original formulation of the P systems. We use the term “topological
organization” to underline the topological nature of the characteristics we want to consider. Obviously,
such topological organization can be supported more or less directly in a genuine P system bycoding.
Figure 3 sketches the coding of the adjacency relationships by specific evolution rules (left diagram), and
the coding of the membrane labeling (right diagram).

However, taking explicitly into account topological features in the computational model is interesting
per seand not only to ease the development of simulations of real biological processes. This has already
been acknowledged through the development of some P system generalizations, for example toward
graph structured membranes [22]. More generally, if we pinpoint “membrane computing models” as
computational devices able to:

1. store and move objects between regions (compartments, loci, positions, . . . , specified by the mem-
branes),

2. transform locally the objects stored in a region,

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1003

4

6

5

65

2 3 4

1skin

membrane

(() () (() ()))
21 2 4 5 1466533

1

region

membrane
elementary

2 3

Figure 1. Some representation of the nesting structure of the membranes of a P system: as a Ven diagram, as a
tree of regions and as a string of matching parentheses. Regions are numbered from1 to 6.

1

2 3

2
3

1

2 3

1

Figure 2. The two different topological situations give the same nesting structure. However, in the diagram to the
left, entities in region2 can pass directly to region3, which is not the case in the diagram to the right.

35

4

2

6

1

1

6

3

2

4

5

0

LMN

DEF

abc

hijk

1

hijk

abc

LMN

DEF

(b) (b’)

(a’)

(a)

4

3

2

Figure 3. The topological configuration(a) can be coded by the flat membrane structure(a′). Specific transport
rules between adjacent compartments are coded by two elementary moves routed between the elementary regions
and the top region0, and then to the final destination. Membranes holding objects(b) (objects are given using
italic labels) can be simulated using additional membranes(b′).

1004 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

3. create, delete and rearrange locally the organization of the regions,

then it is mandatory to study the organization of the regions, their representations and their handling.
In section 2 we introduce the notion of achain complexthat can be used for this purpose. A chain
complex is a standard construction in the field of algebraic topology that formalizes a faithfull and com-
plete representation of the topological organization of a set of membranes. In addition, the algebraic
and combinatorial definition of the involved concepts makes them particularly suited for a computer
implementation.

Uniform description of the computational mechanisms. The above presentation shows that two ba-
sic computation mechanisms are at work in a membrane computing model: one to process the objects in
a region and the second to compute the regions.This is a two stages model. From this point of view, P
systems exhibit the following two characteristics.

• The type of objects and the evolution mechanism are supposed to be the same for all the regions
(e.g.: the evolution rules are based on multiset rewriting, or string rewriting, or splicing systems,
but not on both).

• A strict distinction is maintained between the global membrane structure (a tree) and the local
computational entities that take places into a region (multisets, strings, etc.).

These characteristics put a burden on the description of theDS, especially when the structure of the
system must intrinsically be computed together with its state. A biological motivation to relax these
constraints can be illustrated by the simulation of a string of DNA with its coat of activator and inhibitor
proteins. The DNA string in the nucleus can be modeled as the object of a splicing system in an enclosing
membrane, but it must also be conceived as a region itself endowed with some string rewriting process to
take into account the activities and sequential organization of the coat. This example shows that at some
level, an entity must be processed as an object in a multiset, while at the same time, at another level, it
must be processed as a string. To make this possible, one has to reify the two stages model into a single
framework describing with the same device both the computation on objects (of various kind) and the
computation on regions.

This unification is not out of reach, because at a sufficiently abstract level, the regions nested in a
regionR can be conceived as first-citizen objects belonging toR, like the ordinary objects stored in the
region. For example, the region0 in schema(a′) of figure 3, can be seen as a multiset of multisets, and
then, subject to the same computational mechanism (multiset rewriting) that applies to the atomic objects
in an elementary membrane.

It appears that the mathematical device we will introduce to represent adequately arbitrary topologi-
cal organization of membranes, is also able to support such an uniform specification.

The rest of the paper is organized as follows. Section 2 gives some informations about the notion
of chain complexes and defines the notion of topological collection. Based on these notions, theMGS
language is described informally in section 3. The topological organization underlying the Gamma
programming language and the chemical abstract machine (CHAM), P systems, L systems and cellular
automata are formally defined in section 4. TheMGS presentation is then completed by some examples
covering the previous formalisms in section 5. All examples are processed using the current version of
theMGS interpreter. The last section finishes by the review of some directions opened by this research.

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1005

2. Cell Complex, Chain Complex and Topological Collections

2.1. Cell Complex

Instead of using a partial order to represent the hierarchichal structure of the membrane’s containments,
our idea is to use a partial order< to represent the adjacency relationships between the various parts
of the membranes. Membranes are supposed to be of any dimension. The mathematical tools we will
use are the basic definitions at the start of homology theory. A good introduction is [13] and a standard
reference text is [17].

It is convenient to describe the complex shape formed by the membranes together as build from basic
blocs calledk-cells. A k-cell is an homeomorphic image of an open ball inRk. However, the precise
nature of the cellc is not stressed in a purely combinatorial approach until no link is made with point set
topology notion. Here, we need only to grad the cells by their dimension and to focus on the connection
of cells. A0-cell is also called apoint or avertex, a1-cell is anedgeand a2-cell is aface. A collection
of cells that are fitted together in an appropriate way forms larger structures calledcomplexes. Examples
of complexes are given in Fig. 4. If an edgee is a side of a facef , we say thate andf areincidentand
we writee < f . The incidence relation is a partial order between cells. LetP be the poset of cells and
x, y ∈ P such thatx < y and there is noz such thatx < z andz < y. Then we writex ≺ y and we say
thatx is apredecessorof y or thaty is asuccessorof x.

Definition 2.1. (Abstract Complex)
An abstract complexK is a poset with a functiondim : K → Z such thate ≺ e′ implies dim e′ =
1 + dim e. The setKp = {e | e ∈ K, dim e = p} are thep-cells ofK. ThedimensiondimS of a subset
S ⊂ K is the biggest of the dimensions of the elements ofS if it exists.

Given a poset and its partial order<, we define the derived≤ and¹ relationships. We defines now
some operations on subsets of complexes. For a subsetS ⊆ P , the smallest poset containingS is its
closureS. There is two ways for a cellx to be connected with a celly: because they share a common
boundary or because they are both boundaries of a “ bigger ” cell. Finally, considering an infinite complex
may be useful, for instance to represent an unbounded grid. However, each element (vertex or edge) in
this grid is connected to only a finite set of other elements. Then, we say that the grid is locally finite.

Definition 2.2. (Subcomplex, Star and Shape, Connections and Local Finiteness)
Let (K, <) be an abstract complex andS ⊆ K be a subset ofK. Then the setS = {y| y ∈ K, y ≤ x ∈ S}
with the relation< is the subcomplex generated byS. It is called theclosureof S. Thestar Stx of a
cell x ∈ K is Stx = {y | x ≤ y ∈ K}. We define the star of a subsetS ⊆ K to beStS =

⋃
x∈S Stx

and theclosed staris StS = StS . An elementx is abovea setS ⊂ K iff x ∈ S or if the elements of
the set{y | y ≺ x} are all aboveS. TheshapeShape(S) of a subsetS ⊂ K is the set of the elements
aboveS. These notions are illustrated in figure 5.

Two cellsx andy of an abstract complexK areconnected, and we writex , y, iff it exists a cellz
such that bothx andy belongs toSt z. In other words,x connected toy requires thatx ∩ y 6= ∅ or that
Stx ∩ St y 6= ∅. Given a setS ⊆ K, we define(,\S) as the restriction of, onS: (,\S) = ,∩(S × S).
Let (,\S)∗ be the transitive closure of this relation. A subsetS of K is connectedif (,\S)∗ has only one
equivalence class.

A complexK is closure-finiteif for all cell x ∈ K, x is a finite set. It isstar-finiteif Stx is a finite
set for allx in K. A complex which is both closure-finite and star-finite, is said to belocally finite.

1006 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

21 3 4 5 6

a cb

A B C
BA

a

b

4

3
2

1

6

5C

c

Bb

4

A
2

3

6

C1

c

5

41

gh i fe j

A CBe

f

h
g

1

4

i

A
C

2

3

B
j

32

a

Figure 4. Top diagrams.The schema in the right hand side gives the Hasse diagram of the incidence relation of
the complex in the left hand side. Faces are denoted by capital letters A, B and C. Edges are denoted by small
letters and vertices by numbers. For instance, the face B is bounded by two edges i and j which are themselves
bounded by vertices2 and3. This example shows also that an abstract complex is generally not alattice: there
is for instance no least upper bound for edges e and f: both faces A and C are incomparable successors of e and
f. Bottom diagrams.The moebius strip on the left gives the same poset as the cylinder on the right (they are both
composed of 3 faces, 3 edges and 6 vertices).

.

b

c

a

d

e

S

StS

Shape(S)

Figure 5. Connection and shape of a set.Left figure.We figure symbolically a posetK by a triangle. The coloured
triangle below elementa is the subcomplexa generated bya. It is also called theconebelowa. An elementx
is in the cone belowy iff x ≤ y. The set{a, b, c, d, e} is connected because elements are connected two by two.
Fo example,a andb are connected becausea ≤ b, idem forc andb. The elementsc ande are connected because
d ≤ c andd ≤ e. Let A = a, C = c andE = e be the closure of{a}, {c} and{e} respectively. Then the set
A ∪ C ∪ E ∪ {b} is also connected because a closure of a connected set is connected.Right figure. The setS
consists of three internal vertices of a line graph. We have figuredSt(S) andShape(S).

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1007

2.2. Chain Complex

Figure 4 shows that the poset structure alone is not enough to represent the connections of cells. A
cell is not completely described by the simple set of its predecessors. One must represent also some
organisation of these predecessors: for example an orientation, or a count if some subcells are identified,
etc. This organisation of the set of the predecessors is represented by the notion ofchain: a chain is a
“ structured set ” of cells. This structure is specified through an abelian group structure and a boundary
operator. The abelian group structure is used to describe the gluing of two cells using the group operation
(written additively). The boundary operator gives the chain that describes the boundary of a cell, and by
extension, the boundary of any chain.

Using an abelian group operation to represent the “ gluing ”c of two cellsx in positiong andy
in positiong′ means that we can writec = g + g′ or c = g′ + g: the order of the gluing does not
matter. The neutral element0 corresponds to the empty set. And if we add a cellx to a partc, one
must be able to “ detach ” latter the cellx from c. This justifies the use of a group structure for the
set of chains. Furthermore, one of the main objectives of the theory is to compute the boundary of an
arbitrary part of a space, from the boudary defined for an “ isolated ” cell (to compute the neighbors of
an arbitrary membrane). Then, it is natural to require the boundary operator∂ to be an homomorphism:
∂(g + g′) = ∂(g) + ∂(g′). These considerations motivate the following definitions.

Definition 2.3. (Chain Group with Coefficients and Chain Complex)
LetK be an abstract complex, and letG denotes an arbitrary abelian group written additively. The neutral
element ofG is written0. The setCp(K, G) of p-chain on the complexK with coefficients inG is the set
of total functionscp from the setKp to G that are zero almost everywhere, that is,cp(x) = 0 for all but
a finite number ofp-cells ofK. The setCp(K, G) is an abelian group for the addition of functions.The
chain group with coefficients inG is defined by:Chains(K, G) = C0(K, G) ⊕ C1(K, G) ⊕ . . . where
⊕ is the direct sum of abelian groups.

A chain complexC(K, G, ∂) is a sequence(Cp(K, G), ∂p)p∈Z of the abelian groupsCp and connect-
ing homomorphism∂p : Cp → Cp−1, calledboundary maps.

An elementc of Cp(K, G) is called ap-chain. Cp(K, G) represents all the way to gluep-cells
together. Sometimes we use a subscriptp to indicate that a chainc is ap-chain:cp. In the opposite, for
convenience in notation, we shall sometimes delete the dimensional subscriptp on the boundary operator
∂p, and rely on the context to make clear which of these operators is intended. We also abbreviate
Cp(K, G) by Cp, C(K, G, ∂) by C and use uniformly0 to denote the neutral element of any abelian
group.

An abelian groupCp is trivial when its onlyp-chain is0 (the element zero of the group of functions).
It this case we writeCp = 0. A finite dimensionalchain complexC is such that theCp are trivial
except for at most a finite number ofp. If Cp is the trivial group forp < 0, we say thatC is a non-
negativechain complex. Thecarrier of cp is the set ofp-cells with a nonzero coefficient in the chain:
|cp| = {x ∈ Kp | cp(x) 6= 0}.

It is customary to use a linear additive notation for a chaincp: cp =
∑

x∈|cp| cp(x).x . Indeed,
Cp(K, G) can alternatively be defined as the formal sums with variablex ∈ Kp and coefficients inG.
Let cp = α1x1 + · · · + αnxn be a chain ofCp(K, G). Thenαi ∈ G and we suppose in addition that
αi 6= 0 for all i and thati 6= j impliesxi 6= xj .

1008 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

Example of theC(K,Z/2, ∂) Chain Complex. Z/2 denotes the module of relative integers modulo
2. UsingZ/2 as the chain coefficients enables the representation of the presence,cp(x) = 1, or the
absence,cp(x) = 0, of ap-cell x in a chaincp. A chain ofC(K,Z/2) is then simply the characteristic
function of a subset ofK. An example is given in figure 6. A chainc = e+f corresponds to the function
c defined byc(e) = c(f) = 1 andc(x) = 0 for x 6= e andx 6= f . This chain can also be written
c = 1.e + 1.f + 0.g + 0.h + It is customary not to write thep-cells with a zero coefficient (in
accordance with the additive notation). Thus we havec = 1.e + 1.f or more ambiguouslyc = e + f .
Suppose that the chainc ∈ Cp(K,Z/2) is composed of twok-cellss ands′; this is denoted byc = s+s′.
Suppose thans ands′ share only one celld ∈ Kp−1, see Fig. 6. Thend is not in the border ofs because
s ands′ are glued alongd: d is an interior cell. Butd is in the boundary ofs and in the boundary ofs′.
Let ∂ps = d+

∑
x′j and∂ps

′ = d+
∑

x′′k. Then we must have:d+
∑

x′j + d+
∑

x′′k =
∑

x′j +
∑

x′′k
which isautomaticallyachieved becaused + d = 2d = 0.

2.3. Arbitrary Labeling the Cells of a Complex

Suppose we want to labelsomeof the cells of a complex with values taken in an arbitrary setVal . Such
labeling can be represented by apartial function` fromK toVal . This partial function can be extended
into a total function given the value⊥,⊥ 6∈Val , to the cells that have no image by`. Then, the function
` can be seen as a chainif we give an abelian group structure toVal ∪ {⊥}.

A natural choice is to useAbel(Val) the free abelian group generated by the elements ofVal . We rely
on the injectionx 7→ x to represent an element ofVal by an element ofAbel(Val) and⊥ is represented
by 0. This group has a richer structure thanVal and enables the association of a cell to a “ generalized
multiset ” ofVal elements. In a generalized multiset, an element can have a negative multiplicity. Alter-
natively,Abel(Val) can be defined as the set of total functions fromVal toZ.

Remark that ifVal has already a group structure+, the operation inAbel(Val) does not coincide
with the operation+Abel in Abel(Val). Take for exampleVal = Z, thenx +Abel (−x) 6= 0Abel. Indeed,
bothx and(−x) are generators ofAbel(Z) and they are distinct.

Boundary and Coboundary as Transport Operation. In an arbitrary labeling of a complex, we can
interpret the∂ operations astransportoperations, see figure 8 and the references [24, 25, 19].

Suppose that we want to valuate the cells of the chains by an element ofVal . We use the previous
encoding based onAbel(Val) for the chain coefficients. We define the boundary of a cell x by:

∂x =
∑
y≺x

y and extend∂ linearly: ∂(
∑

αxx) =
∑

αx∂x

Consider a cellx that has several successors in the chain. Then the effect of∂ as a transport operation
is to send tox the coefficients of theses successors. The result is conveniently gathered as a formal sum
in Abel(Val) and no coefficients are lost. We can then further interpret “ the collision at cellx of the
transported values ” using an homomorphism to resolve the “ collisions ” and to compute the final value
of x.

If operators∂p transport values from a cell to its predecessor, it exists a family of dual operator that
moves values from a cell to its successor. Such operators are the dual (in a precise sense, see [17]) of the
boundary maps∂p.

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1009

s s’

a

b

c
e

f
a

b

c
e

f
+

a

b

c
e

f
=d d d

∂

Figure 6. Example of the application of the boundary operator on aC(K,Z/2) chain.∂(s + s′) = ∂s + ∂s′ =
(a + b + c + d) + (d + e + f) = a + b + c + e + f becaused + d = 0.

a

s

c

b s’

f

e
5

3

4

1

2

d

`(1) = δ, `(2) = α
`(3) = β, `(4) = γ
`(a) = ρ, `(b) = κ
`(c) = σ, `(d) = τ
`(s) = ω
and`(x) undefined for the othersx.

β

γδ

α

ω
K0 = {1, 2, 3, 4, 5}

K2 = {s, s′}
K1 = {a, b, c, d, e, f} κ τ

ρ

σ

Figure 7. The labeling of the cells of an abstract complex. The figure in the left gives the abstract complexK
and itsp-cellsKp (for p = 0, 1, 2). The labeling̀ is defined on the right. In this diagram, we indicate the images
of the functioǹ by writing next to each cell the value of the function on that cell. This function has for codomain
the setVal = {α, β, γ, δ, ρ, τ, σ, κ, ω} which a priori do not have an abelian group structure. The function` can
be written as a chain ofC(K, Abel(Val)): ` = δ.1 + α.2 + β.3 + γ.4 + ρ.a + κ.b + σ.c + τ.d + ω.s. However,
note that inC(K, Abel(Val)) there are also chains like(α +Abel(Val) β).1 which would represents a functionf
such thatf(1) = {α, β} and undefined elsewhere.

ρ

σ

τκ τσ + κ + τ + ρω

ω

ω

ω

ω + ω′ ω′

ω′

ω′

Figure 8. Depiction of the boundary and coboundary operation on chains. We consider the abstract complex
already used in figure 7. The effect of taking the boundary operator∂ on`2 = ω.s+ω′.s′ is pictured by the diagram
in the left. The figure in the right gives the effect of taking the coboundaryδ of the1-chain`1 = ρ.a+κ.b+σ.c+τ.d.
The coboundary operatorsδp are the dual homomorphisms of the operators∂p (see [17]). In these two figures, the
curved arrow indicate values (in bold) being transferred from ap-cell to the preceding(p − 1)-cells (for∂) and
from a(p− 1)-cell to the succeedingp-cells (forδ).

1010 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

To be more concrete, suppose that the cells in figure 8 (left) are valuated by reals, that is, we consider
chains inC(K,Abel(R)). For instance, takeω = 1.6 andω′ = 3.1 in chain`2. Then

∂(1.6s + 3.1s′) = 1.6a + 1.6b + 1.6c + (1.6 +Abel 3.1)d + 3.1f + 3.1e

We say that the value1.6 coming froms and the value3.1 coming froms′, collide at celld. We want
to combine colliding values into a real to get again a real valued chain. Suppose that the combination
function is the sum of reals. Then we would use the homomorphismh from Abel(R) to (R, +) that
interprets the+Abel as the usual+R. The homomorphismh between the groups of values, is easily
extended into an homomorphism on chains, by definingh(αx) = h(α)x for all cell x and then using
linearity. Instead of using a functionh to combine the colliding values, we can work directly with
chains inC(K, (R,+)). In this way, the combining function is directly the group operation of the chain
coefficients. However, usingAbel(R) and then ana posteriorihomomorphismh is more general. For
instance, suppose that we work with coefficients in(R,+) but we want to combine the colliding values
by multiplication. This is not easily expressed. But usingAbel(R) at the first place, we have just to
change the functionh. The combination function must not depend on the order of the combinations and
then the chain(α+β)x must be equal to the chain(β +α)x. Intuitively, one can see the interest of using
an abelian group for the coefficients.

2.4. Topological Collection

A “ snapshot ” of a P system will be described by a topological collection. A topological collection
associates a value to some cells of a complex. In addition, we must be able to speak of the carrier of
the collection (the cells that have a value), of the neighbors of an element, of subcollections and of the
boundary of a subcollection. All these notions can be developed on top of the notion of chain complex
presented above.

Definition 2.4. (Simple Topological Collection)
A simple topological collection typeis a quadrupleT = (K, B, ∂,Val) such thatK is a finite-dimensional,
non-negative, locally-finite abstract complex andC(K, B, ∂) is a chain complex. Asimple topologi-
cal collectionis a pair(T , c) whereT is a topological collection type(K, B, ∂,Val) andc is a chain:
c ∈ Chains(K, B ¯Val). The productB ¯Val denotes the cartesian productB ×Abel(Val).

Often we omit to mention the typeT of the topological collection when it is clear from the context;
we says directly that a chainc is a simple topological collection (or more simply is a collection) and we
write c ∈ T if T is the type ofc. The chain complexC(K, B, ∂) is called theformof the type.

If c is a collection, andx ∈ Kp, thenc(x) = (g, u) with g ∈ B andu ∈ Abel(Val) and we say
that the value ofc at x is u. The functionscb andcv are the first and second projection ofc. That is,
cb(x) = g andcv(x) = u for c(x) = (g, u). The functionscb andcv associate an element of a group
to a cell and then are chains:cb ∈ Chains(K, B) andcv ∈ Chains(K, Abel(Val)). For all collectionc
we have|cv| ⊂ |c| and|cb| ⊂ |c|. The setResidu(c) = {x ∈ K | cb(x) = 0B andcv(x) 6= 0Abel(Val)}
is called theresidueof the collection. A collectionc is residue-freeif Residu(c) = ∅. A topological
collectionc is flat if cv(x) = 0 or cv(x) ∈Val for all x ∈ K.

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1011

2.5. Simple Transformation of a Topological Collection

Now, we want to state precisely the notion oflocal computation. A local computation would be done by
some kind of rewriting mechanism that substitutes a subcollectionc′ in c by another one. If onlyc′v is
changed, then there is no change in the structure of the P system. Deleting or creating new membranes
corresponds to a change inc′b (and accordingly inc′v).

The restrictionc\S of a topological collectionc by a setS is the chainc\S defined by(c\S)(x) =
c(x) if x ∈ S and by(c\S)(x) = 0 elsewhere. A restriction is too general to represent a subcollection:
a subcollection is a connected part of a collection. It must be represented by a chain too.

Definition 2.5. (Split, Patch and Subcollection)
Let c be a chain andc′ andc′′ be two chains such that|c′| ∩ |c′′| = ∅ andc = c′ + c′′. Then we say that
c′ andc′′ are asplit of the chainc and we writec D c′, c D c′′ andc′′ = {cc

′ or c′ = {cc
′′. A chainc′

is apatchof the chainc ∈ Chains(K, G), if c D c′ and if Shape |c′| is a connected set ofK. Let c be a
collection; a collectionc′ is a subcollection ofc if c′ = c\|c′| and if c′b is a patch ofcb.

Now, we can define the basic transformation step which is used in theMGS language. The basic
intuition hidden behind this definition is sketched in figure 9. Note that we do not describe a device
to select a subcollection into a collection, neither we give conditions on the gluing of the substituted
subcollection. We just specify that untouched parts of the collection must remain unchanged, both from
the value point of view (condition 1) and the shape point of view (condition 2).

Definition 2.6. (Simple Transformation)
Let c andd be collections with respective subcollectionsc′ andd′. Thend is asimple transformationof
c′ by d′ if the two following conditions hold:

1. {cc
′ = {dd

′

2. Shape |{cc
′| = Shape |{dd

′|
If a functionf such thatd′ = f(c\|St c′|) exists, then the substitution is saidcomputed byf .

Note that there is several possible variations on the notion of “ computed byf ” to accommodate the
possible variation on the neighborhood notion.

3. MGS: a Programming Language based on Topological Collections and
their Transformations

The experimental programming languageMGS1 instantiates the idea of topological collections and their
transformations into the framework of a simple dynamically typed functional language. Collections are
just new kinds of values and transformations are functions acting on collections and defined by a specific
syntax using rules.MGS is an applicative programming language: operators acting on values combine
values to give new values, they do not act by side-effect. In our context, dynamically typed means that
there is no static type checking and that type errors are detected at run-time during evaluation. Although
1MGS is the acronym of“ (encore) unModèleGéneral deSimulation (de syst̀eme dynamique) ”(yet another General Model for
the Simulation of dynamical systems).

1012 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

(c)

(b)

Shape({cc
′)

dim n

(a)

Shape(c′)

Figure 9. Parts of a complex involved in a substitution. We have pictured symbolically the abstract complexK
as a Hasse diagram (cf. Fig. 5). The carrier of the chainc consists in all then-cells pictured as circle (diagram
(a)). The three black circles in the middle specify the carrier of the subcollectionc′. Consequently, the four empty
circles are the carrier ofc′′ = {cc

′.
The shapeShape(c′) of c′ is sketched as the gray region in diagram (a): the subcomplex|c′| spanned byc′ is in
dark gray while thep-cells above this subcomplex are in light gray. The shapeShape(c′′) is sketched in gray in
diagram (b). This part of the complex must remain unchanged across a simple transformation.
The diagram (c) has two gray regions, one near the top and one near the bottom (each is composed of several parts).
The region near the bottom, corresponds to the intersectionShape(c′) ∩ Shape(c′′). Cells in this region have a
dimension less thann. The definition of a simple transformation says that this region must remain unchanged in
the final result (because it belongs to the shape ofc′′ and then must not be touched by the transformation).
The region near the top corresponds to thep-cellsx, p > n, such thatx has an intersection both in|c′| and|c′′|.
The definition of a simple transformation does not say anything about such cells.

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1013

dynamically typed, the set of values has a rich type structure used in the definition of pattern-matching,
rules and transformations.

The approach ofMGS, focusing on the notion of topological collection, emphasizes the spatial aspect
of a data structure: a collection is seen as a set ofplacesor positionsorganized by atopologydefining the
neighborhoodof each element in the collection. This approach is part of a long term research effort [12]
developed for instance in [8] where the focus is on the substructure and in [9] where a general tool for
uniform neighborhood definition is developed.

We will see in section 4 that several usual data structures have a natural topology. In the rest of this
section, we sketch some of the language constructs without relying on a particular collection type. Thus,
by collection we understand a topological collection, as described formally in the previous section. In
section 5, some examples illustrate the expressive power of the approach and give a more concrete flavor
of the language.

3.1. Computing with Topological Collections

The computation of a new collection is done by a structural combination of the results of more elemen-
tary local computations involving only a small and static subset of the initial collection. “Small and static
subset” makes explicit that only a fixed subset of the initial elements are used to compute a new element
value. “Structural combination”, means that the elementary results are combined into a new collec-
tion, irrespectively of their precise value. The global organization of the new collection results of the
combination of these local changes. These characteristics lead to the following abstract computational
mechanism:

1. a subcollectionA is selected in a collectionC;

2. a new subcollectionB is computed fromA and a local neighborhood;

3. the collectionB is substituted forA in C.

This process is pictured in Fig. 10 and is formalized by the notion ofsimple transformationdeveloped in
the previous section.

A transformation, without the “ simple ” qualifier, consists in several non interacting simple transfor-
mations applied in parallel to a collection. Back to our application area (Cf. section 1) a transformation
corresponds to one evolution step of a spatially distributedDS. Then, the iteration of transformations
builds the entireDS trajectory, Cf. Fig. 11.

BAC T(C)y = f(x’)x
T

Figure 10. A simple transformation of a collection. CollectionC is of some kind (set, sequence, array, cyclic grid,
tree, term, etc). A ruleT specifies that a subcollectionA of C has to be substituted by a collectionB computed
from A. The right hand side of the rule is computed from the subcollection matched by the left hand sidex and its
possible neighborsx′ in the collectionC.

1014 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

T T(T(C))T(C)C

...

Figure 11. Transformation and iteration of a transformation. A transformationT is a set of simple transforma-
tions applied “ in parallel ” to make one evolution step. The simple transformations do not interact together. A
transformation is then iterated to build the successive states of the system.

In addition to the specification of the underlying organization, the definition of a simple transforma-
tion requires the specification of the subcollectionA and the replacementB. This specification defines a
rule and must adapt several constraints and variations.

3.2. Patterns, Rules and Transformations

A transformationT is a set of rules:

trans T = { ... rule; ... }
When there is only one rule in the transformation, the enclosing braces can be dropped. A rule is a basic
transformation taking the following form:

pattern => expression

wherepatternin the left hand side (lhs) of the rule matches a subcollectionA of the collectionC on which
the transformation is applied. The subcollectionA is substituted inC by the collectionB computed by
theexpressionin the right hand side (rhs) of the rule. Each collection kind comes with its own specific
behavior for the pasting ofB into {CA.

We present the pattern expressions that have a generic meaning, that is, they can be interpreted against
any collection kind. The grammar of such pattern expressions is the following

Pat ::= x | {...} | p, p′ | p + | p ∗ | p : P | p/exp | p as x | (p)

wherep, p′ are patterns,x ranges over the pattern variables,P is a predicate andexp is an expression
with a boolean value. The explanations below give an informal semantics for these patterns.

variable: a pattern variablex matches exactly one element in the collection (i.e. ak-cell). The namex
can then occurs elsewhere in the rule.

state pattern: {...} are used to match one element (ak-cell) whose value is a record. The content of the
brackets can be used to match records with or without a specific field (eventually constrained to a
given field type or field value). For instance,

{a, b : string, c = 3, d̃}

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1015

is a pattern that matches a record with fieldsa, b andc but no fieldd. In addition, the type of field
b must be “string” and the value of the fieldc must be the integer3.

neighbor: p, p′ is a pattern that matches two connected collectionsp andp′. For example,x, y matches
two connected elements. The connection relationship is introduced in section 2 and depends of the
collection kind.

repetition: patternp+ (resp.p∗) matches a non empty aggregate of connected elements (resp. a possibly
empty aggregate).

binding: a bindingp as x gives the namex to the collection matched byp. This name can be used in
the rest of the rule. For example,p + as x identifies under the namex the subcollection matched
by p+.

guard: p/exp matches the collections matched byp verifying the conditionexp. For instance,y / y > 3
matches a cell valued by an integer greater than3. Patternp : P abbreviates(p as x)/P (x) where
x is a fresh variable.

Here is a contrived example. Pattern

(x : int/x < 3) + as S / 10 < Fold((\a, b. a + b), 0, S)

selects a connected collectionS of integers less than 3, such that the sum of the elements inS is greater
than 10. (The generic operatorFold reduces a collection using a binary function, which is supposed to be
associative and commutative, and an initial value. The notation\a, b. exp denotes the lambda abstraction
of the variablea and b over the expressionexp.) If this pattern is used against a linear sequence,S
denotes a subsequence. If this pattern is used against a set, thenS denotes a subset. Etc. See section 4.

3.3. Managing the Applications of a Transformation

A transformation is a set of rules. When a transformation is applied to a collection, the strategy is to
apply as many rules as possible in parallel. A rule can be applied if its pattern matches a subcollection.
Several features are used to have a control over the choice of the rules applied within a transformation.
For instance, a priority can be associated to each rule to specify a precedence order within each class (the
priority of inclusive rules may be used to specify the relative order of their applications).

A transformationT can be used like a unary function. For instance, a transformation can be passed
as an argument to another function. It makes able to sequence and compose transformations very easily.

The expressionT (c) denotes the application of one transformation step to the collectionc. As said
above, a transformation step consists in the parallel application of the rules (modulo the rule application’s
features). A transformation step can be easily iterated:

T [n] (c) denotes the application ofn transformation steps toc

T [fixpoint] (c) application of the transformationT until a fixpoint is reached

T [fixrule] (c) idem but the fixpoint is detected when no rule applies

In addition to the standard transformation step strategy, two otherapplication modesexist. In the
stochastic mode, the choice of the exclusive rule to apply is made randomly. The priorities of the ex-
clusive rules are then considered as the relative probability of their effective application (when they can
apply). Inasynchronous mode, only one exclusive rule is applied in one transformation step.

1016 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

4. The Topology of Sets, Multisets, Sequences and Arrays

In this section, we show that several classical data structures can be seen from a topological point of
view. The notion of transformation introduced in the previous section on such collection, allows us to
recover some well-known computational models. More precisely:

• using transformation on multisets, we recover Gamma [1] and P system like models;

• using transformation on sequences, we recover the L system formalism [23];

• using transformation on arrays, we retrieve cellular automata [26].

We sketch how these well known models can be roughly rephrased and mimicked in the framework of
topological collections. The representations given are only approximations of the exact computation
mechanisms, because we do not fully consider the very basic details (they are very relevant for the
study of the formal expressive power of each formalism but are not considered here, as a programming
language always embeds a lot of small extensions required to facilitate the programmer’s life). Section 5
gives examples ofMGS programs that have been initially proposed as paradigmatic examples of these
formalisms.

4.1. Monoidal Collections

Consider a monoidM over an alphabetA with an operation written “,”. Let m be an element ofM . If
M is free, thenm is a representation of a sequence of elements inA. Moreover, ifM is not free because
operation, is commutative, thenm represents a multiset of elements inA. And if , is also idempotent
(i.e. x ,x = x), thenm represents a set. See [14].

It is not a coincidence that the neighborhood relationship in definition 2.2 and the join operation
here are denoted by the same comma. We say thatx and y belonging toA are neighbors inm iff
m = u ,x , y , v or m = u , y ,x , v with u andv elements ofM . This implies that:

• In a set, an elementx is neighbor of any other elementy;

• The neighborhood relationship in a multiset is the same as the neighborhood relationship in a set:
two arbitrary elements are always neighbors. The difference is that the same element may appear
more than one time in the multiset.

• The neighborhood relationship in a sequence is the expected one: if the sequence has at least two
elements, then all elements except the first and the last have two neighbors (called theleft and the
right neighbor). The first and the last element have only one neighbor (respectively a right and a
left neighbor). If the sequence is reduced to a singleton, then this singleton as no neighbor.

These topologies can be described as abstract complexes in the following manner.

The topology of sets. A setV is represented by a topological0-collection on a one dimensional form
with verticesV and only one edge>. The function∂1 is defined by∂1> =

∑
V . With this definition, an

element ofV is connected with any other element. The chain group describing a set is then particularly

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1017

simple: Cp = 0 for p 6= 0, K0 = V andC0 = C0(K,Z/2 ¯ V). A setV corresponds to the chain∑
x∈V x.x.
Let c′ be the subcollection to be replaced byd′ into the collectionc to give a new collectiond. The

fixed strategy used to buildd from d′ andc′′ = {cc
′, is simply to set>d = |c′′| ∪ |d′|.

This description is only combinatorial and does not admit a geometric realization. Indeed, a geomet-
ric 1-cell is homeomorphic to the interval[0, 1] and then admits only two0-cells in its boundary. If one
insists to have a geometric realization of topological sets, then shifting the dimension of the cells by one
is enough: the elements ofV are the many edges of a unique polygonal face.

The topology of multisets. A multisetM of elementse ∈ E can be represented by a setM̂ ⊆ N×E.
If e ∈ M with multiplicity n, then then elements(p1, e), (p2, e), ..., (pn, e) where thepi aren arbitrary
distinct integers, belong tôM . The multisetM is represented as the1-collection associated to the setM̂ .

With this encoding, two arbitrary multiset elements are connected, in accordance with the fact that
any submultiset can be matched and replaced in a Gamma rule. Furthermore, the application of one
Gamma rule on a multisetM is the parallel application of simple transformation and therefore, anMGS
transformation.

The topology of sequences. A sequencè = <`1, `2, . . . , `n> is a0-collection whose form is a chain
complex of dimension1. Let ik ben rationals in increasing order; the underlying complexK is defined
by

K0 = {i1, . . . , in} such thatij < ij+1

K1 =
{
(i1, i2), (i2, i3), . . . , (in−1, in)

}

∂(i, j) = i + j

(the last sum is a formal sum, the operator+ is not the addition of rationals). The form of the sequences
is C(K,Z/2, δ). Hence,̀ is represented by the chain

∑
1≤j≤n `j .ij .

An MGS rulec′ => d′ applied to a topological sequencec corresponds to a substitution with resultd.
The strategy used to glue the new subcollectiond′ andc′′ = {cc

′ into the resultd is the following:

• if d′ = 0 (that is, theMGS rule cancelc′) thenShape(d) = Shape(c′′);

• if d′ 6= 0, thenδc′ = δd′ (operatorδ is the coboundary operator defined by:δik = (ik−1, ik) +
(ik, ik + 1) if ik−1 andik+1 exist; theδ in the left hand side must be taken in the form ofc while
the δ in the right hand side must be taken ind). This condition, together withd = d′ + c′′, is
sufficient to specify completelyShape(d): Shape(d) = Shape(d′) ∪ Shape(c′′) ∪ |δc′|.

These rules are just the formal expression of insertingd′ in place ofc′ and corresponds to the behavior
of L system rules on a word.

4.2. Arrays and their Extensions

We have showed in [12, 9] that usual arrays are a special case of labelled Cayley graphs. These structures
are called “group based fields” (GBF) and subsume arrays, trees, circular buffer, etc. There is no room

1018 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

to develop this approach here, but it is sufficient to consider the case of free abelian groups to handle
standard grids of cellular automata in any dimension.

Let Gn be the free abelian group generated byd1, . . . , dn. We associate to this group the abstract
complex(Gn, <) defined by:

Gn
0 = Gn

Gn
1 =

{
(x, y) | x ∈ Gn

0 , y ∈ {d1, . . . , dn}
}

∂1(x, y) = x +G0 (x +Gn y)

The abstract complexGn, which is simply the Cayley graph ofGn, is not finite but locally-finite. The
strategy used inMGS to paste the result of a simple transformation into the collectionc is very simple:
only the values of the chains are allowed to change, there is no change incb.

5. Examples

The following examples are freely inspired by examples given for Gamma, P systems and L systems and
term rewriting.

Erastothene’s Sieve on a Set. The idea is to generate a set with integers from 2 toN (with rules
GenerateandSucceed) and to replace anx and any such thatx dividesy by x (rule Eliminate). The
result is the set of the prime integers less thanN .

trans Generate = {x, true} => x, {x + 1, true};
trans Succed = {x, true} => x;

trans Eliminate = (x, y / y modx = 0) => x;

With these definitions, the expression

Eliminate[fixrule]
(

Succed
(
Generate[N]({2, true}, set : ())

))

computes the primes up toN . The expression(a, set : ()) build a set by joining the elementa to the
empty setset : (). So the expressionGenerate[N]({2, true}, set : ()) appliesN times the trans-
formation Generate to a singleton. The transformationSucced is applied only one times and then
transformationEliminate is applied until a fixpoint is reached.

Sorting a Sequence. A kind of bubble-sort is immediate:

trans Sort = (x, y / y < x) => y, x;

(This is not really a bubble-sort because swapping of elements can take at arbitrary places; hence an
out-of-order element does not necessarily bubble to the top in the characteristic way.)

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1019

Eratosthene’s Sieve on a Sequence.The idea is to refine the previous algorithm using a sequence.
Each elementi in the sequence corresponds to the previously computedith primePi and is represented
by a record{prime = Pi}. This element can receive a candidate numbern, which is represented by
a record{prime = Pi, candidate = n}. If candidate is divisible by the stored numberprime, (rule
Test1), then the candidate number is deleted. If the candidate number passes the test (ruleTest2), then
the element transforms itself into a recordr = {prime = Pi, ok = n}. If the right neighbor ofr
matches{prime = Pi+1} without a fieldcandidate nor ok , then the candidaten skips fromr to the
right neighbor. When there is no right neighbor tor, thenn is prime and a new element is added at the
end of the sequence. The first element of the sequence is distinguished (it is just an integer, not a record)
and generates the candidates.

trans Eratos = {
Genere1 = n : integer / r̃ight n

=> n, {prime = n};
Genere2 = n : integer, {prime as x, c̃andidate, õk}

=> n + 1, {prime = x, candidate = n};
Test1 = {prime as x, candidate as y, õk} / y modx = 0

=> {prime = x};
Test2 = {prime as x, candidate as y, õk} / y modx <> 0

=> {prime = x, ok = y};
Next = {prime as x1, ok as y}, {prime as x2, õk , c̃andidate}

=> {prime = x1}, {prime = x2, candidate = y};
NextCreate = {prime as x, ok as y} as s / r̃ight s

=> {prime = x}, {prime = y};
}

prime = 7
candidate = 14

prime = 7

prime = 7 prime = 11 prime = 7 prime = 11
ok = 23 candidate = 23

prime = 7 prime = 7
ok = 23candidate = 23

prime = 7 prime = 11 prime = 13 prime = 17
ok = 19

prime = 19
ok = 23 candidate = 23

Test1

Test2

Next

Figure 12. TheEratosprogram. Some rule instantiations and a fragment of the sequence built by the transforma-
tion Eratos.

1020 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

Each rule has a name, and some rule applications are illustrated in figure 12. The functionleft (resp.
right) gives the left (resp. right) neighbor of its argument, if it exists, or else the undefined value.
Thus, this transformation can be applied only to topological collection which have a defined left and
right neighborhood relation. The expression

Erasto[N]((2, seq : ()))

executesN steps of the Erastothene’s sieve. For instanceErasto[100]((2, seq : ())) computes the se-
quence:42, {candidate = 42, prime = 2}, {ok = 41, prime = 3}, {prime = 5}, {prime = 7}, {prime =
11}, {prime = 13}, {ok = 37, prime = 17}, {prime = 19}, {prime = 23}, {prime = 29}, {prime =
31}, seq : ().

The game of life. The game of life is a special kind of cellular automata. A cell of the cellular au-
tomaton (a vertex of the corresponding topological collection) takes one of the two values 0 and 1. The
evolution of this value depends on the values of the neighbors (if the sum of the neighbor’s value is be-
tween two given level, the current state is set to 1 and else it is set to 0). The correspondingMGS program
is the following. It begins by the declaration of a new topological collection type:

gbf Grid2 = < X, Y >

this statement declares a new collection type, based on the group based field topology described in
section 4.2, with anX and anY neighborhood relation. In this case, this declaration simply specify the
topology of an infinite grid with two dimensions namedX andY . The evolution function of the cellular
automata is given by the transformation:

trans evolve = x => let s = FoldNeighbors((\a, b. a + b), 0, x)
in if (s < 3) or (s > 4) then 0 else 1 fi

the functionFoldNeighbors(f, e, x) makes a fold between the values of the neighbors ofx with the
binary functionf and the initial valuee (f is supposed to be an associative-commutative function with
neutral elemente). The operatorFoldNeighbors is applicable in all topology (in a set it gives all the
elements in the set, in a sequence it gives the considered element together with its left and right neighbors,
etc.).

6. Summary and Final Remarks

We have shown in section 2 that most of the notions used to describe P systems (membrane structures,
local computations, moves between adjacent membranes) find a natural setting and a smooth extension
in the framework provided by topological notions developed in the field of homology theory.

We have defined a topological collectionc to be a chain on a given chain complex that describes the
topology of the collection and a labeling of the cells. A simple transformation replaces a subchainc′ by
another subchain, preserving the topological structure of the complement ofc′ in c.

This abstract view enabls the unification in a same programming language of several biologically or
biochemically inspired computational models, namely: Gamma and the CHAM, P systems, L systems
and cellular automata. These models can be rephrased as the iteration of simple transformations on a

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1021

topological collection; the difference coming from the topology of the collection (section 4). However,
we do not claim that we have achieved a useful theoretical framework encompassing the four cited
formalisms. We advocate that few notions and a single syntax can be consistently used to allow the
merging of these formalismsfor programmingpurposes.

It leads to the development of an experimental programming language calledMGS. MGS is a vehicle
used to investigate general notions of collections and transformations and to study their adequacy to the
simulation of various biological processes. Simple examples ofMGS programs are given in section 5. All
examples are processed using the current version of theMGS interpreter.

Currently, two versions of anMGS interpreter exist: one written inOCAML (a dialect ofML) and one
written in C++. There are some slight differences between the two versions. For instance, theOCAML
version is more complete with respect to the functional part of the language. These interpreters are freely
available2. In these currentMGS implementations, sets, multisets, sequences and group based fields
(which generalize functional arrays) of elements are supported. The elements in a collection can be any
kind of values: basic types, records or arbitrary nesting of collections. The values of the record’s fields
are also of any kind, thus achieving complex objects in the sense of [3].

The interested reader will find in [10] a more complete presentation of the language. The technical
report [11] gives more details on the topological formalization of collections and transformations. As a
matter of fact, we have simplified the presentation given here. For instance, for the sake of the simplicity,
we have restricted ourself to avoid the dual notions of cochains and coboundaries. However, this is the
right general formal setting to fully develop the notion of topological collection.

The report [11] also develops several examples ofMGS programs (the tokenization of a sequence of
letters, the computation of the convex hull of a set of points inR3, the computation of the maximal
segment sum, a Turing diffusion-reaction process, a grow model of cellular tissues, the computation of a
disjonctive normal form of a set of clauses represented as nested sets, etc.).

At the language level, the study of the topological collections concepts must continue with a finer
study of transformations. Several kinds of restriction can be put on the transformations, leading to various
kind of pattern languages and rules. The complexity of matching such patterns has to be investigated. We
also want to develop a type system that can handle nested collections, along the lines developed in [2]. At
last but not least, we want to know if the topological spaces built by transformations can be characterized
through a non standard type system. We also begin the study of a generic implementation of topolog-
ical chain complex, based on theG-map data structure [15] to represent arbitrary join/neighborhood
relationships. The efficient compilation of aMGS program is a long-term research effort.

The applications opened by this preliminary work are numerous. From the applications point of view,
we are challenged by the simulation of the topological changes at the early development of the embryo.
This is an actual example of tissues formation and fusion requiring complex topology beyond what is
accessible using simple data-structures. Another motivating application is the case of a spatially dis-
tributed biochemical interaction networks, for which some extension of rewriting have been advocated,
see [4, 16].

Acknowledgments

The authors would like to thanks the members of the “Simulation and Epigenesis” group at Genopole for
fruitful discussions and biological motivations. They are also grateful to F. Delaplace and J. Cohen for
2seehttp://www.lami.univ-evry.fr/mgs

1022 J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI)

numerous challenging questions and useful comments. The friendly atmosphere of WMC’01 has raised
many stimulating questions that have greatly improved an earlier version of this paper and suggested
many future developments. This research is supported in part by the CNRS, the GDR ALP, IMPG and
Genopole/Evry.

References

[1] Banatre, J. P., Metayer, D. L.:A new computational model and its discipline of programming, Technical
Report RR-0566, Inria, 1986.

[2] Blelloch, G.: NESL: A nested data-parallel language (version 2.6), Technical Report CMU-CS-93-129,
School of Computer Science, Carnegie Mellon University, April 1993.

[3] Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with complex objects and collec-
tion types,Theoretical Computer Science, 149(1), 18 September 1995, 3–48.

[4] Fisher, M., Malcolm, G., Paton, R.: Spatio-logical processes in intracellular signalling,BioSystems, 55, 2000,
83–92.

[5] Fontana, W.: Algorithmic Chemistry,Proceedings of the Workshop on Artificial Life (ALIFE ’90)(C. G.
Langton, C. Taylor, J. D. Farmer, S. Rasmussen, Eds.), 5, Addison-Wesley, Redwood City, CA, USA, Febru-
ary 1992, ISBN 0-201-52570-4.

[6] Fontana, W., Buss, L.: ”The Arrival of the Fittest”: Toward a Theory of Biological Organization,Bulletin of
Mathematical Biology, 1994.

[7] Fontana, W., Buss, L.:Boundaries and Barriers, Casti, J. and Karlqvist, A. edts,, chapter The barrier of
objects: from dynamical systems to bounded organizations, Addison-Wesley, 1996, 56–116.

[8] Giavitto, J.-L.: A framework for the recursive definition of data structures.,Proceedings of the 2nd Imter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP-00),
ACM Press, September 20–23 2000.

[9] Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data structures and approximation of their
domains.,Proceedings of the 3nd Imternational ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP-01), ACM Press, September 2001.

[10] Giavitto, J.-L., Michel, O.: MGS: a Rule-Based Programming Language for Complex Objects and Collec-
tions, Electronic Notes in Theoretical Computer Science(M. van den Brand, R. Verma, Eds.), 59, Elsevier
Science Publishers, 2001.

[11] Giavitto, J.-L., Michel, O.:MGS: a Programming Language for the Transformations of Topological Collec-
tions, Technical Report 61-2001, LaMI – Université d’Évry Val d’Essonne, May 2001.

[12] Giavitto, J.-L., Michel, O., Sansonnet, J.: Group-Based Fields,Parallel Symbolic Languages and Systems
(Int. Workshop PSLS’95), LNCS 1068, Springer, 1996.

[13] Henle, M.:A combinatorial introduction to topology, Dover publications, New-York, 1994.

[14] Hoogendijk, P. F., Backhouse, R. C.: Relational Programming Laws in the Tree, List, Bag, Set Hierarchy,
Science of Computer Programming, 22(1–2), April 1994, 67–105.

[15] Lienhardt, P.: Topological models for boundary representation : a comparison with n-dimensional general-
ized maps,Computer-Aided Design, 23(1), 1991, 59–82.

[16] Manca, V.: Logical string rewriting,Theoretical Computer Science, 264, 2001, 25–51.

J.-L. Giavitto, O. Michel / Topological Structures of Membrane Computing (submitted to FI) 1023

[17] Munkres, J.:Elements of Algebraic Topology, Addison-Wesley, 1984.

[18] Norris, V., Fralick, J., Danchin, A.: ASeqAhyperstructure and its interactions direct the replication and
sequestration of DNA,Molecular Microbiology, 37, 2000, 696–702.

[19] Palmer, R. S., Shapiro, V.: Chain Models of Physical Behavior for Engineering Analysis and Design,Re-
search in Engineering Design, 5, 1993, 161–184, Springer International.

[20] Paun, G.:Computing with Membranes, Technical Report TUCS-TR-208, TUCS - Turku Centre for Computer
Science, November 11 1998.

[21] Paun, G.: From Cells to Computers: Computing with Membranes (P systems),Workshop on Grammar
Systems, Bad Ischl, austria, July 2000.

[22] Paun, G., Sakakibara, Y., Yokomori, T.: P Systems on Graphs of Restricted Forms,Publ. Math. Debrecen,
2001, (to appear).

[23] Rozenberg, G., Salomaa, A.:Lindenmayer Systems, Springer, Berlin, 1992.

[24] Tonti, E.: The algebraic-topological structure of physical theories,Symmetry, similarity and group theoretic
methods in mechanics(P. G. Glockner, M. C. Sing, Eds.), Calgary, Canada, August 1974.

[25] Tonti, E.: The reason for analogies between physical theories,Appl. Math. Modelling, 1, June 1976, 37–50.

[26] Von Neumann, J.:Theory of Self-Reproducing Automata, Univ. of Illinois Press, 1966.

Part II

Modelling and Simulation of
Dynamical Systems – Applications

113

Chapter 8

Declarative simulation of dynamical
systems : the 81/2 programming
language and its application to the
simulation of genetic networks.

[1] Jean-Louis Giavitto, Olivier Michel, and Franck Delaplace. Declarative simulation of dynamicals systems
: the 81/2 programming language and its application to the simulation of genetic networks. BioSystems,
68(2–3):155–170, feb/march 2003.

115

Declarative simulation of dynamicals systems:
the 8½ programming language and its application to the

simulation of genetic networks

Jean-Louis Giavitto *, Olivier Michel, Franck Delaplace

LaMI u.m.r. 8042 du CNRS, Université d’Evry Val d’Essone, 91025 Evry Cedex, France

Abstract

A major part of biological processes can be modeled as dynamical systems (DS), that is, as a time-varying state. In

this article, we advocate a declarative approach for prototyping the simulation of DS. We introduce the concepts of

collection, stream and fabric. A fabric is a multi-dimensional object that represents the successive values of a structured

set of variables. A declarative programming language, called 8½ has been developed to support the concept of fabrics.

Several examples of working 8½ programs are given to illustrate the relevance of the fabric data structure for simulation

applications and to show how recursive fabric definitions can be easily used to model various biological phenomena in a

natural way (a resolution of PDE, a simulation in artificial life, the Turing diffusion-reaction process and various

examples of genetic networks). In the conclusion, we recapitulate several lessons we have learned from the 8½ project.

2002 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Declarative programming languages; Simulation of dynamical systems; Biological processes; Stream; Collection

1. Introduction

1.1. The simulation of dynamical systems

Dynamical systems (DS) are an abstract frame-
work used to model phenomena that occur in

space and time. The system is characterized by

‘observable’, called the variables of the system,

which are linked by some relations. The value of

the variables evolves with the time. A variable can

take a scalar value (like a real) or be of a more

complex type like the variation of a simpler value

on a spatial domain. An example of such a

complex type is the temperature on each point of

a room or the velocity of a fluid in a pipe. This last

kind of variable is called a field. The set of the

values of the variables that describe the system

constitutes its state. The state of a system is its

observation at a given instant. The sequence of

state changes is called the trajectory of the system.

Intuitively, a DS is a formal way to describe how

a point (the state of the system) moves in the phase

space (the space of all possible states of the

system). It gives a rule telling us where the point

should go next from its current location (the

evolution function).
* Corresponding author.

E-mail address: giavitto@lami.univ-evry.fr (J.-L. Giavitto).

BioSystems 68 (2003) 155�/170

www.elsevier.com/locate/biosystems

0303-2647/03/$ - see front matter # 2002 Elsevier Science Ireland Ltd. All rights reserved.

PII: S 0 3 0 3 - 2 6 4 7 (0 2) 0 0 0 9 3 - X

There exists several formalisms used to describe

a DS: ordinary differential equations (ODE),

partial differential equations (PDE), iterated equa-

tions (finite set of coupled difference equations),

cellular automata, etc. In the Table 1, the discrete

or continuous nature of the time, the space and the

value, is used to classify some DS specification

formalisms.
The study of these kinds of models can be found

in all scientific domains and make often use of

digital simulations. As a matter of fact, it is

sometimes too difficult, too expensive or simply

impossible to make real experiments (e.g. for

ethical reasons). The US ‘Grand Challenge’ in-

itiative to develop the hardware and software

architectures needed to reach the tera-ops, outlines

that numerical experiments, now mandatory in all

scientific domains, is possible only if all the

computing resources are easily available, see

NSF (1991).

From this point of view, the expressiveness of a

simulation language is at least as important as its

efficiency. Nowadays the data structures and the

algorithms used are indeed more and more so-

phisticated. The lack of expressive power becomes

then an obstacle to the development of new

simulation programs. If an imperative language

like FORTRAN-77 is used to develop a DS simula-

tion, most of the time dedicated to programming

will be spent in the burden of representation of the

objects of the simulation, memory management,

management of the logical time, management of

the scheduling of the activities of the objects of the

simulation, . . . A high-level DS simulation lan-

guage must then offer well fitted dedicated con-

cepts and resources to relieve the programmer

from making many low-level implementation de-

cisions and to concentrate the complexity of the

algorithms in dedicated data and control struc-

tures. Certainly, this implies some loss of run-time

performance but in return for programming con-

venience. How much loss we can tolerate and what

do we get in exchange must be carefully evaluated.

1.2. The 8½ language for DS simulations

These considerations have driven the 8½ pro-

ject. The goal of this long time effort is to design a

high-level parallel language for the simulation of

DS, cf. Michel et al. (1994) and Michel and

Giavitto (1998b). For instance, the various form-

alisms1 cited in Table 1 are naturally expressed in

8½ In this paper, we focus on a general presenta-

tion of 8½ towards the simulation of some
biological DS. Issues like parallelism or implemen-

tation are eluded (the reader may refer to Michel et

al., 1994; Michel and Giavitto, 1994; Mahiout and

Giavitto, 1994; De Vito and Michel, 1996).

We have naturally chosen a declarative style

close to the mathematical formalism used in DS

specifications, see Michel et al. (1994) and Michel

and Giavitto (1998b). We have designed in this
declarative framework a new data structure: the

fabric2. A fabric represents the trajectory of a DS.

It is a temporal sequence (a stream) of collections

(a collection is a set of data simultaneously

accessible and managed as a whole).

Table 1

Some formalisms used to specify a DS following the discrete or continuous nature of space, time and value

C: continue, D: discrete PDE ODE Iterated equations Cellular automata

Space C D D D

Time C C D D

State C C C D

PDE, partial differential equation; ODE, ordinary differential equation.

1 Obviously, PDE and ODE are discretised before their

numerical resolution but the numerical schema is directly

written as a 8½ program, see for example Section 3.1.
2 This data structure has been initially called web because

the interleaving between the weft and the warp in threads

woven gives an accurate image of the interplay of streams and

collections in the recursive definition of a fabric. However, the

ambiguity raised by the development of the Internet has

motivated the change of name. Both names can be found in

our papers.

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170156

It is only recently that biological DS have been
considered as an application area for the 8½

language. One of our main interest is the systema-

tic development of the simulation of biochemical

networks. The examples worked in this paper

show that the formalism is very well-fitted for

DS whose structure is static. Examples of this kind

of system are: genetic networks, predator�/prey

systems, etc.
However, we share the conclusion drawn by

Fontana and Buss (1996) that the modeling of

several fundamental biological processes require

the capacity of computing the state space jointly

with the running state of the process. These

applications represented nowadays a new frontier

in the modeling of DS and has motivated the

beginning of a new project.

1.3. Organization of the paper

The rest of this paper is organized as follow: the

next section present the concept of collection,

stream and the coupling of the two structure in a

fabric. Section 3 gives the example of the resolu-

tion of a PDE, and the simulation of an artificial

creature whose behavior is triggered by the inter-

nal level of some variables. We finish by the

classical example of Turing’s model of morpho-
genesis. Section 4 continues the presentation of 8½

through several example of genetic networks

simulation models. The objective is to show how

the variation of models are handled by slight

changes in the 8½ programs. Section 5 gives

some examples of DS with a dynamical structure.

In conclusion, we quickly review some of the

lessons learned on the 8½ project.

2. Recursive definition of stream, collection and

fabrics

Programming language 8½ has a single data

structure called a fabric. A fabric is the combina-

tion of the concepts of stream and collection. This

section describes these three notions.

2.1. The concept of collection in 8/
1
2
/

A collection is a data structure that represents a

set of elements as a whole, like in Blelloch and

Sabot (1990). Several kinds of aggregation struc-

tures exist in programming languages: set in SETL,

see Schwartz et al. (1986) and Jayaraman (1992),

list in LISP, tuple in SQL, pvar in LISP, cf. TMC

(1986) or even finite discrete space in Cellular
Automata, see Tofooli (1987). Data-parallelism is

naturally expressed in terms of collections intro-

duced in Sipelstein and Blelloch (1991). From the

point of view of the parallel implementation, the

elements of a collection are distributed over the

processing elements (PEs).

Here, we consider collections that are ordered

sets of elements3. An element of a collection, also
called a point in 8½ is accessed through an index.

The expression T �/n where T is a collection and n

an integer, is a collection with one point; the value

of this point is the value of the nth point of T

(point numbering begins with 0). If necessary, we

implicitly coerce a collection with one point into a

scalar and vice-versa through a type inference

system described in Giavitto (1992).
Geometric operators change the geometry of a

collection, i.e. its shape or structure. The geometry

of a collection of scalars is reduced to its cardinal

(the number of its points). A collection can also be

nested: the value of a point is a collection. The

geometry of the collection is the hierarchical

structure of point values.

The first geometric operation consists in pack-
ing some fabrics together:

T �fa; bg
In the previous definition, a and b are collec-

tions resulting in a nested collection T . Elements

of a collection may also be named and the result is

then a system. Assuming:

car�fvelocity�5; consumption�10g
the points of this collection can be reached

3 More generally, 8½ collections are multidimensional

arrays, fields (functional partial arrays introduced in Lisper

(1993)) or GBF (partial arrays whose elements are indexed by

an element in a group, investigated in Giavitto et al. (1995)).

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170 157

uniformly through the dot construct using their
label, e.g. car.velocity, or their index: car.0.

The composition operator # concatenates the

values and merges the systems:

A�fa; bg; B�fc; dg;

A#B[fa; b; c; dg

ferrari�car#fcolor�redg
[fvelocity�5; consumption�10; color

�redg

The last geometric operator we will present here

is the selection: it allows the selection of some

point values to build another collection. For

example:

Source�/{a , b , c , d , e}

target�/{1, 3, {0, 4}}

Source(target)[/{b , d , {a , e}}

The notation Source(target) has to be under-
stood in the following way: a collection can be

viewed as a function from [0. . .n] to some co-

domain. Therefore, the dot operation corresponds

to function application. If the co-domain is the set

of natural numbers, collections can be composed

and the following property holds: Source(target). i

�/Source(target.i), mimicking the function com-

position definition.
Four kinds of function applications can be

defined (Table 2).

X means both scalar or collection; p is the arity

of the functional parameter f . The first operator is

the standard function application. The second type

of function applications produces a collection

whose elements are the ‘pointwise’ applications

of the function to the elements of the arguments.
Then, using a scalar addition, we obtain an

addition between collections. Extension is implicit

for the basic operators (�/, *, etc.) but is explicit

for user-defined functions to avoid ambiguities

between application and extension (consider the

application of the reverse function to a nested

collection).

The third type of function applications is the
reduction. Reduction of a collection using the

binary scalar addition, results in the summation

of all the elements of the collection. Any associa-

tive binary operation can be used, e.g. a reduction

with the min function gives the minimal element of

a collection. The scan application mode is similar

to the reduction but returns the collection of all

partial results. For instance: �/\\{1, 1, 1}[/{1, 2,
3}. See Blelloch (1989) for a complete algorithmic

based on scan.

2.2. The concept of stream in 8½

2.2.1. Dealing with infinite sequence of values

LUCID, cf. Wadge and Ashcroft (1976), is one of

the first programming languages defining equa-

tions between infinite sequences of values.

Although 8½ streams are also defined through

equations between infinite sequences of values, 8½

streams are very different from those of LUCID.

They are tightly linked with the idea of observing a

remanent state along time.
A metaphor to explain 8½ streams is the

sequence of values of a measuring apparatus. If

you observe a measuring apparatus during an

experiment run, you can record the successive

measure operations on this apparatus, together

with their dates. The timed sequence of data is a

8½ stream. At the very beginning, before the start

Table 2

Operator Signature Syntax

Application (collectionp 0/X)�/collectionp 0/X f (c1, . . ., cp)

Extension (scalarp 0/scalar)�/collectionp 0/collection f (c1, . . ., cp)

Reduction (scalar20/scalar)�/collection0/scalar f \c

Scan (scalar20/scalar)�/collection0/collection f \\c

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170158

of the experiment, the initial value of any ob-
servable is an undefined value. Then we record the

initial value (at time 0 for some observables, later

for some others). This value can be read and used

to compute other values recorded elsewhere, as

long as another observation has not been made.

The time used to label the observation is not the

computer physical time, it is the logical time linked

to the semantics of the program. The situation is
exactly the same between the logical time of a

discrete-events simulation and the physical time of

the computer that runs the simulation. Therefore,

the time to which we refer is a countable set of

‘events’. An event is something meaningful for the

simulation, like a change in a value.

2.2.2. The pace of a stream: ticks, tocks and clocks

The programming language 8½ is a declarative

language, which operates by making descriptive
statements about data and relationships between

data, rather than by describing how to produce

them.

For instance, the definition C�/A�/B means the

value recorded by stream C is always equal to the

sum of the values recorded by stream A and B . We

assume that the changes of the values are propa-

gated instantaneously. When A (or B) changes, so
do C at the same logical instant. Note that C is

uninitialized as long as A or B are uninitialized.

Table 3 gives some examples of 8½ streams

operations. The first line gives the instants of the

logical clock, which counts the events in the

program. The instants of this clock are called a

tick (a tick is a column in the table). The dates of

the recording of a new observation for a particular
observable are called the tock of this stream

(because a large clock is supposed to make ‘tick�/

tock’). Tocks represent the set of events mean-

ingful for that stream. A tock is a non-empty cell

in the table.

You can always observe your measuring appa-

ratus, which gives the result of the last measure-

ment, until a new measure is made. Consequently,

at a tick t , the value of a stream is: the last value

recorded at tock t ?5/t if t ? exists, or the undefined
value otherwise. For example, the value of $C at

tick 0 is undefined whilst its value at tick 4 is 3.

2.2.3. Stream operations

A scalar constant stream is a stream with only

one ‘measurement’ operation, at the beginning of

time, to compute the constant value of the stream.

A constant n in a 8½ program, really denotes a

scalar constant stream.

Constructs like Clock n denote another kind of
constant streams: they are predefined sequences of

true values with an infinite number of tocks. The

set of tocks depends of the parameter n . They

really represent some clocks used to give the beat

of some other observations.

Scalar operations are extended to denote ele-

ment wise application of the operation on the

values of the streams.
The delay operator, $, shifts the entire stream to

give access, at the current time, to the previous

stream’s value. This operator is the only operator

that does not act in a point-wise fashion. The tocks

of the delayed stream are the tocks of the

arguments at the exception of the first one.

The last kind of stream operators are the

sampling operators. The most general one is the
trigger. It corresponds to the temporal version of

Table 3

Examples of constant streams and stream expressions

0 1 2 3 4 5 6 7 8 . . .

1 I1 . . .

1�/2 3 . . .

Clock 2 True True true true true . . .
Assuming A 1 2 3 4 5 6 . . .

Assuming B 1 2 1 1 . . .

C�/A�/B 2 3 5 6 6 7 7 . . .

$C 2 3 5 6 6 7 . . .

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170 159

the conditional. The values of ‘T when B ’ are

those of T sampled at the tocks where B takes a

true value (see Table 4). A tick t is a tock of ‘A

when B ’ if A and B are both defined and t is a

tock of B and the current value of B is true.

8½ streams present several advantages:

. 8½ streams are manipulated as a whole, using

filters, transducers. . . cf. Arvind and Brock

(1983).

. A stream is the ideal implementation for the

trajectory of a DS: a temporal sequence of

values is represented by a temporal succession

of computation and, therefore, can be infinite.

. The tocks of a stream really represent the

logical instants where some computation must

occur to maintain the relationships stated in the

program.

. The 8½ stream algebra verifies the causality

assumption; the value of a stream at any tick t

may only depend upon values computed for

previous tick t ?B/t . This is definitively not the

case for LUCID (LUCID includes the inverse of $,

an ‘uncausal’ operator).

. The 8½ stream algebra verifies the finite

memory assumption: there exists a finite bound

such that the number of past values that are

necessary to produce the current values remains

smaller than the bound.

Note that the implementation of 8½ streams

enables a static execution model: the successive

values making a stream are the successive values of

a single memory location and we do not have to

rely on a garbage collector to free the unreachable

past values (as in Haskell lazy lists, see for instance

Hudak et al., 1996). In addition, we do not have to

compute the value of a stream at each tick, but

only at the tocks.

2.3. Combining streams and collections into fabrics

A fabric is a stream of collections or a collection

of streams. In fact, we distinguish between two

kinds of fabrics: static and dynamic. A static fabric

is a collection of streams where every element has

the same clock (the clock of a stream is the set of

its tocks). In an equivalent manner, a static fabric

is a stream of collections where every collection
has the same geometry. Fabrics that are not static

are called dynamic. The compiler is able to detect

the kind of the fabric and compiles only the static

ones. Programs involving dynamic fabrics are

interpreted.

Collection operations and stream operations are

easily extended to operate on static fabrics con-

sidering that the fabric is a collection (of streams)
or a stream (of collections).

8½ is a declarative language: a program is a

system representing a set of fabric definitions. A

fabric definition takes a form similar to:

T �A�B (1)

Eq. (1) is a 8½ expression that defines the fabric

T from the fabric A and B (A and B are the

parameters or the inputs of T). This expression

can be read as a definition (the naming of the
expression A�/B by the identifier T) as well as a

relationship, satisfied at each moment and for each

collection element of T , A and B . Fig. 1 gives a

three-dimensional representation of the concept of

fabric.

Running a 8½ program consists in solving fabric

equations. Solving a fabric equation means ‘enu-

merating the values constituting the fabric’. This
set of values is structured by the stream and

collection aspects of the fabric: let a fabric be a

stream of collections; in accordance to the time

interpretation of stream, the values constituting

the fabric are enumerated in the stream’s ascend-

Table 4

Example of a sampling expression

A 1 2 3 4 5 6 7 8 9

B False False False True False True True False True

A when B 4 6 7 9

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170160

ing order. So, running an 8½ program means

enumerating, in sequential order, the values of the

collections making the stream. The enumeration of

the collection values is not subject to some

predefined order and may be done in parallel.

2.4. Recursive definitions

A definition is recursive when the identifier on

the left hand side appears also directly or indirectly

on the right hand side. Two kinds of recursive

definitions are possible.

2.4.1. Temporal recursion

Temporal recursion allows the definition of the

current value of a fabric using its past values. For

example, the definition:

T@0�1 T �$T�1 when Clock 1

specifies a counter, which starts at 1 and counts at

the speed of the tocks of clock 1. The @0 is a

temporal guard that quantifies the first equation

and means ‘for the first tock only’. In fact, T

counts the tocks of Clock 1.

The order of equations in the previous program

does not matter: the unquantified equation applies

only when no quantified equation applies. The
language for expressing guards is restricted to @n

with the meaning ‘valid for the nth tock only’.

2.4.2. Spatial recursion

Spatial recursion is used to define the current

value of a point using current values of other

points of the same fabric (see Fig. 2). For example:

iota�0#(1� iota:[2]) (2)

is a fabric with three elements such that iota.i is

equal to i . The operator: [n] truncates a collection

to n elements so we can infer from the definition
that iota has three elements (0 is implicitly coerced

into a one-point collection). Let {iota1, iota2,

iota3} be the value of the collection iota. The

definition states that:

fiota1; iota2; iota3g
�f0g#(f1; 1g�fiota1; iota2g)

which can be rewritten as:

iota1�0

iota2�1� iota1

iota3�1� iota2

8<
:

which proves our previous assertion.

We have developed the notions that are neces-

sary to check if a recursive collection definition has

a well-defined solution. The solution can always be

defined as the least solution of some fixpoint
equation. However, an equation like ‘x�/{x}’

does not define a well formed array (the number

of dimensions is not finite). We insist that all

elements of the array solution must be defined as

in Giavitto (2000).

Fig. 1. A fabric specified by a 8/
1
2

equation is an object in the

(time, space, value) reference axis. A stream is a value varying in

time. A collection is a value varying in space. The variation of

space in time determines the dynamical structure (cf. Section 5).

Fig. 2. Sequential computation of iota.

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170 161

3. Examples of 8½ programs for DS with a static
structure

All the examples in this section have been

processed by the 8½ environment presented in

Giavitto (1999) and the illustrations have been

produced by the 8½�/gnuplot interface.

3.1. Numerical resolution of a parabolic partial

differential equation

This example is paradigmatic of a diffusion

process. We want to simulate the diffusion of

heat in a thin uniform rod. Both extremities of the

rod are held at 0 8C. The solution of the parabolic

equation:

@U

@t
�

@2U

@x2
(3)

gives the temperature U (x , t) at a distance x from

one end of the rod after time t . An explicit method

of solution uses finite-difference approximation of
Eq. (3) on a mesh (Xi �/ih , Tj �/jk) which

discretizes the space of variables, cf. Smith (1985).

One finite-difference approximation to Eq. (3)

is:

Ui;t�1 � Ui;t

k
�

Ui�1;t � 2Ui;t � Ui�1;t

h2

which can be rewritten as:

Ui;j�1�rUi�1;j�(1�2r)Ui;j�rUi�1;j (4)

where r�/k /h2. It gives a formula for the unknown
temperature U1,j�1 at the (i , j�/1)th mesh point in

term of known temperatures along the jth time-

row. Hence we can calculate the unknown pivotal

values of U along the first time-row T�/k , in

terms of known boundary and initial values along

T�/0, then the unknown pivotal values along the

second time-row in terms of the first calculated

values, and so on (see Fig. 3 on the left).
The corresponding 8½ program is very easy to

derive and describes simply the initial values,

boundary conditions and the specification of the

relation (Eq. (4)). The stream aspect of a fabric

corresponds to the time axis while the collection

aspect represents the rod discretization. The sec-

ond argument of the when operator is Clock which
represents the time discretization (cf. Fig. 3). The

expression ?n generates a vector of n elements

where the i th element has value i .

start�/some initial temperature distribution;

Begin�/0;

End�/0;

U@0�/start;

U�/Begin#inside#End;

Float inside�/0.4*pU (left)�/0.2*pU (middle)�/

0.48pU (right);
pU�/$U when Clock:

left�/?6;

right�/left�/2;

middle�/left�/1.

3.2. The simulation of a reactive system in artificial

life

Here is an example of an hybrid DS, a ‘wlumf’,

which is a ‘creature’ whose behavior (eating) is

triggered by the level of some internal state (see

Maes, 1991 for such model in ethological simula-

tion).

More precisely, a wlumf is hungry when its

glycaemia is under 3. It can eat when there is some

food in its environment. Its metabolism is such
that when it eats, the glycaemia goes up to 10 and

then decreases to 0 at a rate of one unit per time

step. All these variables are scalar. Essentially, the

wlumf is made of counters and flip�/flop triggered

and reseted at different rates,

boolean Food In Neighbourhood�/Ran-

dom(bool);

System wlumf�/

{

Hungry@0�/false;

Hungry�/(GlycaemiaB/3);
Glycaemia@0�/6;

Glycaemia�/if Eating then 10 else max (0, $

Glycaemia�/1) when Clock fi;

Eating�/$Hungry && Food In Neighbor-

hood;

}

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170162

The result of an execution is given in Fig. 4.

3.3. An example of iterated equations: Turing’s

model of morphogenesis

A. Turing proposed a model of chemical reac-

tion coupled with a diffusion processes in cells to

explain patterns formation. The system of differ-

ential equations, from Bard and Lauder (1974), is:

dxr

dt
�

1

16
(16�xryr)�(xr�1�2xr�xr�1)

dyr

dt
�

1

16
(16�yr�b)�(yr�1�2yr�yr�1)

where x and y are two chemical reactives that

diffuse on a discrete torus of cells indexed by r .

This model mixes a continuous phenomena (the

chemical reaction in time) and a discrete diffusion

process. Note that in the heat diffusion example,

we consider a continuous process, which is then

discretized for the purpose of numerical resolution

while here the diffusion is initially in the discrete

space of cells.

In 8½ we retrieve exactly the same equations dx

and dy . The other equations correspond to the

computation of intermediate values like xdiff . . . to

the computation of an initial value beta or the

access to the neighborhood through a gather

operation. Note that the corresponding C program

is more than 60 lines long.

nbcell�/60

iota�/?nbcell; (* generates the vector {0, 1, . . .,
59}*)

right�/if (iota�/�/0) then (nbcell�/1) else

(iota�/1) fi
left�/if (iota�/�/ (nbcell�/1)) then 0 else

(iota�/1) fi

rsp�/1.0/16.0

diff1�/0.25

diff2�/0.0625

x@0�/4.0

Fig. 3. Diffusion of heat in a thin uniform rod. The picture on the right is the result of the 8½ program run visualized by the 8½�/

gnuplot interface.

Fig. 4. Behavior of a hybrid DS.

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170 163

x�/$x�/$dx when Clock
y@0�/4.0

y�/max(0.0, $y�/$dy) when Clock

beta�/12.0�/rand(0.05*2.0)�/0.05

xdiff�/x (right)�/x (left)�/2.0*x

ydiff�/y (right)�/y(left)�/2.0*y

dx�/rsp*(16.0�/x*y)�/xdiff*diff1

dy�/rsp*(x*y�/y�/beta)�/ydiff*diff2

In Fig. 5, we have presented the results after 100

time steps (starting with a random distribution of

the reactive) and after 1000 time steps when the
solution has reached its equilibrium.

4. Simulation of genetic networks in 8½

Gene expression investigation by in silico meth-
ods represents one of the challenging problem of

the bioinformatic. Several models have been

proposed to cover different aspects of gene ex-

pression. Qualitative models appeared to encom-

pass the main features of the regulation or decision

networks. Models for gene network expressions

are based on several theoretical tools: boolean

networks (Thieffry and Rom.éro, 1999), multi-
valued logic networks (Thieffry and Thomas,

1998), circuit simulation (McAdams and Shapiro,

1995), weighted matrices (Weaver et al., 1999),

Petri nets (Matsuno et al., 1999), differential

equations (Chen et al., 1999), etc. Genetics net-

works with tens to hundreds of genes are difficult

to specify with currently available programming

languages and require extensive programming. In
addition, several hypothesis must be tested and the

resulting models have to integrate several features
that do not fit into a single framework. In this

context, the expressive power of the underlying

simulation language is of great importance for

prototyping all the variations of the models and to

reduce the development time of the simulation.

In this section, we illustrate the versatility and

the simplicity of the 8½ approach for the simula-

tion of a paradigmatic example of a genetic
network. For the sake of simplicity of the exposi-

tion, the models are simplifications considered in

the literature of the complex interacting genetic

circuit that operates in bacteriophage lambda to

decide between lytic or lysogenic growth, to

maintain the prophage in a lysogen, and to throw

the switch during induction (a complete descrip-

tion is available in McAdams and Shapiro, 1995).

4.1. Boolean systems and some other discrete

models

4.1.1. Boolean systems

Fig. 6 gives a simplified view of the interplay

between gene cI and protein CRO in bacterioph-
age lambda. As usual, an arrow 0/ represents a

positive feedback while a stopped link �/ represents

a negative one.

Fig. 5. Diffusion/reaction in a Torus.

Fig. 6. Very simplified form of interaction between gene cI and

protein CRO.

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170164

A first approach models the expression of the
genes and the level of the protein by a boolean.

Table 5 gives an evolution of cI and CRO which is

compatible with the qualitative constraints given

by Fig. 6. Variable X represents the boolean value

associated with product X and $X represents the

value of product X at the previous time step. Two

transitions for CRO are compatible with the given

constraint when the system is in state (cI , CRO)�/

(1, 1). The two possibilities are labeled a and b.

The corresponding 8½ program is straightfor-

ward.

CRO@0�/. . . (* some initial value *); CRO, not

($CRO) when Clock 1; cI@0, . . .; cIa�/$cI or not

($CRO); cIb�/$cI .

Note that CRO is stated equal to ‘‘not $CRO’’

and then can be used in place of this expression
(this property is termed as ‘transparential refer-

ency’ in dataflow languages). In consequence, the

equation for cIa can be rewritten cIa�/CRO which

shows that the expression of cI depends ‘instanta-

neously’ from the level of CRO. The rate of change

is fixed by Clock 1 and imposed to CRO using a

trigger operator. This clock is also the clock for cI

because of the dependency between cI and CRO.
However, it is very easy to give another rate of

evolution by using a trigger in the rule for cI . By

using different clocks, we can easily model differ-

ent rates of change.

4.1.2. Discrete state systems

The previous model is too rough: we cannot

express that CRO represses itself only when its

level is high enough. We have to adopt a finer

representation for the levels of CRO see Thieffry

and Thomas (1998). Table 6 gives a possible

transition table for cI and CRO when cI is

represented as a boolean and CRO takes a level

value in {0, 1, 2}. Here too, the corresponding 8/
1
2

is

straightforward. If the coding of a transition table

into a function is a burden, the transition table can

be specified as such by a 8/
1
2

collection, and a

selection operator is simply used to compute the

transition by looking in this table.

CRO@0, . . .; CI@0, . . .; cI , if ($CRO�/ �/0)

then 1 else 0 fi; when Clock 1; CRO�/if $cI�/ �/1

then 0; else if ($CRO5/1) then 2 else 0 or 1 fi fi;

when Clock 1.

4.1.3. Asynchronous systems diffusion, continuous

models, etc

It is very unlucky that two products change their

state synchronously. We then have to render the

fact that only one variable changes its state at a

time. We suppose that the probability for CRO to
change its state is pCRO and probability for cI is pcI

(it is not mandatory that pCRO�/pcI�/1).

Asynchronous iteration are also handled very

simply in 8½ because it is possible to produce a

clock with a probabilistic tock rate of p with the

‘Rclock p ’ construct. To take into account the

asynchronous change, just replace the clocks

appearing in the previous program by ‘Rclock
pcI’ and accordingly.

Another problem is to take into account the

diffusion of the products. For instance, there is a

delay between the beginning of the production of

cI and the repression for CRO by cI . This can be

modeled using additional delay operator ‘$’. One

Table 5

Possible evolution functions for cI and CRO

Value 0 and 1 represents boolean false and true, respectively

Table 6

A possible transition table for cI and CRO when cI �/{0, 1} and

CRO �/{0, 1, 2} and the associated 8/
1
2

program

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170 165

‘$’ refers to the previous time step, two ‘$’ refer to
the event (or time step) proceeding the previous

one, etc.

Numerous others formalisms have been used for

genetic networks, ranging from Petri Nets, e.g.

Hofest.ädt (1994) and Matsuno et al. (1999) to

hybrid systems mixing differential equations and

boolean states, e.g. McAdams and Shapiro (1995).

We have already show in the previous section the
ability of 8½ to express this last kind of model. In

particular, we are confident that a language like

8½ is very well-fitted to express the circuit

diagrams used in McAdams and Shapiro (1995)

because declarative language have already been

successful in the domain of electric circuit simula-

tion.

5. Examples of dynamical systems with a dynamical

structure

Fabrics with a static structure cannot describe

phenomena that grow in space, like plants. To

describe those structures, we need dynamically

structured fabrics. The rest of this section gives
some examples of the kind of dynamics fabrics we

can achieve in 8½ Note that we do not need to

introduce new operators, the current definitions of

fabrics already enable the construction of dyna-

mically shaped fabrics. However, some examples

are not easily stated in the current 8½ version. This

will be discussed in the last section.

5.1. Pascal’s triangle

This somewhat artificial example is a pretext to

introduce growing collections. The numbers in

Pascal’s triangle give the binomial coefficients.

The value of the point (row, col) in the triangle

is the sum of the values of the point (row�/1, col)

and the point (row�/1, col�/1). We decide to map

the rows in time, thus the fabric representation of
Pascal’s triangle is a stream of growing collections.

This fabric is dynamic because the number of

elements in the collection varies in time.

We can identify that the row l (l �/0) is the sum

of row (l�/1) concatenated with 0 and 0 concate-

nated with row (l�/1). The 8½ program is

straightforward:

t� ($t#0)�(0#$t) when Clock;

t@0�1

The five first values of Pascal’s triangle are:

Tock: 0:{1}: int[1]

Tock: 1:{1, 1}: int [2]
Tock: 2:{1, 2, 1}: int[3]

Tock: 3: {1, 3, 3, 1}: int[4]

Tock: 4: {1, 4, 6, 4, 1}: int[5]

5.2. Eratosthenes’s sieve

We present a modified version of the famous

Eratosthenes’s sieve to compute prime numbers.

This example is adapted from a paradigmatic
example in artificial chemistry, cf. Dittrich (2001)

(originally it relies on a multiset of numbers and

we use here a vector of numbers).

The Eratosthenes’s sieve consists of a generator

producing increasing integers and a list of known

primes numbers (starting with the single element

2). Each time we generate a new number, we try to

divide it by all currently known prime numbers. A
number that is not divided by a prime number is a

prime number itself and is added to the list of

prime numbers.

Generator is a fabric that produces a new

integer at each tock. Extend is the number

generated with the same size as the fabric of

already known prime numbers. Modulo is the

fabric where each element is the modulo of the
produced number and the prime number in the

same column. Zero is the fabric containing boo-

lean values that are true every time that the

number generated is divided by a prime number.

Finally, reduced is a reduction with an or opera-

tion, that is, the result is true if one of the prime

numbers divides the generated number. The x :jy j
operator shrinks the fabric x to the rank specified
by y . The rank of a collection is a vector where the

i th element represents the number of elements of x

in the i th dimension.

Generator@0�/2:

Generator�/$ generator�/1 when Clock;

Extend�/generator: j$criblej;

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170166

Modulo�/extend%$crible;
Zero�/(modulo�/ �/(0: jmoduloj));
Reduced�/or\zero;

crible�/$crible#generator when (not reduced);

crible@0�/generator;

The five first steps of the execution give for crible:

Tock: 0:{2}: int[1]
Tock: 1:{2, 3}: int[2]

Tock: 2:{2, 3}: int[2]

Tock: 4:{2, 3, 5}: int[3]

5.3. Coding D0L-systems

An L system is a parallel rewriting system (every

production rule that might be used at each

derivation state are used simultaneously) devel-
oped by Lindenmayer in the 1960s, cf. Linden-

mayer (1968). It has since become a formalism

used in a wide range of applications from the

description of cellular interactions to a model of

parallel computation, e.g. Prusinkiewicz and Ha-

nan (1992).

The parallel derivation process used in the L

systems is useful to describe processes evolving
simultaneously in time and space (growth pro-

cesses, descriptions and codings of plants and

plants development, etc.). To describe a wide range

of phenomena, L systems of many different types

have been designed. We will restrict ourselves to

the simplest form of L systems: D0L systems.

Formally, a D0L system is a triple G�/(a, h , v)

where a is an alphabet, h is a finite substitution on
a (into the set of subsets of a*) and v , referred to

as the axiom, is an element of a�.

The D letter stands for deterministic, which

means there exists at most a single production rule

for each element of a. Therefore, the derivation

sequence is unique while in nondeterministic L

systems (since there can be more than one

production rule applied at each derivation state),
there exists more than one derivation sequence.

The numerical argument of the L system gives the

number of interactions in the rewriting process;

therefore, a 0L system is a context free L system

(whereas an nL system is context sensitive with n

interactions).

An example of L system: the development of a

one-dimensional organism . We consider the devel-

opment states of a one-dimensional organism (a

filamentous organism). It will be described

through the definition of a 0L system. Each

derivation step will represent a state of develop-

ment of the organism. The production rules allow

each cell to remain in the same state, to change its

state, to divide into several cells or to disappear.

Consider an organism where each cell can be in

one of two states a and b . The a state consists of

dividing itself whereas the b state is a waiting state

of one division step.

The production rules and the five first deriva-

tion steps are:

v :br; t0:br

p1:ar0/albr; t1:ar

p2:al0/blar; t2:albr

p3:br0/ar; t3:blarar

p4:bl0/al;t4:alalbralbr

The cell polarity, which is a part of the cell state

is given with the l and r indice. A derivation tree of

the process is detailed in the Fig. 7 (partly taken

from Lindenmayer and J.ürgensen, 1992). The

polarity changing rules of this example are very

close to those found in the blue�/green bacterium

Anabaena catenula described in Mitchinson and

Wilcox (1972) and Koster and Lindenmayer

(1987). Nevertheless, the timing of the cell division

is not the same.

The implementation of the production rules in

8½ is straightforward. Through a direct transla-

Fig. 7. The first derivations of the A. catenula (the cell polarity

is indicated with an upper arrow).

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170 167

tion of the rules, we have the following 8½
program:

w�/ar;
ar�/$al #$br when Clock; ar@0�/{‘ar’};

al�/$bl #$ar when Clock; al@0�/{‘al’};

br�/$ar when Clock; br@0�/{‘br’};

bt�/$al when Clock; bl@0�/{‘bl’};

The five first steps of the execution are:

Tock: 0: {br}: char[1]

Tock: 1: {ar}: char[1]

Tock: 2: {ai , br}: char[2]

Tock: 3: {bl , ar , ar}: char[3]

Tock: 4: {al , al , br , al , br}: char[5]

More generally, it is possible to describe the
whole class of D0L systems in 8½ even the non

propagating D0L systems, see Michel (1996).

6. Conclusions and perspectives

The 8½ is a long term effort to validate the

effectiveness of declarative language in the simula-

tion of DS. The original motivation was the

simulation of some large DSs found in physics.

We can summarize the lessons of the 8½ project by

the following points:

1) The declarative style is effective in providing a

framework close to the usual (mathematical)

models used by an end-user, if the data and

constructs offered by the language correspond
to the ground concepts used in the application

domain.

2) Smart interpreters and compilers are good!

They relieve the programmer from many

burden and ensure many consistency checks.

For instance, in 8½ several non-standard type-

inference systems are used to derive the shape

of the specified collections, to use a static and
more efficient simulation algorithm or a

dynamic one, and to check causality between

the variables in the equations.

3) The declarative language does not imply an

unacceptable loss of efficiency. For instance,

we have developed some compilation techni-

ques that reduce the loss of efficiency to 30%

in the example of the heat diffusion compared

with a hand-coded C program.

4) The declarative style does not constrain the

parallelization. For instance, 8½ collections

are well fitted for the expression of the data-

parallelism, see De Vito and Michel (1996)

and Giavitto et al. (1998). More generally,

declarative languages are well-fitted for the

minimal expression of sequencing in a pro-

gram, leading to a maximal amount of (im-

plicit) parallelism. However, the exploitation

of this parallelism can be as hard as in the

imperative case.

It is only recently that DSs model of biological

processes have drawn our attention. The examples

sketched in this paper show that the 8½ approach

can be relevant for this kind of systems too.

However, except in Section 5, all the examples

used exhibit a static structure.

By a static structure, we mean that the phase

space of the DS can be known statically before the

simulation. It is precisely the shape-inference

phase of a 8½ program that determines this phase

space. The case of the examples in Section 5 is

more difficult: a precise phase space cannot be

inferred before the simulation run, but the general

form with some parameters is known at compile-

time and the parameters are derived at run-time

(e.g. when it is sufficient to work with unbounded

lists instead of fixed-size vectors).
There is, however, a kind of DS that is very

uneasy to model in 8½: systems that have an

intrinsic dynamical structure. Examples of this

kind are P systems with active membrane de-

scribed in Paun (2000) or multi-agent systems with

dynamic creations and mobility. The restriction of

collections to the array structure is also proble-

matic and there is an urgent need for more

sophisticated aggregation structures. To face these

problems, new concepts have to be introduced.

Some extensions have been proposed in Michel

and Giavitto (1998a), but the result is too much

targeted to a family of application (those whose

topology is built as a bottom-up tree). This

motivates the beginning of a new project consider-

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170168

ing more sophisticated topology and dynamic
constructs.

Acknowledgements

The authors would like to thank J. Cohen and
the members of the ‘‘Simulation and Epigenesis’’

group at GENOPOLE-Evry for fruitful discus-

sions, biological motivations and challenging

questions. The friendly atmosphere of the IPCAT

workshop has also raised many questions that

have suggested many developments and rethink-

ing. This research is supported in part by the

CNRS, the GDR ALP, IMPG and GENOPOLE/
University of Evry.

References

Arvind, Brock, J.D., 1983. Streams and managers. In: Proceed-

ings of the 14th IBM Computer Science Symposium.

Bard, J., Lauder, L., 1974. How well does turing’s theory of

morphogenesis work. Journal of Theoretical Biology 45,

501�/531.

Blelloch, G., 1989. Scans as primitive parallel operations. IEEE

Transactions on Computers 38 (11), 1526�/1538.

Blelloch, G., Sabot, G.W., 1990. Compiling collection-oriented

languages onto massively parallel computers. Journal of

Parallel and Distributed Computing 8, 119�/134.

Chen, T., He, H., Church, G., 1999. Modeling gene expression

with differential equations. In: Proceedings of the Pacific

Symposium on Biocomputing’99, pp. 112�/123.

De Vito, D., Michel, O., 1996. Effective SIMD code generation

for the high-level declarative data-parallel language 8/
1
2
/. In:

EuroMicro’96. IEEE Computer Society, pp. 114�/119.

Dittrich, P., 2001. Artificial chemistry webpage. URL http://

www.cs.uni-dortmund.de/achem.

Fontana, W., Buss, L., 1996. The barrier of objects: from

dynamical systems to bounded organizations. In: Casti, J.,

Karlqvist, A. (Eds.), Boundaries and Barriers. Addison-

Wesley, pp. 56�/116.

Giavitto, J.-L., 1992. Typing geometries of homogeneous

collection. In: Second International Workshop on Array

Manipulation (ATABLE), Montréal.

Giavitto, J.-L., 1999. Scientific repport for the hdr. Ph.D. thesis.

LRI, Université de Paris-Sud, Centre d’Orsay, Research

Report 1226.

Giavitto, J.-L., 2000. A framework for the recursive definition

of data structures. In: ACM-Sigplan Second International

Conference on Principles and Practice of Declarative

Programming (PPDP’00). ACM-Press, Montréal, pp. 45�/

55.

Giavitto, J.-L., De Vito, D., Sansonnet, J.-P., Sep. 1998. A data

parallel Java client-server architecture for data field compu-

tations over Zn . In: EuroPar’98 Parallel Processing. Lecture

Notes in Computer Science.

Giavitto, J.-L., Michel, O., Sansonnet, J.-P., 1995. Group based

fields. In: Takayasu, L., Halstead, R.H.J., Queinnec, C.

(Eds.), Parallel Symbolic Languages and Systems (Interna-

tional Workshop PSLS’95), Lecture Notes in Computer

Science, vol. 1068. Springer, Beaune, France, pp. 209�/215.

Hofestädt, R., 1994. A petri net application of metabolic

processes. Jounal of System Analysis Modelling and Simu-

lation 16, 113�/122.

Hudak, P., et al., 1996. Report on the programming language

HASKELL a non-strict, purely functional language, version

1.3. CS Department, Yale University.

Jayaraman, B., 1992. Implementation of subset-equational

program. Journal of Logic Programming 12, 299�/324.

Koster, C.G., Lindenmayer, A., 1987. Discrete and continuous

models for heterocyst diffrentiation in growing filaments of

blue�/green bacteria. Acta Biotheoretica 36, 249�/273.

Lindenmayer, A., 1968. Mathematical models for cellular

interactions in development parts I and II. Journal of

Theoretical Biology 18, 280�/315.

Lindenmayer, A., Jürgensen, H., 1992. Grammars of develop-

ment; discrete-state models for growth, differentiation, and

gene expression in modular organisms. In: Ronzenberg, G.,

Salomaa, A. (Eds.), Lindenmayer Systems, Impacts on

Theoretical Computer Science, Computer Graphics and

Developmental Biology. Springer, pp. 3�/21.

Lisper, B., 1993. On the relation between functional and data-

parallel programming languages. In: Proceedings of the

Sixth International Conference on Functional Languages

and Computer Architectures, ACM, ACM Press.

Maes, P., 1991. A bottom-up mechanism for behavior selection

in an artificial creature. In: Book, B. (Ed.), Proceedings of

the First International Conference on Simulation of Adap-

tative Behavior. MIT Press.

Mahiout, A., Giavitto, J.-L., 1994. Data-parallelism and data-

flow: automatic mapping and scheduling for implicit

parallelism. In: Franco-British meeting on Data-parallel

Languages and Compilers for portable parallel computing,

Villeneuve d’Ascq, 20 avril.

McAdams, H., Shapiro, L., 1995. Circuit simulation of genetic

networks. Science, 269.

Michel, O., 1996. A straightforward translation of D0L Systems

in the declarative data-parallel language 8/
1
2
/. In: Bougé, L.,

Fraigniaud, P., Mignotte, A., Robert, Y. (Eds.), EuroPar’96

Parallel Processing, Lecture Notes in Computer Science,

vol. 1123. Springer, pp. 714�/718.

Michel, O., Giavitto, J., 1994. Design and implementation of a

declarative data-parallel language. In: Post-ICLP’94 Work-

shop W6 on Parallel and Data Parallel Execution of Logic

Programs. Uppsala University, Computing Science Depart-

ment, S. Margherita Liguria, Italy.

Michel, O., Giavitto, J.-L., 1998a. Amalgams: Names and name

capture in a declarative framework. Tech. Rep. 32, LaMI-

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170 169

Université d’Évry Val d’Essonne, also available as LRI

Research-Report RR-1159.

Michel, O., Giavitto, J.-L., 1998b. A declarative data parallel

programming language for simulations. In: Proceedings of

the Seventh International Colloquium on Numerical Ana-

lysis and Computer Science with Applications. Plovdiv,

Bulgaria.

Michel, O., Giavitto, J.-L., Sansonnet, J.-P., 1994. A data-

parallel declarative language for the simulation of large

dynamical systems and its compilation. In: SMS-TPE’94:

Software for Multiprocessors and Supercomputers, Office

of Naval Research USA & Russian Basic Research Foun-

dation, Moscow, 21�/23 September, pp. 103�/111.

Matsuno, H., Doi, A., Nagasaki, M., Miyano, S., 1999. Hybrid

Petri Net representation of gene regulatory network. In:

Proceedings of the Pacific Symposium on Biocomputing’99,

pp. 112�/123.

Mitchinson, G.J., Wilcox, M., 1972. Rule governing cell

division in anaeba. Nature 239, 110�/111.

NSF, 1991. Grand challenges: high performance computing

and communications. A Report by the Committee on

Physical, Mathematical and Engineering Sciences, NSF/

CISE, 1800 G Street NW, Washington, DC 20550.

Paun, G., 2000. From cells to computers: computing with

membranes (p systems). In: Workshop on Grammar

Systems. Bad Ischl, Austria.

Prusinkiewicz, P., Hanan, J., 1992. L systems: from formalism

to programming languages. In: Ronzenberg, G., Salomaa,

A. (Eds.), Lindenmayer Systems, Impacts on Theoretical

Computer Science, Computer Graphics and Developmental

Biology. Springer, pp. 193�/211.

Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.,

1986. Programming with sets: and introduction to SETL,

Springer.

Sipelstein, J.M., Blelloch, G., 1991. Collection-oriented lan-

guages. Proceedings of the IEEE 79 (4), 504�/523.

Smith, G.D., 1985. Numerical solution of partial differential

equations: finite difference methods. In: Oxford Applied

Mathematics and Computing series. Oxford University

Press.

Thieffry, D., Thomas, R., 1998. Qualitative analysis of gene

networks. In: Proceedings of the Pacific Symposium on

Biocomputing’98, pp. 77�/88.

Thieffry, D., Roméro, D., 1999. The modularity of biological

regulatory networks. Biosystem 50, 49�/59.

TMC, 1986. The Essential *LISP Manual. Thinking Machines

Corporation, Cambridge, MA.

Tofooli, T.N.M., 1987. Cellular Automata Machine. MIT

Press, Cambridge, MA.

Wadge, W.W., Ashcroft, E.A., 1976. LUCID*/a formal system

for writing and proving programs. SIAM Journal on

Computing 3, 336�/354.

Weaver, D., Workman, C., Stormo, G., 1999. Modeling

regulatory networks with weight matrices. In: Proceedings

of the Pacific Symposium on Biocomputmg’99, pp. 112�/

123.

J.-L. Giavitto et al. / BioSystems 68 (2003) 155�/170170

Chapter 9

Computation in Space and Space in
Computation

[1] Jean-Louis Giavitto, Olivier Michel, Julien Cohen, and Antoine Spicher. Computation in space and space
in computation. In Jean-Pierre Banâtre, Pascal Fradet, Jean-Louis Giavitto, and Olivier Michel, editors,
Unconventional Programming Paradigms (UPP’04), volume 3566 of LNCS, pages 137–152. ERCIM– NSF,
Springer Verlag, 2005.

133

Computations in Space and Space
in Computations

Jean-Louis Giavitto, Olivier Michel, Julien Cohen,
and Antoine Spicher

LaMI, umr 8042 du CNRS, Université d’Évry – Genopole
Tour Évry-2, 523 Place des Terrasses de l’Agora

91000 Évry, France
{giavitto, michel}@lami.univ-evry.fr

The Analytical Engine weaves algebraic
patterns just as the Jacquard loom weaves
flowers and leaves.

Ada Lovelace

1 Goals and Motivations

The emergence of terms like natural computing, mimetic computing, parallel prob-
lem solving from nature, bio-inspired computing, neurocomputing, evolutionary
computing, etc., shows the never ending interest of the computer scientists for
the use of “natural phenomena” as “problem solving devices” or more generally,
as a fruitful source of inspiration to develop new programming paradigms. It is
the latter topic which interests us here. The idea of numerical experiment can
be reversed and, instead of using computers to simulate a fragment of the real
world, the idea is to use (a digital simulation of) the real world to compute. In
this perspective, the processes that take place in the real world are the objects
of a new calculus:

description of the world’s laws = program
state of the world = data of the program

parameters of the description = inputs of the program
simulation = the computation

This approach can be summarized by the following slogan: “programming in the
language of nature” and was present since the very beginning of computer science
with names like W. Pitts and W. S. McCulloch (formal neurons, 1943), S. C.
Kleene (inspired by the previous for the notion of finite state automata, 1951),
J. H. Holland (connectionist model, 1956), J. Von Neumann (cellular automata,
1958), F. Rosenblatt (the perceptron, 1958), etc.

This approach offers many advantages from the teaching, heuristic and techni-
cal points of view: it is easier to explain concepts referring to real world processes
that are actual examples; the analogy with the nature acts as a powerful source

J.-P. Banâtre et al. (Eds.): UPP 2004, LNCS 3566, pp. 137–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

138 J.-L. Giavitto et al.

of inspirations; and the studies of natural phenomena by the various scientific
disciplines (physics, biology, chemistry...) have elaborated a large body of con-
cepts and tools that can be used to study computations (some concrete examples
of this cross fertilization relying on the concept of dynamical system are given
in references [6, 5, 34, 12]).

There is a possible fallacy in this perspective: the description of the nature
is not unique and diverse concurent approaches have been developed to account
for the same objects. Therefore, there is not a unique “language of nature”
prescribing a unique and definitive programming paradigm. However, there is a
common concern shared by the various descriptions of nature provided by the
scientific disciplines: natural phenomena take place in time and space.

In this paper, we propose the use of spatial notions as structuring relation-
ships in a programming language. Considering space in a computation is hardly
new: the use of spatial (and temporal) notions is at the basis of computational
complexity of a program; spatial and temporal relationships are also used in the
implementation of parallel languages (if two computations occur at the same
time, then the two computations must be located at two different places, which
is the basic constraint that drives the scheduling and the data distribution prob-
lems in parallel programming); the methods for building domains in denotational
semantics have also clearly topological roots, but they involve the topology of the
set of values, not the topology of a value. In summary, spatial notions have been
so far mainly used to describe the running of a program and not as means to
design new programs.

We want to stress this last point of view: we are not concerned by the orga-
nization of the resources used by a program run. What we want is to develop a
spatial point of view on the entities built by the programmer when he designs
his programs. From this perspective, a program must be seen as a space where
computation occurs and a computation can be structured by spatial relation-
ships. We hope to provide some evidences in the rest of this paper that the
concept of space can be as fertile as mathematical logic for the development of
programming languages. More specifically, we advocate that the concepts and
tools developed for the algebraic construction and characterization of shapes1

provide interesting teaching, heuristic and technical alternatives to develop new
data structures and new control structures for programming.

The rest of this paper is organized as follows. Section 2 and section 3 provide
an informal discussion to convince the reader of the interest of introducing a
topological point of view in programming. This approach is illustrated through
the experimental programming language MGS used as a vehicle to investigate
and validate the topological approach.

1 G. Gaston-Granger in [23] considers three avenues in the formalization of the concept
of space: shape (the algebraic construction and the transformation of space and
spatial configurations), texture (the continuum) and measure (the process of counting
and coordinatization [39]). In this work, we rely on elementary concepts developed
in the field of combinatorial algebraic topology for the construction of spaces [24].

Computations in Space and Space in Computations 139

Section 2 introduces the idea of seeing a data structure as a space where the
computation and the values move. Section 3 follows the spatial metaphor and
presents control structures as path specifications. The previous ideas underlie
MGS. Section 4 sketches this language. The presentation is restricted to the
notions needed to follow the examples in the next section. Section 5 gives some
examples and introduces the (DS)2 class of dynamical systems which exhibit
a dynamical structure. Such kind of systems are hard to model and simulate
because the state space must be computed jointly with the running state of the
system. To conclude in section 6 we indicate some of the related work and we
mention briefly some perspectives on the use of spatial notions.

2 Data Structures as Spaces2

The relative accessibility from one element to another is a key point considered
in a data structure definition:

– In a simply linked list, the elements are accessed linearly (the second after
the first, the third after the second, etc.).

– In a circular buffer, or in a double-linked list, the computation goes from
one element to the following or to the previous one.

– From a node in a tree, we can access the sons.
– The neighbors of a vertex V in a graph are visited after V when traveling

through the graph.
– In a record, the various fields are locally related and this localization can be

named by an identifier.
– Neighborhood relationships between array elements are left implicit in the

array data-structure. Implementing neighborhood on arrays relies on an in-
dex algebra: index computations are used to code the access to a neighbor.
The standard example of index algebra is integer tuples with linear map-
pings λx.x ± 1 along each dimension (called “Von Neumann” or “Moore”
neighborhoods).

This accessibility relation defines a logical neighborhood. The concept of logical
neighborhood in a data structure is not only an abstraction perceived by the
programmer and vanishing at the execution, but it does have an actual meaning
for the computation. Very often the computation indeed complies with the logical
neighborhood of the data elements and it is folk’s knowledge that most of the
algorithms are structured either following the structure of the input data or the
structure of the output data. Let us give some examples.

The recursive definition of the fold function on lists propagates an action to
be performed along the traversal of a list. More generally, recursive computations
on data structures respect so often the logical neighborhood, that standard high-
order functions (e.g. primitive recursion) can be automatically defined from the

2 The ideas exposed in this section are developed in [19, 14].

140 J.-L. Giavitto et al.

data structure organization (think about catamorphisms and other polytypic
functions on inductive types [29, 26]).

The list of examples can be continued to convince ourselves that a notion of
logical neighborhood is fundamental in the definition of a data structure. So to
define a data organization, we adopt a topological point of view: a data structure
can be seen as a space, the set of positions between which the computation moves.
Each position possibly holds a value3. The set of positions is called the container
and the values labeling the positions constitute the content.

This topological approach is constructive: one can define a data type by the
set of moves allowed in the data structure. An example is given by the notion
of “Group Based Fields” or GBF in short [21, 16]. In a uniform data structure,
i.e. in a data structure where any elementary move can be used against any
position, the set of moves possesses the structure of a mathematical group G.
The neighborhood relationship of the container corresponds to the Cayley graph
of G. In this paper, we will use only two very simple groups G corresponding to
the moves |north> and |east> allowed in the usual two-dimensional grid and
to the moves allowed in the hexagonal lattice figured at the right of Fig. 3.

3 Control Structures as Paths

In the previous section, we suggested looking at data structure as spaces in
which computation moves. Then, when the computation proceeds, a path in the
data structure is traversed. This path is driven by the control structures of the
program. So, a control structure can be seen as a path specification in the space
of a data structure. We elaborate on this idea into two directions: concurrent
processes and multi-agent systems.

3.1 Homotopy of a Program Run

Consider two sequential processes A and B that share a semaphore s. The current
state of the parallel execution P = A || B can be figured as a point in the plane
A × B where A (resp. B) is the sequence of instructions of A (resp. B). Thus,
the running of P corresponds to a path in the plane A× B. However, there are
two constraints on paths that represent the execution of P. Such a path must be
“increasing” because we suppose that at least one of the two subprocesses A or
B must progress. The second constraint is that the two subprocesses cannot be
simultaneously in the region protected by the semaphore s. This constraint has a
clear geometrical interpretation: the increasing paths must avoid an “obstruction
region”, see Fig. 1. Such representation is known at least from the 1970’s as
“progress graph” [7] and is used to study the possible deadlocks of a set of
concurrent processes.

Homotopy (the continuous deformation of a path) can be adapted to take
into account the constraint of increasing paths and provides effective tools to

3 A point in space is a placeholder awaiting for an argument, L. Wittgenstein, (Trac-
tatus Logico Philosophicus, 2.0131).

Computations in Space and Space in Computations 141

����
����
����

����
����
����

��
��
��
��
��
��
��

��
��
��
��
��
��
��

V(r)

P(r)

P(s)

V(s)

P(r) V(r)
V(s)P(s)

A

B

α

β

P(s)

V(s)

P(s) V(s) A

B

Fig. 1. Left: The possible path taken by the process A || B is constrained by the ob-
struction resulting of a semaphore shared between the processes A and B. Right: The
sharing of two semaphores between two processes may lead to deadlock (corresponding
to the domain α) or to the existence of a “garden of Eden” (the domain β cannot be
accessed from outside β and can only be leaved.)

detect deadlocks or to classify the behavior of a parallel program (for instance
in the previous example, there are two classes of paths corresponding to execu-
tions where the process A or B enters the semaphore first). Refer to [22] for an
introduction to this domain.

3.2 The Topological Structure of Interactions4

In a multi-agent system (or an object based or an actor system), the control
structures are less explicit and the emphasis is put on the local interaction be-
tween two (sometimes more) agents. In this section, we want to show that the
interactions between the elements of a system exhibit a natural topology.

The starting point is the decomposition of a system into subsystems defined
by the requirement that the elements into the subsystems interact together and
are truly independent from all other subsystems parallel evolution.

In this view, the decomposition of a system S into subsystems S1, S2, . . . , Sn

is functional : state si(t + 1) of the subsystem Si depends solely of the previous
state si(t). However, the decomposition of S into the Si can depend on the time
steps. So we write St = {St

1, S
t
2, . . . , S

t
nt
} for the decomposition of the system

S at time t and we have: si(t + 1) = ht
i(si(t)) where the ht

i are the “local”
evolution functions of the St

i . The “global” state s(t) of the system S can be
recovered from the “local” states of the subsystems: there is a function ϕt such
that s(t) = ϕt(s1(t), . . . , snt

(t)) which induces a relation between the “global”
evolution function h and the local evolution functions: s(t + 1) = h(s(t)) =
ϕt(ht

1(s1(t)), . . . , ht
nt

(snt
(t))).

The successive decomposition St
1, S

t
2, . . . , S

t
nt

can be used to capture the el-
ementary parts and the interaction structure between these elementary parts
of S. Cf. Figure 2. Two subsystems S′ and S′′ of S interact if there are some
t such that S′, S′′ ∈ St. Two subsystems S′ and S′′ are separable if there are
some t such that S′ ∈ St and S′′ �∈ St or vice-versa. This leads to consider the
set S, called the interaction structure of S, defined by the smaller set closed by
intersection that contains the St

j .

4 This section is adapted from [36].

142 J.-L. Giavitto et al.

...

S

s(0)

S1
1

s(1)

S0
1

S1
i

s(t)

S ′ ∈ V (S)

Fig. 2. The interaction structure of a system S resulting from the subsystems of ele-
ments in interaction at a given time step

Set S has a topological structure: S corresponds to an abstract simplicial
complex. An abstract simplicial complex [24] is a collection S of finite non-
empty set such that if A is an element of S, so is every nonempty subset of
A. The element A of S is called a simplex of S; its dimension is one less that
the number of its elements. The dimension of S is the largest dimension of one
of its simplices. Each nonempty subset of A is called a face and the vertex set
V (S), defined by the union of the one point elements of S, corresponds to the
elementary functional parts of the system S. The abstract simplicial complex
notion generalizes the idea of graph: a simplex of dimension 1 is an edge that
links two vertices, a simplex f of dimension 2 can be thought of as a surface
whose boundaries are the simplices of dimension 1 included in f , etc.

4 MGS Principles

The two previous sections give several examples to convince the reader that
a topological approach of the data and control structures of a program present
some interesting perspectives for language design: a data structure can be defined
as a space (and there are many ways to build spaces) and a control structure is
a path specification (and there are many ways to specify a path).

Such a topological approach is at the core of the MGS project. Starting from
the analysis of the interaction structure in the previous section, our idea is to
define directly the set S with its topological structure and to specify the evolution
function h by specifying the set St

i and the functions ht
i:

– the interaction structure S is defined as a new kind of data structures called
topological collections;

– a set of functions ht
i together with the specification of the St

i for a given t
are called a transformation.

We will show that this abstract approach enables an homogeneous and uniform
handling of several computational models including cellular automata (CA),
lattice gas automata, abstract chemistry, Lindenmayer systems, Paun systems
and several other abstract reduction systems.

Computations in Space and Space in Computations 143

These ideas are validated by the development of a language also called MGS.
This language embeds a complete, strict, impure, dynamically or statically typed
functional language.

4.1 Topological Collections

The distinctive feature of the MGS language is its handling of entities structured
by abstract topologies using transformations [20]. A set of entities organized by an
abstract topology is called a topological collection. Here, topological means that
each collection type defines a neighborhood relation inducing a notion of subcol-
lection. A subcollection S′ of a collection S is a subset of connected elements of S
and inheriting its organization from S. Beware that by “neighborhood relation”
we simply mean a relationship that specify if two elements are neighbors. From
this relation, a cellular complex can be built and the classical “neighborhood
structure” in terms of open and closed sets can be recovered [35].

A topological collection can be thought as a function with a finite support
from a set of positions (the elements of V (S)) to a set of values (the support
of a function is the set of elements on which the function takes a well defined
value). Such a data structure is called a data field [13]. This point of view is
only an abstraction: the data structure is not really implemented as a function.
This approach makes a distinction between the content and the container. The
notions of shape [25] and shape type [11] also separate the set of positions of a
data structure from the values it contains. Often there is no need to distinguish
between the positions and their associated values. In this case, we use the term
“element of the collection”.

Collection Types. Different predefined and user-defined collection types are avail-
able in MGS, including sets, bags (or multisets), sequences, Cayley graphs of
Abelian groups (which include several unbounded, circular and twisted grids),
Delaunay triangulations, arbitrary graphs, quasi-manifolds [36] and some other
arbitrary topologies specified by the programmer.

Building Topological Collections. For any collection type T, the corresponding
empty collection is written ():T. The join of two collections C1 and C2 (writ-
ten by a comma: C1,C2) is the main operation on collections. The comma
operator is overloaded in MGS and can be used to build any collection (the
type of the arguments disambiguates the collection built). So, the expression
1, 1+2, 2+1, ():set builds the set with the two elements 1 and 3, while the
expression 1, 1+2, 2+1, ():bag computes a bag (a set that allows multiple oc-
currences of the same value) with the three elements 1, 3 and 3. A set or a bag
is provided with the following topology: in a set or a bag, any two elements are
neighbors. To spare the notations, the empty sequence can be omitted in the
definition of a sequence: 1, 2, 3 is equivalent to 1, 2, 3,():seq.

4.2 Transformations

The MGS experimental programming language implements the idea of transfor-
mations of topological collections into the framework of a functional language:

144 J.-L. Giavitto et al.

collections are just new kinds of values and transformations are functions acting
on collections and defined by a specific syntax using rules. Transformations (like
functions) are first-class values and can be passed as arguments or returned as
the result of an application.

The global transformation of a topological collection s consists in the parallel
application of a set of local transformations. A local transformation is specified
by a rule r that specifies the replacement of a subcollection by another one. The
application of a rewriting rule σ ⇒ f(σ, ...) to a collection s:

1. selects a subcollection si of s whose elements match the pattern σ,
2. computes a new collection s′i as a function f of si and its neighbors,
3. and specifies the insertion of s′i in place of si into s.

One should pay attention to the fact that, due to the parallel application
strategy of rules, all distinct instances si of the subcollections matched by the σ
pattern are “simultaneously replaced” by the f(si).

Path Pattern. A pattern σ in the left hand side of a rule specifies a subcollec-
tion where an interaction occurs. A subcollection of interacting elements can
have an arbitrary shape, making it very difficult to specify. Thus, it is more
convenient (and not so restrictive) to enumerate sequentially the elements of the
subcollection. Such enumeration will be called a path.

A path pattern Pat is a sequence or a repetition Rep of basic filters. A basic
filter BF matches one element. The following fragment of the grammar of path
patterns reflects this decomposition:

Pat ::= Rep | Rep , Pat Rep ::= BF | BF /exp BF ::= cte | id | <undef>
where cte is a literal value, id ranges over the pattern variables and exp is a
boolean expression. The following explanations give an interpretation for these
patterns:

literal: a literal value cte matches an element with the same value.
empty element the symbol <undef> matches an element whose position does

not have an associated value.
variable: a pattern variable a matches exactly one element with a well defined

value. The variable a can then occur elsewhere in the rest of pattern or in
the r.h.s. of the rule and denotes the value of the matched element.

neighbor: b, p is a pattern that matches a path which begins by an element
matched by b and continues by a path matched by p, the first element of p
being a neighbor of b.

guard: p/exp matches a path matched by p when the boolean expression exp
evaluates to true.

Elements matched by basic filters in a rule are distinct. So a matched path is
without self-intersection. The identifier of a pattern variable can be used only
once as a basic filter. That is, the path pattern x,x is forbidden. However, this
pattern can be rewritten for instance as: x,y / y = x.

Computations in Space and Space in Computations 145

Right Hand Side of a Rule. The right hand side of a rule specifies a collection
that replaces the subcollection matched by the pattern in the left hand side.
There is an alternative point of view: because the pattern defines a sequence of
elements, the right hand side may be an expression that evaluates to a sequence of
elements. Then, the substitution is done element-wise: element i in the matched
path is replaced by the element i in the r.h.s. This point of view enables a very
concise writing of the rules.

A Very Simple Transformation. The map function which applies a function to
each element of a collection is an example of a simple transformation:

trans map[f=\z.z] = { x => f(x) }
This transformation is made of only one rule. The syntax must be obvious (the
default value of the optional parameter f is the identity written using a lambda-
notation). This transformation implements a map since each element e of the
collection is matched by the pattern x and will be replaced by f(e) in a parallel
application strategy of the rule.

5 Examples

5.1 The Modeling of Dynamical Systems

In this section, we show through one example the ability of MGS to concisely and
easily express the state of a dynamical system and its evolution function. More
examples can be found on the MGS web page and include: cellular automata-like
examples (game of life, snowflake formation, lattice gas automata...), various res-
olutions of partial differential equations (like the diffusion-reaction à la Turing),
Lindenmayer systems (e.g. the modeling of the heterocysts differentiation during
Anabaena growth), the modeling of a spatially distributed signaling pathway, the
flocking of birds, the modeling of a tumor growth, the growth of a meristem, the
simulation of colonies of ants foraging for food, etc.

The example given below is an example of a discrete “classical dynamical
system”. We term it “classical” because it exhibits a static structure: the state
of the system is statically described and does not change with the time. This
situation is simple and arises often in elementary physics. For example, a falling
stone is statically described by a position and a velocity and this set of variables
does not change (even if the value of the position and the value of the velocity
change in the course of time). However, in some systems, it is not only the
values of state variables, but also the set of state variables and/or the evolution
function, that changes over time. We call these systems dynamical systems with
a dynamic structure following [17], or (DS)2 in short. As pointed out by [15],
many biological systems are of this kind. The rationale and the use of MGS in
the simulation of (DS)2 is presented in [14, 15].

Diffusion Limited Aggreation (DLA). DLA, is a fractal growth model studied
by T.A. Witten and L.M. Sander, in the eighties. The principle of the model is

146 J.-L. Giavitto et al.

Fig. 3. From left to right: the final state of a DLA process on a torus, a chess pawn, a
Klein’s bottle and an hexagonal meshes. The chess pawn is homeomorphic to a sphere
and the Klein’s bottle does not admit a concretization in Euclidean space. These two
topological collections are values of the quasi-manifold type. Such collection are build
using G-map, a data-structure widely used in geometric modeling [27]. The torus and
the hexagonal mesh are GBFs

simple: a set of particles diffuses randomly on a given spatial domain. Initially
one particle, the seed, is fixed. When a mobile particle collides a fixed one,
they stick together and stay fixed. For the sake of simplicity, we suppose that
they stick together forever and that there is no aggregate formation between
two mobile particles. This process leads to a simple CA with an asynchronous
update function or a lattice gas automata with a slightly more elaborate rule set.
This section shows that the MGS approach enables the specification of a simple
generic transformation that can act on arbitrary complex topologies.

The transformation describing the DLA behavior is really simple. We use two
symbolic values ‘free and ‘fixed to represent respectively a mobile and a fixed
particle. There are two rules in the transformation:

1. the first rule specifies that if a diffusing particle is the neighbor of a fixed
seed, then it becomes fixed (at the current position);

2. the second one specifies the random diffusion process: if a mobile particle is
neighbor of an empty place (position), then it may leave its current position
to occupy the empty neighbor (and its current position is made empty).

Note that the order of the rules is important because the first has priority over
the second one. Thus, we have :

trans dla = {
‘free, ‘fixed => ‘fixed, ‘fixed
‘free, <undef> => <undef>, ‘free

}
This transformation is polytypic and can be applied to any kind of collection,
see Fig. 3 for a few results.

5.2 Programming in the Small: Algorithmic Examples

The previous section advocates the adequation of the MGS programming style
to model and simulate various dynamical systems. However, it appears that the
MGS programming style is also well fitted for the implementation of algorithmic

Computations in Space and Space in Computations 147

tasks. In this section, we show some examples that support this assertion. More
examples can be found on the MGS web page and include: the analysis of the
Needham-Schroeder public-key protocol [30], the Eratosthene’s sieve, the nor-
malization of boolean formulas, the computation of various algorithms on graphs
like the computation of the shortest distance between two nodes or the maximal
flow, etc.

Gamma and the Chemical Computing Metaphor. In MGS, the topology
of a multiset is the topology of a complete connected graph: each element is the
neighbor of any other element. With this topology, transformations can be used
to easily emulate a Gamma transformations [2, 3]. The Gamma transformation:

M = do
rp x1, . . . , xn

if P (x1, . . . , xn)
by f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)

is simply translated into the following MGS transformation:

trans M = {
x1, . . . , xn

/ P (x1, . . . , xn)
=> f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) }

and the application M(b) of a Gamma transformation M to a multiset b is replaced
in MGS by the computation of the fixpoint iteration M[iter=‘fixpoint](b).
The optional parameter iter is a system parameter that allows the programmer
to choose amongst several predefined application strategies:

f [iter=‘fixpoint](x0)

computes x1 = f(x0), x2 = f(x1), ..., xn = f(xn−1) and returns xn such that
xn = xn−1.

As a consequence, the concise and elegant programming style of Gamma is
enabled in MGS: refer to the Gamma literature for numerous examples of algo-
rithms, from knapsack to the maximal convex hull of a set of points, through the
computation of prime numbers. See also the numerous applications of multiset
rewriting developped in the projects Elan [38] and Maude [37].

One can see MGS as “Gamma with more structure”. However, one can note
that the topology of a multiset is “universal” in the following sense: it embeds
any other neighborhood relationship. So, it is always possible to code (at the
price of explicit coding the topological relation into some value inspected at
run-time) any specific topology on top of the multiset topology. We interpret
the development of “structured Gamma” [10] from this perspective. In addition,
transformations are functions and functions are first citizen values in MGS. So
the higher-order features of the higher-order chemical programming style (see
the article by Banâtre et al. in this volume) can be easely achieved in MGS.

148 J.-L. Giavitto et al.

3 421

41 2 3

y,x

x,y / x>y

���
���
���

���
���
���

3

4

1

2 ��
��
��

��
��
��

1

2

3

4

=>
32

Fig. 4. Left: Bubble sort. Right: Bead sort [1]

Two Sorting Algorithms. A kind of bubble-sort is straightforward in MGS;
it is sufficient to specify the exchange of two non-ordered adjacent elements in
a sequence, see Fig. 4. The corresponding transformation is defined as:

trans BubbleSort = { x,y / x > y ⇒ y,x }
The transformation BubbleSort must be iterated until a fixpoint is reached. This
is not a real a bubble sort algorithm because swapping of elements happen at
arbitrary places; hence an out-of-order element does not necessarily bubble to
the top in the characteristic way.

Bead sort is a new sorting algorithm [1]. The idea is to represent positive
integers by a set of beads, like those used in an abacus. Beads are attached to
vertical rods and appear to be suspended in the air just before sliding down (a
number is read horizontally, as a row). After their falls, the rows of numbers
have been rearranged such as the smaller numbers appears on top of greater
numbers, see Fig. 4. The corresponding one-line MGS program is given by the
transformation:

trans BeadSort = { ’empty |north> ’bead ⇒ ’bead, ’empty }
This transformation is applied on the usual grid. The constant ’empty is used
to give a value to an empty place and the constant ’bead is used to represent an
occupied cell. The l.h.s. of the only rule of the transformation BeadSort selects
the paths of length two, composed by an occupied cell at north of an empty cell.
Such a path is replaced by a path computed in the r.h.s. of the rule. The r.h.s.
in this example computes a path of length two with the occupied and the empty
cell swapped.

Hamiltonian Path. A graph is a MGS topological collection. It is very easy to
list all the Hamiltonian paths in a graph using the transformation:

trans H = {
x* / size(x) = size(self) / Print(x) / false => !(false)

}
This transformation uses an iterated pattern x* that matches a path (a sequence
of elements neighbor two by two). The keyword self refers to the collection on
which the transformation is applied, that is, the entire graph. The size of a
graph returns the number of its vertices. So, if the length of the path x is the

Computations in Space and Space in Computations 149

same as the number of vertices in the graph, then the path x is an Hamiltonian
path because matched paths are simple (no repetition of an element). The second
guard prints the Hamiltonian path as a side effect and returns its argument which
is not a false value. Then the third guard is checked and returns false, thus, the
r.h.s. of the rule is never triggered (the ! operator introduces an assertion and
!(false) raises an exception that stops the evaluation process if it is evaluated).
The matching strategy ensures a maximal rule application. In other words, if a
rule is not triggered, then there is no instance of a possible path that fulfills
the pattern. This property implies that the previous rule must be checked on
all possible Hamiltonian paths and H(g) prints all the Hamiltonian path in g
before returning g unchanged.

6 Current Status and Related Work

The topological approach we have sketched here is part of a long term research
effort [21] developed for instance in [13] where the focus is on the substructure,
or in [16] where a general tool for uniform neighborhood definition is developed.
Within this long term research project, MGS is an experimental language used
to investigate the idea of associating computations to paths through rules. The
application of such rules can be seen as a kind of rewriting process on a collection
of objects organized by a topological relationship (the neighborhood). A privi-
leged application domain for MGS is the modeling and simulation of dynamical
systems that exhibit a dynamic structure.

Multiset transformation is reminiscent of multiset-rewriting (or rewriting of
terms modulo AC). This is the main computational device of Gamma [2], a lan-
guage based on a chemical metaphor; the data are considered as a multiset M of
molecules and the computation is a succession of chemical reactions according to
a particular rule. The CHemical Abstract Machine (CHAM) extends these ideas
with a focus on the expression of semantic of non deterministic processes [4].
The CHAM introduces a mechanism to isolate some parts of the chemical solu-
tion. This idea has been seriously taken into account in the notion of P systems.
P systems [31] are a recent distributed parallel computing model based on the
notion of a membrane structure. A membrane structure is a nesting of cells
represented, e.g, by a Venn diagram without intersection and with a unique su-
perset: the skin. Objects are placed in the regions defined by the membranes
and evolve following various transformations: an object can evolve into another
object, can pass trough a membrane or dissolve its enclosing membrane. As for
Gamma, the computation is finished when no object can further evolve. By using
nested multisets, MGS is able to emulate more or less the notion of P systems.
In addition, patterns like the iteration + go beyond what is possible to specify
in the l.h.s. of a Gamma rule.

Lindenmayer systems [28] have long been used in the modeling of (DS)2 (es-
pecially in the modeling of plant growing). They loosely correspond to transfor-
mations on sequences or string rewriting (they also correspond to tree rewriting,
because some standard features make particularly simple to code arbitrary trees,

150 J.-L. Giavitto et al.

Cf. the work of P. Prusinkiewicz [32]). Obviously, L systems are dedicated to the
handling of linear and tree-like structures.

There are strong links between GBF and cellular automata (CA), especially
considering the work of Z. Róka which has studied CA on Cayley graphs [33].
However, our own work focuses on the construction of Cayley graphs as the
shape of a data structure and we develop an operator algebra and rewriting
notions on this new data type. This is not in the line of Z. Róka which focuses
on synchronization problems and establishes complexity results in the framework
of CA.

A unifying theoretical framework can be developed [18, 20], based on the no-
tion of chain complex developed in algebraic combinatorial topology. However,
we do not claim that we have achieved a useful theoretical framework encom-
passing the previous paradigms. We advocate that few topological notions and a
single syntax can be consistently used to allow the merging of these formalisms
for programming purposes.

The current MGS interpreter is freely available at the MGS home page:
mgs.lami.univ-evry.fr. A compiler is under development where a static type
discipline can be enforced [8, 9]). There are two versions of the type inference
systems for MGS: the first one is a classical extension of the Hindley-Milner type
inference system that handles homogeneous collections. The second one is a soft
type system able to handle heterogeneous collection (e.g. a sequence containing
both integers and booleans is heterogeneous).

Acknowledgments

The authors would like to thanks Franck Delaplace at LaMI, Frédéric Gruau at
University of Paris-Sud, Florent Jacquemard at INRIA/LSV-Cachan, C. Godin
and P. Barbier de Reuille at CIRAD-Montpellier, Pierre-Etienne Moreau at
Loria-Nancy, Éric Goubault at CEA-Saclay, P. Prusinkiewicz at the University of
Calgary (who coined the term ”computation in space”) and the members of the
Epigenomic group at GENOPOLE-Évry, for stimulating discussions, thoughtful
remarks and warm support. We gratefully acknowledge the financial support of
the CNRS, the GDR ALP, IMPBIO, the University of Évry and GENOPOLE.

References

1. J. Arulanandham, C. Calude, and M. Dinneen. Bead-sort: A natural sorting al-
gorithm. Bulletin of the European Association for Theoretical Computer Science,
76:153–162, Feb. 2002. Technical Contributions.

2. J.-P. Banatre, A. Coutant, and D. L. Metayer. A parallel machine for multiset
transformation and its programming style. Future Generation Computer Systems,
4:133–144, 1988.

3. J.-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma and the chemical reaction
model: Fifteen years after. Lecture Notes in Computer Science, 2235:17–44, 2001.

Computations in Space and Space in Computations 151

4. G. Berry and G. Boudol. The chemical abstract machine. In Conf. Record 17th
ACM Symp. on Principles of Programmming Languages, POPL’90, San Francisco,
CA, USA, 17–19 Jan. 1990, pages 81–94. ACM Press, New York, 1990.

5. R. W. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve
linear programming problems. Linear Algebra and its Applications, 146:79–91,
1991.

6. K. M. Chandy. Reasoning about continuous systems. Science of Computer Pro-
gramming, 14(2–3):117–132, Oct. 1990.

7. E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. Computing
Surveys, 3(2):67–78, 1971.

8. J. Cohen. Typing rule-based transformations over topological collections. In J.-L.
Giavitto and P.-E. Moreau, editors, 4th International Workshop on Rule-Based
Programming (RULE’03), pages 50–66, 2003.

9. J. Cohen. Typage fort et typage souple des collections topologiques et des trans-
formations. In V. Ménissier-Morain, editor, Journées Francophones des Langages
Applicatifs (JFLA 2004), pages 37–54. INRIA, 2004.

10. P. Fradet and D. L. Métayer. Structured Gamma. Science of Computer Program-
ming, 31(2–3):263–289, July 1998.

11. P. Fradet and D. L. Mtayer. Shape types. In Proc. of Principles of Programming
Languages, Paris, France, Jan. 1997. ACM Press.

12. F. Geurts. Hierarchy of discrete-time dynamical systems, a survey. Bulletin of the
European Association for Theoretical Computer Science, 57:230–251, Oct. 1995.
Surveys and Tutorials.

13. J.-L. Giavitto. A framework for the recursive definition of data structures. In ACM-
Sigplan 2nd International Conference on Principles and Practice of Declarative
Programming (PPDP’00), pages 45–55, Montral, Sept. 2000. ACM-press.

14. J.-L. Giavitto. Invited talk: Topological collections, transformations and their
application to the modeling and the simulation of dynamical systems. In Rewriting
Technics and Applications (RTA’03), volume LNCS 2706 of LNCS, pages 208 – 233,
Valencia, June 2003. Springer.

15. J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz. Modelling and Simu-
lation of biological processes in the context of genomics, chapter “Computational
Models for Integrative and Developmental Biology”. Hermes, July 2002. Also re-
published as an high-level course in the proceedings of the Dieppe spring school
on “Modelling and simulation of biological processes in the context of genomics”,
12-17 may 2003, Dieppes, France.

16. J.-L. Giavitto and O. Michel. Declarative definition of group indexed data struc-
tures and approximation of their domains. In Proceedings of the 3nd International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP-01). ACM Press, Sept. 2001.

17. J.-L. Giavitto and O. Michel. Mgs: a rule-based programming language for complex
objects and collections. In M. van den Brand and R. Verma, editors, Electronic
Notes in Theoretical Computer Science, volume 59. Elsevier Science, 2001.

18. J.-L. Giavitto and O. Michel. MGS: a programming language for the transformations
of topological collections. Technical Report 61-2001, LaMI – Université d’Évry Val
d’Essonne, May 2001.

19. J.-L. Giavitto and O. Michel. Data structure as topological spaces. In Proceedings
of the 3nd International Conference on Unconventional Models of Computation
UMC02, volume 2509, pages 137–150, Himeji, Japan, Oct. 2002. Lecture Notes in
Computer Science.

152 J.-L. Giavitto et al.

20. J.-L. Giavitto and O. Michel. The topological structures of membrane computing.
Fundamenta Informaticae, 49:107–129, 2002.

21. J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based fields. In I. Takayasu,
R. H. J. Halstead, and C. Queinnec, editors, Parallel Symbolic Languages and
Systems (International Workshop PSLS’95), volume 1068 of LNCS, pages 209–
215, Beaune (France), 2–4 Oct. 1995. Springer-Verlag.

22. E. Goubault. Geometry and concurrency: A user’s guide. Mathematical Structures
in Computer Science, 10:411–425, 2000.

23. G.-G. Granger. La pense de l’espace. Odile Jacob, 1999.
24. M. Henle. A combinatorial introduction to topology. Dover publications, 1994.
25. C. B. Jay. A semantics for shape. Science of Computer Programming, 25(2–3):251–

283, 1995.
26. J. Jeuring and P. Jansson. Polytypic programming. Lecture Notes in Computer

Science, 1129:68–114, 1996.
27. P. Lienhardt. Topological models for boundary representation : a comparison with

n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82, 1991.
28. A. Lindenmayer. Mathematical models for cellular interaction in development,

Parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.
29. E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas,

Lenses, Envelopes and Barbed Wire. In 5th ACM Conference on Functional Pro-
gramming Languages and Computer Architecture, volume 523 of Lecture Notes in
Computer Science, pages 124–144, Cambridge, MA, August 26–30, 1991. Springer.

30. O. Michel and F. Jacquemard. An Analysis of a Public-Key Protocol with Mem-
branes, pages 281–300. Natural Computing Series. Springer Verlag, 2005.

31. G. Paun. From cells to computers: Computing with membranes (P systems).
Biosystems, 59(3):139–158, March 2001.

32. P. Prusinkiewicz and J. Hanan. L systems: from formalism to programming lan-
guages. In G. Ronzenberg and A. Salomaa, editors, Lindenmayer Systems, Impacts
on Theoretical Computer Science, Computer Graphics and Developmental Biology,
pages 193–211. Springer Verlag, Feb. 1992.

33. Z. Róka. One-way cellular automata on Cayley graphs. Theoretical Computer
Science, 132(1–2):259–290, 26 Sept. 1994.

34. M. Sintzoff. Invariance and contraction by infinite iterations of relations. In Re-
search directions in high-level programming languages, LNCS, volume 574, pages
349–373, Mont Saint-Michel, France, june 1991. Springer-Verlag.

35. R. D. Sorkin. A finitary substitute for continuous topology. Int. J. Theor. Phys.,
30:923–948, 1991.

36. A. Spicher, O. Michel, and J.-L. Giavitto. A topological framework for the speci-
fication and the simulation of discrete dynamical systems. In Sixth International
conference on Cellular Automata for Research and Industry (ACRI’04), volume
3305 of LNCS, Amsterdam, October 2004. Springer.

37. The MAUDE project. Maude home page, 2002. http://maude.csl.sri.com/.
38. The PROTHEO project. Elan home page, 2002.

http://www.loria.fr/equipes/protheo/SOFTWARES/ELAN/.
39. H. Weyl. The Classical Groups (their invariants and representations). Princeton

University Press, 1939. Reprint edition (October 13, 1997). ISBN 0691057567.

Chapter 10

Rewriting Systems and the Modelling
of Biological Systems

[1] Jean-Louis Giavitto, Grant Malcolm, and Olivier Michel. Rewriting systems and the modelling of biological
systems. Comparative and Functional Genomics, 5:95–99, February 2004.

151

Comparative and Functional Genomics
Comp Funct Genom 2004; 5: 95–99.
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.363

Conference Review

Rewriting systems and the modelling of
biological systems

Jean-Louis Giavitto1, Grant Malcolm2* and Olivier Michel1
1LaMI u.m.r. 8042 du CNRS, Université d’Évry Val d’Essone — GENOPOLE, Tour Évry-2, 523 Place des Terrasses de l’Agora, 91000
Évry, France
2Department of Computer Science, University of Liverpool, Liverpool L69 7ZF, UK

*Correspondence to:
Grant Malcolm, Department of
Computer Science, University of
Liverpool, Liverpool L69 7ZF, UK.
E-mail: grant@csc.liv.ac.uk

Received: 13 November 2003
Revised: 18 November 2003
Accepted: 25 November 2003

Abstract
This paper gives a brief survey of the use of algebraic rewriting systems for mod-
elling and simulating various biological processes, particularly at the cellular level.
Copyright 2004 John Wiley & Sons, Ltd.

Keywords: computational models for cell simulation; dynamical systems with a
dynamical structure; rewriting systems; simulation

Introduction

Computer systems are designed and built to meet
some need in the real world: to maintain records
of chains of amino acids or of personal finances,
to visualize tomographic data or to send text
messages, to fly planes or guide satellites. Any
such system is useful only insofar as it records,
simulates, predicts or helps to control some element
of the behaviour of the real world (or, perhaps, of a
virtual world). In this respect, computer systems are
models of something, and designing and building
such systems is tantamount to constructing a model
of that thing.

Computer science has developed (or appropri-
ated) many languages and tools to help build these
models, and to relate different models that operate
on different levels of abstraction. In this paper we
give a survey of how a family of these languages,
rewriting systems, have been used to model a vari-
ety of biological processes.

Rewriting systems

The mechanics of rewriting systems are familiar
to anyone who has done high-school maths: a

term can be simplified by repeatedly replacing
parts of the term (subterms) with other, equivalent,
subterms, e.g:

1/2 · 2/3 · 3/4 → 1/3 · 3/4 → 1/4

The ‘cancellation’ rule that is applied here is:

M /N · N /P → M /P ,

where M , N and P are variables representing
arbitrary numbers (although, presumably, N and P
are not zero).

This cancellation rule is probably more familiar
where the left- and right-hand sides are separated
by an equality symbol (‘=’), rather than the arrow
used here. In this arithmetic example, what is
important is simplifying the original term in such
a way that the resulting term denotes the same
number as that denoted by the original term. If
we think of these terms as being the same thing
as the number they denote, then the end result of
the process of simplification is exactly the same
as where we started from. We could, however,
think of the terms as being more or less complex
representations of a particular number, and we
could think of the simplification process as moving

Copyright 2004 John Wiley & Sons, Ltd.

96 J.-L. Giavitto, G. Malcolm and O. Michel

from a more complex representation to a less
complex representation.

Computation is very often all about processes:
things change, and move into different states,
sometimes even in a non-deterministic way. The
languages that computer scientists use to describe
and create processes reflect this, e.g. the use of
an arrow rather than an equality symbol in the
example above.

Rewriting systems are just as simple as this
example suggests: terms are built up from con-
stants (such as, ‘0’, ‘1’, etc.) and operations (such
as multiplication and division) and a number of
rules (such as the cancellation rule above) describe
how terms can be rewritten. An individual rewriting
system specifies particular sets of constants, oper-
ations and rules; the mechanics of using the rules
to rewrite terms is common to all rewriting sys-
tems. The example above can be seen as a model
of numbers (or of terms denoting numbers), with
the rules describing how entities in the model inter-
act; the examples we survey below use rewriting
systems to model biological processes, e.g. by hav-
ing constants that represent proteins or molecules,
operations that represent ways in which proteins
and molecules can be brought together, and rules
to describe the effects of their interactions.

The theory of rewriting systems (see e.g [3,4])
lies in algebra and logic, areas that have been
extensively and successfully applied in almost
every branch of science. A key result is that
rewriting systems are Turing complete — every
computable process can be described by a rewriting
system. Moreover, using rules to transform terms
is such a basic operation that there are many
languages and tools (see e.g. [8,17]) that make
rewriting systems powerful tools for describing,
exploring and reasoning about models.

Modelling biological systems

We give a brief and selective survey of research
that uses rewriting systems to model or simulate
dynamic biological systems. The simulation of any
dynamic system by a rewriting system relies on:

• Representing the states of the dynamic system
by expressions (terms built from the constants
and operations).

• Expressing the evolutionary rules of the dynamic
system as rewriting rules.

If this can be done, then the process of applying the
rewriting rules to an expression e corresponds to a
possible trajectory of the dynamic system starting
from the initial state e.

Finding appropriate constants, operations and
rules is at the heart of building these computational
models, and is a difficult task that requires insight
and creativity. However, certain kinds of operation
occur again and again, and give distinct proper-
ties to the rewriting systems that are built on top
of them. Consider, for example, an operation that
‘adds’ proteins together: such an operation might
form chains of proteins, as in DNA strands, or it
might build a ‘soup’ of proteins that are not bound
in a sequence, but can move about and interact
with one another. Either of these alternatives can
be built into a rewriting system by imposing cer-
tain rules on how the ‘addition’ operation behaves:
‘associativity’ in the former, giving rise to string
rewriting ; and ‘commutativity’ in the latter, giving
rise to multiset rewriting. These two approaches
are topological, in that they constrain the neigh-
bourhood of the proteins that are added together
(immediate neighbours in the sequence, in the first
case, and any other protein in the ‘soup’ in the
second).

We now look at both of these topological
approaches, then at approaches to capturing more
sophisticated topologic structures.

String rewriting

String rewriting has been successfully applied in
modelling plant development. Introduced in 1968
by Lindenmayer [16], the L system formalism is
characterized by the parallel application of rewrit-
ing rules on strings representing a linear or a
branching structure. The original L system formal-
ism has been extended in many ways and a com-
prehensive review can be found in Prusinkiewicz
[20,21]. A good example of its use that takes into
account cellular interaction is the modelling of
growth and heterocyst differentiation in Anabaena.
This cyanobacterium grows in filaments of 100
cells or more. When starved for nitrogen, special-
ized cells called heterocysts differentiate from the
photosynthetic vegetative cells at regular intervals
along each filament. Heterocysts are anaerobic fac-
tories for nitrogen fixation; in them, the nitrogenase

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

Rewriting systems and the modelling of biological systems 97

enzyme complex is synthesized and the compo-
nents of the oxygen-evolving photosystem II are
turned off. Plant signals exert both positive and
negative regulatory control on heterocyst differen-
tiation. Wilcox et al. [23] have proposed an acti-
vator–inhibitor model of heterocyst differentiation
where the (high) concentration of the activator trig-
gers the heterocyst differentiation. The production
of the activator is an autocatalytic reaction and
also catalyses the production of the inhibitor. The
inhibitor represses the activity of the activator when
its concentration is high enough. The diffusion of
the inhibitor to the neighbouring cells prevents
neighbours becoming heterocysts and explains why
heterocysts appear in a regularly spaced pattern in
the filament. A computer simulation of this process
[13] based on the use of parametric L systems [22]
validates the model. This example is remarkable for
at least two reasons: it shows the ability of this kind
of discrete model to accommodate features usually
handled in continuous formalisms (e.g. the mod-
elling of diffusion) and also because it tackles a
fundamental biological mechanism: a morphogen-
esis driven by a reaction–diffusion process taking
place in a growing medium.

Multiset rewriting

In a chemical solution, molecules move around and
can interact with any other molecule. The state of
the chemical solution can be modelled as a multiset,
a set where an element is allowed to occur multiple
times. We write a ⊕ b ⊕ c ⊕ b for a multiset
containing elements (e.g. molecules) a , b and c,
where b occurs twice. The operation ⊕ therefore
builds a ‘soup’ of elements by ‘adding’ them
together. Technically, we say that this addition
operation is associative and commutative, which
means that the elements can be written in any
order: the soup a ⊕ b ⊕ c ⊕ b is the same as, for
example, b ⊕ b ⊕ c ⊕ a .

Once we have represented the state of a chemical
solution as a multiset, it is then easy to formulate
the chemical reaction rules as multiset rewriting
rules, e.g:

r1: a ⊕ a → a ⊕ a ⊕ b r2: a ⊕ b → a ⊕ b ⊕ b

r3: b ⊕ b → b ⊕ b ⊕ a

represent second-order catalytic reactions between
two molecule types a and b. For example, if

reaction r1 occurs in a state a ⊕ c ⊕ a ⊕ b, then the
result is a state a ⊕ c ⊕ a ⊕ b ⊕ b, one additional
b is produced. (Note that it does not matter that
the two a’s were not side-by-side in the first state,
because a multiset can be written in any order; this
is just the same thing as applying the arithmetic
cancellation rule to a term 1/3 · 2/7 · 3/5.)

This abstract approach to chemistry is now
recognized as an emerging field called artificial
chemistries (see [5]) and embraces a wide variety
of research, ranging from the study of the auto-
mated generation of combustion reactions [2] to
the study of complex dynamic systems and self-
organization in biological evolution [10].

Fisher et al. [9] proposed the use of rewriting
systems to model cascades of protein interactions
in signalling pathways. In this context, multisets
provide a convenient way of making the participat-
ing proteins available for the individual reactions
in the cascade. Later work by Eker et al [6,7] has
produced some very sophisticated models of these
pathways; however, the earlier work draws atten-
tion to the subtle role that so-called ‘scaffold pro-
teins’ play in facilitating cascades and preventing
cross-talk between pathways. These scaffold pro-
teins can be seen as introducing interesting topo-
logical structure among the proteins that they bind;
a kind of structure that is not, in itself, at odds
with the multiset approach, but which suggests that
more structured approaches to intracellular protein
interactions, and other biological dynamic systems,
would be a fruitful avenue of research.

P systems

Several variations on multisets have been proposed
to facilitate the representation of more sophisticated
biological structure, e.g. one can ‘nest’ multisets
one within another, so that the elements of the mul-
tiset can be both molecules and multisets (which
may in turn contain both molecules and other mul-
tisets, and so on). This approach can be used to
represent ecologies of cells and proteins, where the
nested multisets represent cells, or even compart-
ments, such as sites, within cells. Such nesting of
multisets is developed in the domain of P systems
[18,19]. This paradigm extends standard multiset
rewriting by introducing the notion of ‘membrane’.
A membrane structure is a nesting of compart-
ments represented, for example, by a Venn diagram
without intersection and with a unique superset:

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

98 J.-L. Giavitto, G. Malcolm and O. Michel

the skin. Objects are placed in the regions defined
by the membranes and evolve following various
transformations: an object can evolve into another
object, can pass through a membrane or dissolve
its containing membrane. In the initial definition of
the P systems, each region defined by a membrane
corresponds to a multiset of atomic objects which
can evolve following some evolutionary rules. The
membrane structure enables the specification of
some localization of the processes and a region can
be equipped with various computational mecha-
nisms: multiset rewriting, string rewriting, splicing
systems, etc. An example of this approach, mod-
elling a spatially distributed biochemical network,
is given in Giavitto and Michel [12].

P-systems represent a particularly well-develo-
ped approach to integrating complex topological
structures into rewriting systems; other approaches,
as well as the issues concerning dynamically
changing topological structures, are discussed in
Giavitto and Michel [12].

Conclusion

The examples above indicate that rewriting systems
and tools such as the languages Maude [17] and
ELAN [8] can be effectively used in modelling
biological systems. The speed of such tools also
makes them particularly effective in simulating and
exploring the models that are built.

By combining and structuring multiset and string
rewriting, we can extend the applicability of these
formalisms. Applications of such extensions at the
genetic level include DNA computing [1] and
splicing systems, a language-theoretic model of
DNA recombination that allows the study of the
generative power of general recombination and of
sets of enzymatic activities [14,15]. However, the
need to represent more structured organizations
motivates further extensions of rewriting (see e.g.
[3,11].

To conclude, we want to emphasize the versatile
nature of rewriting formalisms. Models can be
qualitative or quantitative. They also support an
individual-based simulation style by computing
the global consequences (the derivations) of the
local interactions (the rules) between the system
entities. This versatility should be a big advantage
in biological applications.

References

1. Adleman LM. 1994. Molecular computation of solutions to
combinatorial problems. Science 266(5187): 1021–1024.

2. Bournez O, Côme G-M, Valérie Conraud HK, Ibanescu L.
2003. A rule-based approach for automated generation
of kinetic chemical mechanisms. In 14th International
Conference on Rewriting Techniques and Applications (RTA
’03), vol 2706 of Lecture Notes in Computer Science,
Nieuwenhius R (ed.). Springer: Heidelberg; 30–45.

3. Brown R, Heyworth A. 2000. Using rewriting systems to
compute left kan extensions and induced actions of categories.
J Symbol Comput 29(1): 5–31.

4. Dershowitz N, Jouannaud J-P. 1990. Rewrite systems. In
Handbook of Theoretical Computer Science, vol B, Elsevier
Science: Amsterdam; 244–320.

5. Dittrich P, Ziegler J, Banzhaf W. 2001. Artificial chemis-
tries — a review. Artificial Life 7(3): 225–275.

6. Eker S, Knapp M, Laderoute K, Lincoln P, Talcott C. 2002a.
Pathway logic: executable models of biological networks.
In Fourth International Workshop on Rewriting Logic and
Its Applications (WRLA ’2002), vol 71 of Electronic Notes
in Theoretical Computer Science, Gradducci F, Montanari U
(eds). Elsevier: Amsterdam.

7. Eker S, Knapp M, Laderoute K, et al. 2002b. Pathway logic:
symbolic analysis of biological signaling. In Proceedings
of the Pacific Symposium on Biocomputing, Altman RB,
Danker AK, Hunter L, Lauderdale K, Klein TE (eds). World
Scientific: New Jersey USA; 400–412.

8. ELAN Home Page. 2002. http://www.loria.fr/equipes/
protheo/SOFTWARES/ELAN/.

9. Fisher M, Malcolm G, Paton R. 2000. Spatiological processes
in intracellular signalling. BioSystems 55: 83–92.

10. Fontana W, Buss L. 1994. The arrival of the fittest: toward a
theory of biological organization. Bull Math Biol 56: 1–64.

11. Giavitto J-L, Michel O. 2002. The topological structures
of membrane computing. Fundamenta Informaticae 49:
107–129.

12. Giavitto J-L, Michel O. 2003. Modeling the topological
organization of cellular processes. BioSystems 70(2):
149–163.

13. Hammel M, Prusinkiewicz P. 1996. Visualization of develop-
mental processes by extrusion in space-time. In Proceedings
of Graphics Interface ’96, Davis WA, Bartels R (eds). Cana-
dian Human — Computer Communications Society: Toronto,
Canada; 246–258.

14. Head T. 1987. Formal language theory and DNA: an analysis
of the generative capacity of specific recombinant behaviors.
Bull Math Biol 49: 737–759.

15. Head T. 1992. Lindenmayer Systems: Impacts on Theoretical
Computer Science, Computer Graphics, and Developmental
Biology, Springer-Verlag: Berlin; 371–383; Also appears in
Nanobiology 1992. 1: 335–342.

16. Lindenmayer A. 1968. Mathematical models for cellular
interaction in development, Parts I and II. J Theoret Biol 18:
280–315.

17. Maude Home Page. 2002. http://maude.csl.sri.com/.
18. Paun G. 1998. Computing with membranes. Technical Report

TUCS-TR-208, Turku Centre for Computer Science.
19. Paun G. 2001. From cells to computers: computing with

membranes (P systems). Biosystem 59(3): 139–158.

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

Rewriting systems and the modelling of biological systems 99

20. Prusinkiewicz P. 1998. Modeling of spatial structure and
development of plants: a review. Scientia Horticulturae 74:
113–149.

21. Prusinkiewicz P. 1999. A look at the visual modeling of plants
using L-systems. Agronomie 19: 211–224.

22. Prusinkiewicz P, Hanan J. 1990. Visualization of botanical
structures and processes using parametric L-systems. In

Scientific Visualization and Graphics Simulation, Thalmann D
(ed.). Wiley: Chichester; 183–201.

23. Wilcox M, Mitchison GJ, Smith RJ. 1973. Pattern formation
in the blue-green alga, Anabaena. I. Basic mechanisms. J Cell
Sci 12: 707–723.

Copyright 2004 John Wiley & Sons, Ltd. Comp Funct Genom 2004; 5: 95–99.

Chapter 11

Modelling the Topological
Organization of Cellular Processes

[1] Jean-Louis Giavitto and Olivier Michel. Modeling the topological organization of cellular processes.
BioSystems, (70):149–163, 2003.

159

BioSystems 70 (2003) 149–163

Modeling the topological organization of cellular processes

Jean-Louis Giavitto∗, Olivier Michel
LaMI u.m.r. 8042 du CNRS, Université d’Évry Val d’Essone—GENOPOLE, Tour Évry-2,

523 Place des Terasses de l’Agora, 91000 Évry, France

Abstract

The cell as a dynamical system presents the characteristics of having a dynamical structure. That is, the exact phase space of
the system cannot be fixed before the evolution and integrative cell models must state the evolution of the structure jointly with
the evolution of the cell state. This kind of dynamical systems is very challenging to model and simulate. New programming
concepts must be developed to ease their modeling and simulation. In this context, the goal of theMGS project is to develop
an experimental programming language dedicated to the simulation of this kind of systems.MGS proposes a unified view on
several computational mechanisms (CHAM, Lindenmayer systems, Paun systems, cellular automata) enabling the specification
of spatially localized computations on heterogeneous entities. The evolution of a dynamical structure is handled through the
concept of transformation which relies on the topological organization of the system components. An example based on the
modeling of spatially distributed biochemical networks is used to illustrate how these notions can be used to model the spatial
and temporal organization of intracellular processes.
© 2003 Elsevier Science Ireland Ltd. All rights reserved.

Keywords: Computational models for cell simulation; Dynamical systems with a dynamical structure; Spatial organization; Topological
collection; Rewriting

1. Introduction

The computer simulation of a biological process im-
plies the definition of a model sufficiently rigorous to
lead to a program. Such models are thenformal but
depart from the more traditional mathematical models,
e.g. by the high number of heterogeneous components
implied in the system description, the complexity and
the size of the behaviors specification, the impossibil-
ity to “compress” the evolution of the system in an
analytic or closed formula, etc. Refer toHartwell et al.
(1999), Wolfram (2002), and Chaitin (2002)for an
elaboration on these differences. For example, in the
case of the human heart, some computer simulations

∗ Corresponding author.
E-mail addresses: giavitto@lami.univ-evry.fr (J.-L. Giavitto),

michel@lami.univ-evry.fr, mgs@lami.univ-evry.fr (O. Michel).

imply 105 cells of about 10 different kinds, each mod-
eled by nonlinear equations capturing the behavior
of 50 different ion channels and organized in a re-
alistic geometry(Paniflov and Holden, 1997). Nev-
ertheless, a computer simulation makes possible the
systematic exploration of the system’s behavior and
sometimes to make predictions. This kind of approach
is part of the more general idea ofsimulated experi-
ments (also called in silico experiments by biologists
andnumerical experiments by physicists). These ex-
periments are required when in-vivo or in-vitro ex-
periments are out of reach for economical, practical
or ethical reasons. Note that the simulation of a com-
putational model (i.e. its run on a computer) is only
one of its possible uses: because it is formal, it is
possible to reason about it and for example to infer
some properties that can be checked against the nat-
ural phenomena (see, e.g.Chandy and Misra (1988)

0303-2647/$ – see front matter © 2003 Elsevier Science Ireland Ltd. All rights reserved.
doi:10.1016/S0303-2647(03)00037-6

150 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

for examples of the properties that can be proved on a
program).

Besides their simulation, computational models can
have a pedagogical, normative, and constructive role
in biology. For instance, these models can be used to
share knowledge about a given system, as a reference
between scientists or to illustrate a set of complex rela-
tionships involved in a biological process. Another ex-
ample is their use as a blueprint in the design of a new
biological entity: Biology has reached the point where
in addition to the study of already existing natural en-
tities, it has to design new biological artifacts (drug
design, artificial metabolic pathways, genetically mod-
ified organisms,. . .). At last but not least, one may
note that a number of notions developed in computer
science to investigate the notion of computations have
been imported in biology: for instance the notion of
programs, memory, information, control (cf.Stengers,
1988; Keller, 1995).

These examples acknowledge the emergence of a
new approach in biology, known asComputational
Biology, where biological entities are considered as
information processing systems with the final goal of a
better understanding of nature using computer science
notions.1 We make a distinction between this goal and
the goals ofbioinformatics aimed to the development
of software tools to support and help the biologists in
the analysis and comprehension of biological systems.
A good example of the latter is the development of data
bases supporting the genome project(Kanehisa, 2000).

The models developed in the framework of Compu-
tational Biology are largely centered around the notion
of dynamical systems (DS) andTyson et al. (2000)
pinpoints the theme:

gene expression→ system dynamics

→ cell physiology

It is becoming more and more important as we try to
integrate the exponential growth in knowledge of all
the cells components in a true understanding of the
cell. If this formalization from biology to dynamical

1 The transfer of concepts and tools between biology and com-
puter science is not a one-way process(Paton, 1994). Often, a
computing model inspired initially by a biological phenomena,
leads to a formalism used later in simulation of some (other) bi-
ological processes.

system and back to biology is new in molecular biol-
ogy, it has long been advocated in the domain of the
development(Maynard-Smith, 1999; Kaufman, 1995).

In this paper, we advocate that a special class of
DS plays a crucial role in the computational modeling
of biological processes: thedynamical systems with a
dynamical structure or (DS)2 in short. The specifica-
tion of such kind of systems can be very difficult to
achieve and new programming concepts must be de-
veloped to ease their modeling and simulation. These
observations have motivated the development of the
MGS project.

1.1. Outline

The rest of this paper is organized as follows. In
the next section, we present the notion of(DS)2. In
Section 3we sketch the use of term rewriting as a
possible paradigm for the computational modeling of
(DS)2 through an example borrowed from artificial
chemistry. Term rewriting suffers from severe short-
comings for the specification of biological processes.
To overcome these drawbacks, we extend the term
rewriting framework to handle more general structures
using the notions oftopological collection andtrans-
formation presented inSection 4. The exposition is
restricted to the notions necessary to understand the
examples inSection 5. We give four examples of bio-
logical processes modeled using theMGS experimen-
tal programming language: the Eden’s model of tumor
growth, the action of restriction enzymes, a spatially
distributed signaling network and a reaction-diffusion
process in an expanding media modeling the growth
of a bacteria. We conclude by a summary and a com-
parison with related approaches.

2. Dynamical systems with a dynamical structure

A dynamical system corresponds to a phenomenon
described by a state that evolves in time. The system
is characterized by “observables”, called thevariables
of the system, which are linked by some relations. The
value of the variables evolves in time. A variable can
take a scalar value (like a real number) or be of a more
complex type like the variation of a simpler value on
a spatial domain (for instance, the local concentration
of a molecule in each point of a lumen). The set of the

J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 151

values of the variables that describe the system consti-
tutes itsstate. The sequence of state changes is called
the trajectory of the system. Intuitively, a dynamical
system is a formal way to describe how a point (the
state of the system) moves in thephase space (the
space of all possible states of the system). It gives a
rule, theevolution function, telling us where the point
should go next from its current location. There exist
several formalisms used to describe a DS: ordinary
differential equations (ODE), partial differential equa-
tions (PDE), iterated equations (finite set of coupled
difference equations), cellular automata, etc., follow-
ing the discrete or continuous nature of the time, the
space and the value used in the modeling.

Many biological systems are structured, which
means that they can be decomposed into parts corre-
sponding to some variablesoi ∈ Oi (for convenience
we useoi to denote a part of the whole system and its
corresponding state). Then,sometimes, the complete
states of the system is simply the product of these
variables:s = (o1, . . . , on) ∈ O = O1 × · · · × On.
The evolution of the state of the whole system is
then viewed as the result of the changes of the state
of its parts. In this case, the evolution functionhi of
an observableoi depends only on a limited subset of
the state variables of the whole system:oi(t + δt) =
hi(oi1, . . . , oini), whereδt denotes an infinitesimal or
a discrete increase in time following the continuous or
discrete nature of the considered evolution andhi de-
notes the evolution function of theith component. In
this case, we say that the DS exhibits astatic structure:

(1) the state of the system is statically described as a
fixed set of variables (this set does not change in
time);

(2) the relationships between variables, specified as
the functionshi betweenoi and the argumentsoij ,
are also fixed and do not change in time.

Moreover, we say that theoij are thelogical neigh-
bors of oi (because very often, two parts of a system
interact when they are physical neighbors). This situ-
ation is simple and arises often in elementary physics.
For example, a falling stone is statically described by
a position and a velocity and this set of variables does
not change (even if the value of the position and the
value of the velocity change in the course of time).

As pointed out byGiavitto et al. (2002), many bio-
logical systems can be viewed as a dynamical system

in which not only the values of state variables, but also
theset of state variablesand/or the evolution function,
change over time. We call these systemsdynamical
systems with a dynamic structure following Giavitto
and Michel (2001b), or (DS)2 in short. An obvious
example is given by the development of an embryo.
Initially, the state of the system is described solely by
the chemical stateo0 of the egg (no matter how com-
plex can be this chemical state). After several divi-
sions, the state of the embryo is given not only by the
chemical stateoi of the cells, but also by their spatial
arrangement.2 The number of cells, their spatial orga-
nization and their interactions evolve constantly in the
course of the development and is not handled by one
fixed structureO. On the contrary, the phase space
O(t) used to characterize the structure of the state of
the system at timet must be computed jointly with the
running state of the system. In this kind of situation,
the dynamic of the whole system is often specified as
several local competing transformations occurring in
an organized set of simpler entities. The organization
of this set is subject to possible drastic changes in the
course of time and is a plain part of the state of the DS.

3. Multiset rewriting and the modeling
of biological DS

In view of this last description of a(DS)2, it is
tempting to define the evolution of the system as a
set of rules specifying the interactions of a partoi
with another partoj of the system. This schema is
reminiscent of the description of a chemical reaction.

Consider, for example, a simple chemical system of
two molecule typesA andB. The reactions between
these two molecule types are given by three rules:3

A + A → A + A + B, A + B → A + B + B,

B + B → B + B + A

2 The neighborhood of each cell is of paramount importance to
evolution of the system because of the interplay between the shape
of the system and the state of the cells. The shape of the system
has an impact on the diffusion of the chemical signals and hence
on the cells state. Reciprocally, the state of each cell determines
the evolution of the shape of the whole system.

3 These reaction rules correspond to deterministic second-order
catalytic reactions: a collision of two molecules will catalyze
the formation of a specific third molecule and the two colliding
molecules are regarded as catalysts.

152 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

The “+” sign that appears in the left- and right-hand
sides of the rules means that the linked molecules
are present together in the chemical reactor. Thus, the
left-hand side (LHS)A + B of second rule can also
be equivalently writtenB + A. From a mathemati-
cal point of view, it is very convenient to consider
+ as a formal commutative–associative operator used
to constructmultisets: unlike a set, an element can oc-
cur several times in a multiset and a multiset with the
six elementsA,C,A,D,B,C is simply a formal sum
o = A + C + A + D + B + C (in this example, the
elementsA andC occur twice, and elementsB andD
occur only one time in the multiseto). The associativ-
ity and the commutativity properties of the+ operator
are simply the expression that the elements of this sum
can be rearranged in any order. To simulate the chem-
ical reaction, we simply interpret each rule as a trans-
formation of the multiset. For instance, the first rule
specifies that two moleculesA taken from the multiset
have to be replaced by the three molecules:A, A and
B. If this reaction occurs ino at a given time stept0,
theno is transformed inA+C+A+D+B+C+B

(one additionalB is produced at stept1). Because sev-
eral reactions involving different elements occurring
in the same time step are possible, the strategy is to
apply in parallel as many transformations as possible
to the multiset. Such transformations are iterated to
model the evolution of the state of the reactor.

In this approach, the chemical reaction rules are in-
terpreted as rules for rewriting the formal sum. Ab-
stractly, we can say that a chemical reaction can be
modeled as amultiset rewriting system. This com-
putational model focuses on the chemical system at
the level of single molecules and is sometimes called
individual-based modeling: every molecule is explic-
itly stored and every single collision is explicitly per-
formed. At this level of details, the chemical system
is a (DS)2 because the components of the systems
are molecules and their number varies in time (there
is one variable for each molecule, to record the pres-
ence of this molecule in the reactor). Obviously, an-
other formalization is possible: at the coarser level of
the chemical concentrations, the chemical system can
be described as a DS with a static structure (with one
variable for the concentration of each molecule type).
This last approach is certainly computationally less
expensive, but does not give access to the same level
of details as the former.

This modeling paradigm, based on term rewriting,
can be extended from this chemical example to other
situations and its biological relevance is advocated
in several recent papers(Fisher et al., 2000; Manca,
2001; Eker et al., 2002a,b). To paraphrase4 Fisher
et al. (2000): “A biological system is represented as
a term of the formo1 + o2 + · · · + on where each
term oi represents either an entity of the system or
a message addressed to other entities, i.e. signal,
command, information, action, etc. The simulation of
the physical evolution of the biosystem is achieved
through term rewriting, where the LHS of a rule typ-
ically matches an entity and a message addressed to
it, and where the right-hand side (RHS) specifies the
entity’s updated state, and possibly other messages
addressed to other entities. The operator+ that joins
entities and messages is associative and commutative,
achieving an ‘associative commutative soup’, where
entities swim around looking for messages addressed
to them.”

A severe shortcoming of this view is thetotal lack
of (spatial) organization. For example, the cell can-
not be thought as a chemical reactor where the chem-
icals are homogeneously diluted. On the contrary, the
cell exhibit a highly organized spatial structure, with
vesicles, cargos, membranes, nucleus, hyperstructures
(Amar et al., 2003), etc. And the notion of organi-
zation (both spatial organization or more generally
the functional organization) is also fundamental at the
lower level of pathways and at the higher level of tis-
sues, organs and individuals. The need to represent
more structured organizations than multiset of entities
and messages is stressed and motivates several exten-
sions of rewriting; see for one example amongst oth-
ers(Brown and Heyworth, 2000). However, a general
drawback with these approaches is that they work with
a fixed organization of entities, and it is not obvious
at all how to extend this to systems where the organi-
zation and number of entities and their relationships
are constantly changing.

This is precisely one of the main motivation of the
MGS research project. One of our goal is to validate
the contribution of atopological approach to the spec-
ification and simulation of the dynamical organization
of biosystems. By superseding the rewriting of terms

4 We have adapted the terminology.

J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 153

by the more general notion of transformation of topo-
logical collections, we hope to go beyond the limita-
tions of the preceding formalisms.

4. Topological collections and their
transformations

TheMGS project is aimed at the representation and
manipulation of transformations of entities structured
by abstract topologies (Giavitto and Michel, 2002).
A set of entities organized by an abstract topology
is called atopological collection. Topological means
here that each collection type defines a neighbor-
hood relation inducing a notion ofsub-collection. A
sub-collectionB of a collectionA is a subset of con-
nected elements ofA and inheriting its organization
from A. The global transformation of a topological
collection C consists in the parallel application of
a set oflocal transformations, seeFigs. 1 and 2. A
local transformation is specified by a rewriting rule
r that specifies the replacement of a sub-collection
by another one. The application of a rewriting rule
β ⇒ f(β, . . .) to a collectionA:

(1) selects a sub-collectionB of A whose elements
match thepattern β,

(2) computes a new collectionC as a functionf of
B and its neighbors,

(3) and specifies the insertion ofC in place ofB into
A.

Fig. 1. A local transformation of a topological collection. CollectionA is of some kind (set, sequence, array, cyclic grid, tree, term, etc.).
A rule T specifies that a sub-collectionB of A has to be substituted by a collectionC computed fromB. The RHS of the rule is computed
from the sub-collection matched by the LHSx and its possible neighborsx′ in the collectionA.

Fig. 2. Transformation and iteration of a transformation. A global transformationT is a set of local transformations applied in parallel and
synchronously to make one evolution step. The local transformations do not interact together. A transformation is then iterated to build
the successive states of the DS.

This framework embeds the rewriting of multisets
in the following way. In a multiset, an element is
susceptible to interact with any other element, so the
abstract topology of a multiset is the topology of a
complete connected graph: the neighbors of an ele-
ment are all the other elements in the multiset. Then,
a patternβ can select an arbitrary sub-multiset and a
multiset rewriting rule is simply a local transformation
in this topology.

TheMGS experimental programming language im-
plements the idea of topological collections and their
transformations into the framework of a simple dy-
namically typed functional language. Collections are
just new kinds of values and transformations are func-
tions acting on collections and defined by a specific
syntax using rules. Functions and transformations are
first-class values and can be passed as arguments or
returned as the result of an application.

4.1. Collection types

There are several predefined collection types in
MGS, and also several means to construct new col-
lection types. The collection types can range inMGS
from totally unstructured with sets and multisets to
more structured with records, sequences and GBFs
(cf. Giavitto and Michel, 2001a, 2002). Other topolo-
gies are currently under development and include
Delaunay graphs and abstract simplicial complexes
for the representation of arbitraryd-dimensional

154 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

neighborhoods. This paper focuses on two families of
collection types:monoidal collection andGBF.

For any collection typeT, the corresponding empty
collection is written ():T. The name of a collection
type is also a predicate used to test if a value has
this type:T(v) returns true only ifv has typeT. Each
collection type can be subtyped. The type declara-
tion collection U = T introduces a new collec-
tion typeU which is a subtype ofT. The new typeU
shares the same topology asT. However, a value of
type U can be distinguished from a value of typeT
using the predicateU (i.e. the subtyping relation im-
plies thatU(u) ⇒ T(u), for any valueu, but not the
reverse). Elements in a collection can be of any type,
including collections, thus achievingcomplex objects
in the sense ofBuneman et al. (1995).

4.2. Monoidal collections

Set, multiset (or bag) and sequences are members
of the monoidal collection family. As a matter of fact,
a sequence (respectively a multiset) (respectively a
set) of values taken inV can be seen as an element
of the free monoidV ∗ (respectively the commutative
monoid) (respectively the idempotent and commuta-
tive monoid). The join operation inV ∗ is written by a
comma “,” and induces the neighborhood of each el-
ement: letE be a monoidal collection, then elements
x andy in E are neighbors ifE = u, x, y, v for some
u andv. This definition induces the following topolo-
gies. For sets (typeset), each element in the set is
neighbor of any other element (because the commu-
tativity, the term describing a set can be reordered ar-
bitrarily). For multiset (typebag), each element is
also neighbor of any other (however, the elements are
not required to be distinct as in a set). For sequence
(type seq), the topology is the expected one: an el-
ement which is not at the end, has one neighbor on
the right.

The comma operator is overloaded inMGS and can
be used to build any monoidal collection (the type
of the arguments disambiguates the collection built).
So, the expression1,1+1,2+1, ():set builds the
set with the three elements 1, 2 and 3, while the ex-
pression1,1+1,2+1, ():seq makes a sequences
with the same three elements. The comma operator is
overloaded such that ifx andy are not monoidal col-
lections, thenx, y builds a sequence of two elements.

So, the expression1,1+1,2+1 evaluates to the se-
quences too.

4.3. GBFs

The acronym GBF stands for “group-based data
fields”. A GBF is an extension of the notion of ar-
ray, where the elements are indexed by the elements
of a group, called theshape of the GBF (seeGiavitto
and Michel, 2001a). A GBF value associates values to
some indices of a shape. This kind of collection can be
used to describe uniform and regular topologies like:
n-ary trees,n-dimensional grids, circular and screwed
grids, archimedian tiling of the plane, etc. For exam-
ple, the following type declaration:

gbfGrid2 =< north,east >

introduces a new two-dimensional shape calledGrid2,
corresponding to the Von Neuman neighborhood in a
classical 2D mesh (a cell above, below, left or right—
not diagonal). The two namesnorth andeast re-
fer to the directions that can be followed to reach the
neighbors of an element. These directions are thegen-
erators of the underlying group structure. The list of
the generators can be completed by giving equations
that constraint the displacement in the shape. For in-
stance:

gbfHexagon =< east,north,northeast;
east+ north = northeast >

defines an hexagonal lattice that tiles the plane, see
Fig. 3. Each cell has six neighbors (following the three
generators and their inverses). The equationeast +
north = northeast specifies that a move follow-
ing northeast is the same as a move toeast fol-
lowed by a move tonorth.

Formally, a GBF value is a partial function from the
shape (a group specified by a finite presentation) to a
set of values. Even if the underlying shape is infinite,
the domain of a GBF value is finite. The topology
of the GBF is the topology of the underlying Cayley
graph(Magnus et al., 1976).

4.4. Sub-collection patterns

A patternβ that appears in the LHS of a rule is
an expression used to select a sub-collection to be

J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 155

Fig. 3. Eden’s model on a grid and on an hexagonal mesh (initial state, and states after the 3 and the 7 time steps). Exactly the same
MGS transformation is used for both cases. These shapes correspond to a Cayley graph ofGrid2 and Hexagon with the following
conventions: a vertex is represented as a face and two neighbors in the Cayley graph share an edge in this representation. An empty cell
has an undefined value. Only a part of the infinite domain is figured.

replaced. Several operators are available; we will re-
view here only few constructs.

• literal: a literal value matches an element with the
same value. For example, 123 matches an element
in a GBF with value 123.

• variable: a pattern variablea matches exactly one
element with a well defined value. The variablea
can then occur elsewhere in the rest of the rule and
denotes the value of the matched element. The iden-
tifier of a pattern variable can be used only once in
a pattern.

• record pattern: the brackets{. . . } are used to match
one element whose value is a record (MGS record
are similar to Pascal’s record orC’s structure). The
content of the brackets can be used to match records
with or without a specific field (eventually con-
strained to a given field type or field value). For in-
stance,{a, b : string, c = 3,∼ d} is a pattern that
matches a record with fieldsa, b andc but no field
d. In addition, the type of fieldb must bestring
and the value of the fieldc must be the integer 3.

• empty element: the symbol<undef> matches an
element with an undefined value, that is, an element
whose position does not belong to the support of
the GBF. The use of this basic filter is subject to

some restriction: it can occur only as the neighbor
of a defined element.

• neighbor: the patternb, p matches a sub-collection
composed of an element matched byb neighbor of
a sub-collection matched byp.

• guard: p/exp matches a sub-collection matched by
p if boolean expressionexp evaluates to true. For
instance,x, y/y > xmatches two neighbor elements
x andy such thaty is greater thanx.

• repetition: p+ matches a sub-collection made of a
non-empty repetition of sub-collections matched by
p. If p is a pattern variable, then its value refers
the sequence of matched elements and not to one
of the individual values. For example,3+ matches
a non-empty sub-collection made only of3’s.

5. Examples

The purpose of this section is to show the capacity
of MGS to specify in a concise way several well-known
examples corresponding to several biological situa-
tions and various computational models.Section 5.1
relies on cellular automata to model a growth process.
The two next examples (Sections 5.2 and 5.3) use the

156 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

P systems approach to model biochemical reactions.
Section 5.3introduces nested multisets to handle the
spatial organization of the compartments within the
cell. The last example inSection 5.4was initially pro-
posed to model the growth of a bacteria,Anabaena
catenula, based on a reaction–diffusion taking place
in an expanding media and using the formalism of L
systems. We hope that these examples taken in sev-
eral fields, will convince the reader of the effectivity
of theMGS approach for biological modeling (see also
Section 6.2).

5.1. The Eden model

We start with a simple model of growth sometimes
called the Eden model (specifically, a type B Eden
model;Eden, 1958). The model has been used since
the 1960s as a model for such things as tumor growth
and growth of cities. In this model, a 2D space is par-
titioned in empty or occupied cells. We start with only
one occupied cell. At each step, occupied cells with
an empty neighbor are selected, and the corresponding
empty cell is made occupied.

The Eden’s aggregation process is simply described
as the following transformationEden with only one
rule R:

transEden = {R = x, < undef >⇒ x,x; }
We assume that some arbitrary value is used to repre-
sent an occupied cell, other cells are simply left unde-
fined (i.e. without associated value). Then the ruleR
can be read: an occupied elementx and an undefined
neighbor are transformed into two occupied elements.
The transformation Eden defines a function that can
then be applied to compute the evolution of some ini-
tial state. One of the advantages of theMGS approach,
is that this transformation can apply indifferently on
grid or hexagonal lattices, orany other collection type
(seeFig. 3).

5.2. Restriction enzymes

This example shows the ability to nest different
topologies to achieve the modeling of a biological
structure. We want to represent the action of a set of
restriction enzymes on the DNA. The DNA structure
is simplified as a sequence of lettersA,C,T andG.
The DNA strings are collected in a multiset. Thus we

have to manipulate a multiset of sequences. The fol-
lowing declarations:

collection DNA = seq; ;
collection TUBE = bag; ;

introduce a subtype calledDNA of seq and a subtype
of multisets calledTUBE.

A restriction enzyme is represented as a rule that
splits the DNA strings; for instance a rule like:

EcoRI = X+, (‘‘G",‘‘A",‘‘A",‘‘T",‘‘T",‘‘C"),

Y+ ⇒ (X,‘‘G") :: (‘‘A",‘‘A",

‘‘T",‘‘T",‘‘C",Y) :: () : TUBE;

stands for theEcoRI restriction enzyme with recog-
nition sequenceG∧AATTC (the point of cleavage is
marked with∧). TheX+ pattern filters the part of the
DNA string before the recognition sequence. Identi-
cally, Y names the part of the string after the recogni-
tion sequence. The RHS of the rule constructs aTUBE
containing the two resultingDNA subsequences (the ::
operator indicates the “consing” of an element at the
head of a collection).

We need an additional ruleVoid for specifying
that aDNA string without a recognition sequence must
be inserted wrapped in aTUBE. The two rules are
collected into one transformation:

transRestriction = {
EcoRI = . . . ;
Void = X+ ⇒ X :: () : TUBE;

}

The rule specification order in a transformation is
taken into account, and so, the ruleVoid is used only
if rule EcoRI cannot be applied. In this way, the re-
sult of applying the transformationRestriction on a
DNA string is systematically a sequence with only one
element which is aTUBE.

The transformationRestriction can then be applied
to theDNA strings floating in aTUBE using the simple
transformation:

transReact = {dna ⇒ hd(Restriction(dna))}

The operatorhd gives the head of the result of the
transformationRestriction, i.e. aTUBE containing one
or two DNA strings. These elements are then merged

J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 157

with the content of the enclosingTUBE. The transfor-
mation can be iterated until a fixpoint is reached:

React[fixpoint]((
(‘‘C",‘‘C",‘‘C",‘‘G",‘‘A",
‘‘A",‘‘T",‘‘T",‘‘C",‘‘A",
‘‘A",() : DNA),

(‘‘T",‘‘T",‘‘G",‘‘A",‘‘A",
‘‘T",‘‘T",‘‘C",‘‘G",‘‘G",
‘‘G",() : DNA),
() : TUBE));;

returns a tube with four DNA strings:

(‘‘T",‘‘T",‘‘G" , () : DNA),
(‘‘C",‘‘C",‘‘C",‘‘G" , () : DNA),
(‘‘A",‘‘A",‘‘T",‘‘T",‘‘C" ,

‘‘A",‘‘A" , () : DNA),
(‘‘A",‘‘A",‘‘T",‘‘T",‘‘C" ,

‘‘G",‘‘G",‘‘G" , () : DNA),
() : TUBE

5.3. A localized signaling network

We want to sketch the specification inMGS of a spa-
tially distributed biochemical network model proposed
by Bugrim (2000). The example focuses on a small

Fig. 4. cAMP and calcium signaling pathways. This schema is reprinted fromBugrim (2000)and the description of the involved pathways
is largely inspired by this reference. The different components of the two pathways are localized at various places within the cell. The
first steps of the cAMP pathway occur at the plasma membrane, starting with the activation of adrenergic receptors. Then, the cAMP
molecules bind to a regulatory sub-unit of the protein kinase A, with the effect of dissociating a catalytic sub-unit C. The localization of
PKA depends on a family of anchoring proteins AKAPs that target this kinase to different compartments. In this example, two localizations
are considered: the plasma membrane and an internal compartment (e.g. nucleus or endoplasmic reticulum). The calcium pathway starts
by the activation of a channel in the plasma membrane. The fraction of PhK associated to the internal compartment is the target of both
pathways. A possible inhibitor I of PKA is also considered.

signaling network that consists of cAMP and calcium
signaling. SeeFig. 4 for a more complete description.

The corresponding topological structure mimics the
spatial organization of the cell using nested multisets,
seeFig. 5. TheMGS declarations:

collectionVolume = bag;
collectionMembrane = bag;
collectionEnvironment = Volume;
collectionPlasma = Membrane;
collectionCytosol = Volume;
collectionEndoRetic = Membrane;

are used to introduce some new kinds of multi-
sets (thebag keyword). These kinds are used here
mainly to describe the hierarchy of localization and
compartments and are used to discriminate between
multisets.

The main part of the correspondingMGS program
consists in defining the ontology of this application do-
main: there exist several molecules, each has a name;
some exists in two states: active or inactive; some are
characterized as receptors; etc. Such ontology is de-
scribed inMGS using subtyping. These subtypes are
then used in pattern-matching to select entities with
or without some properties. For example, a molecule

158 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

Fig. 5. The spatial organization of the pathway specified as a nest of multisets. The reaction, diffusion and transport processes described
in Fig. 4 are modeled as multiset transformations taking place in a nest of multisets. This is reminiscent of the P system paradigm(Paun
et al., 2001). This figure is automatically generated by theMGS simulation program. Each box corresponds to a multiset: the external one
represents the universe and contains three elements: the agonist molecule pictured as a thin cone, the calcium (the thick cone) and the plasma
membrane which is represented as a multiset and figured by a translucid box. The various molecules anchored in the plasma membrane
are elements of the corresponding multiset and are figured as various solid volumes. The ellipsoidal container represents the cytosol and
the solid sphere in the middle of it, the nucleus. Such figure can be generated at each simulation step to visualize the trajectory of the DS.

is described as a record having or not some fields.
Record type may specify the presence or the absence
of a field, or the value of a specific field (like in record
pattern). For instance:

recordMolecule = {name};
recordActivity = {activation};
recordActivated = {activation = true};
record Inactivated = {activation = false};
recordATP = Molecule+ {name = ‘‘atp" };
define five record types. The record type declaration
is introduced by the keywordrecord. Molecule is
the type of any record having at least a field named
name. Activated is the type of a record having at least
a field namedactivation and with valuetrue.
This type is a subtype ofActivity which only requires
the presence of the fieldactivation. The type ATP
corresponds to a molecule named‘‘atp".

Three kinds of transformations are used to define the
processes of the Bugrim’s model. The first class corre-
sponds to some ancillary transformations. For example

transActivateReceptor

= {r : Receptor → r+ {activation = true}}
is a rule that updates totrue the fieldactivation
of an entityr of typeReceptor. This kind of transfor-

mations is triggered by a rule of the sole transforma-
tion of the second class. This transformation summa-
rizes all the rules corresponding to the description of
the biochemistry (there are about 10 reactions in this
pathway):

transBiochemistry = {
R1 = a : ActiveAgonist, p : Plasma

⇒ a + {activation = false},
ActivateReceptor(p);

. . .

}

For example, ruleR1 specifies that an active agonist
and a plasma membrane interact to inactivate the ag-
onist and to transform the plasma with transforma-
tion ActivateReceptor (this transformation turns on all
the activation fields of the receptors anchored in the
plasma membrane).

There is also only one transformation in the last
class of transformations. It is used to thread the bio-
chemistry rules amongst the nested multisets:

funRun(x) = Thread(Biochemistry (x));
transThread = {

p : Membrane ⇒ Run(p);
c : Volume ⇒ Run(c);

}

J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 159

The transformationThread applies the functionRun
to each entity of typeMembrane or Volume found in
the collection argument. The functionRun consists
in running the biochemistry transformation and then
iterating the threading.

The completeMGS program is approximatively 150
lines long, including the building of the initial system
state. It describes 40 states of molecules and uses 5
auxiliary transformations to define 10 chemical inter-
actions. Several transformations are also used to pro-
duce the description of the DS state (the description is
generated in a 3D scene description language which is
then visualized by an ad-hoc front-end). The complete
code can be found from theMGS web page.

5.4. A model of growth for Anabaena catenula

The cyanobacteriumAnabaena grows in filaments
of 100 cells or more. When starved for nitrogen,

Fig. 6. The MGS program corresponding to the heterocyst differentiation inAnabaena. SeeSection 5.4for further explanations.

specialized cells called heterocysts differentiate from
the photosynthetic vegetative cells at regular intervals
along each filament. Heterocysts are anaerobic fac-
tories for nitrogen fixation; in them, the nitrogenase
enzyme complex is synthesized and the components
of the oxygen-evolving photosystem II are turned off.
Plant signals exert both positive and negative regu-
latory control on heterocyst differentiation.Wilcox
et al. (1973) have proposed an activator–inhibitor
model of heterocyst differentiation where the (high)
concentration of the activator triggers the heterocysts
differentiation. The production of the activator is an
autocatalytic reaction and also catalyzes the produc-
tion of the inhibitor. The inhibitor is an antagonist sub-
stance that repress the activity of the activator when its
concentration is high enough. The diffusion of the in-
hibitor to the neighboring cells prevents neighbors to
become also heterocysts and explains why heterocysts
appear in a regular spaced pattern in the filament.

160 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

A computer simulation of this process(Hammel and
Prusinkiewicz, 1996)was originally developed in the
field of L system and shows the use ofparametric
L systems (Prusinkiewicz and Hanan, 1990; Hanan,
1992)for the modeling of a fundamental mechanism: a
morphogenesis driven by a reaction–diffusion process
taking place in a growing media. The corresponding
parametric L systems is easily translated into aMGS
program where each rule corresponds to a production
of the L system given inGiavitto and Michel (2002).
There is nothing new in this translation and the exam-
ple is given mainly to show the ability ofMGS to ex-
press sophisticated L systems. The program is listed in
Fig. 6. The output of the program is plotted inFig. 7.

Fig. 7. Heterocysts differentiation inAnabaena filament. In the
upper graphic, the time goes from upper-left to lower-right corner.
Each slice (lower graphic) corresponds to the state of a grow-
ing filament and represent a sequence of cells. The height of a
cell represent the activator concentration. Cells are pictured in red
when the activator is greater than a given level triggering differen-
tiation. Gray cells are vegetative ones. This type of visualization,
called “space-time extrusion” has been developped inHammel and
Prusinkiewicz (1996).

In the previous code, the state of a cell is implemented
as a record with fielda for the concentration of the ac-
tivator,h is the concentration of the inhibitor,p is the
cell polarity,x is the length of the cells andtype in-
dicates if the cell is an heterocystis (C) or a vegetative
(D) cell. The guard in rulep1 selects right-polarized
cells with a length greater than some levellm. Note
in rule p3 the way the neighboring elements are ac-
cessed using theleft andright displacement op-
erators. Rulep1 andp2 specify a cell division (two
cells are substituted to one). For a more detailed ex-
planation of the biological processes involved, please
refer toHammel and Prusinkiewicz (1996).

6. Summary and related work

6.1. Summary

In this paper we advocate the development of new
programming languages dedicated to the modeling and
simulation of dynamical systems with a dynamic struc-
ture, a class of systems at the core of the computa-
tional biology applications.

One of the main difficulties raised by this kind of
systems, is the specification of the dynamic organiza-
tion and interaction of the system components. To face
this problem, we propose an approach founded on the
notion of rewriting. However, to handle the complex-
ity of the spatial and functional organization of biolog-
ical systems, we extend this approach from the usual
multiset rewriting formalism (widely used in artificial
chemistry, seeDittrich, 2000) to the more general no-
tion of transformation of topological collections.

The proposed approach is exemplified with four
examples of biological processes, at three different
levels: biomolecules (with the example of restriction
enzymes), biological pathways (with a spatially dis-
tributed biochemical network) and tissues (with an
Eden’s model and the growth ofAnabaena catenula).
All examples run on an experimental platform that
can be downloaded from theMGS home page at URL:
http://mgs.lami.univ-evry.fr.

6.2. Comparison with existing formalisms

It is interesting to compare transformations on topo-
logical collections with some existing formalisms:

J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 161

GAMMA and the CHAM, P systems, L systems and
cellular automata.

Considering multisets, topological transformations
of multisets mimic multiset rewriting introduced
by the GAMMA parallel programming language
(Banatre and Metayer, 1986)and later formalized by
the CHAM formalism(Berry and Boudol, 1990). As
mentioned above, a multiset is a too weak structure
to cope with the complex organization of biological
systems.

P systems, introduced byPaun (2001), stress the no-
tion of membrane structure and are a possible answer
to the previous drawback. Some entities are placed in
the regions defined by the membranes and evolve fol-
lowing various transformations: an entity can evolve
into another entity, can pass trough a membrane or
dissolve its enclosing membrane. P systems, in their
basic definition, are able to represent the containment
relationships of biological entities; however, seePaun
et al. (2001)for an extension handling more sophisti-
cated relationships. In contrast with the P system ap-
proach, the transformation inMGS are not implicitly
linked to a multiset but must be threaded from the
top-level structure (see the transformationThread in
Section 5.3). We are working on incorporating such
feature inMGS, leading to a more agent-based pro-
gramming style.

Transformation of sequences corresponds to the
L system formalism. This formalism was introduced
by Lindenmayer (1968)for simulating the develop-
ment of multicellular organisms. Related to abstract
automata and formal languages, this formalism has
been widely used for the modeling of plants. An L
system can be roughly described as a grammar where
the productions are applied in parallel, in a nondeter-
ministic manner. It can be also viewed from a string
rewriting perspective and then topological transfor-
mations on sequences correspond to the case of para-
metric context-sensitive L systems(Giavitto et al.,
2002).

At last, transformations on GBFs have to be com-
pared with the cellular automata formalism. There
are several differences. The notion of GBF extends
the usual square grid of CA to more general Cayley
graphs. The value of a cell can be arbitrarily com-
plex (even another GBF) and is not restricted to take
a value in a finite set. Moreover, the pattern in a rule
may match an arbitrary domain and not only one cell

as it is usually the case for CA. For example, the Eden
model ofSection 5.1cannot be coded by only one rule
in a cellular automata if one wants to avoid that two
distinct occupied cells preempt the same unoccupied
cell.

To summarize,MGS proposes actually a unified view
on these computational mechanisms initially inspired
by biological processes (CHAM, P systems, L systems
and cellular automata). However, we do not claim that
we have achieved a useful theoretical framework en-
compassing these formalisms. We advocate that few
notions and a single syntax can be consistently used to
allow the merging of these formalisms for simulation
purposes. The key notions involved are:

• a unified view on data structures using an abstract
neighborhood relationship: thetopological collec-
tions;

• a general device to compute new topological col-
lections from a given topological collection, based
on an abstract rewriting mechanism: thetransfor-
mation of a topological collection;

• the representation of the state of a biosystem by a
topological collection and the specification of the
evolution function as a transformation.

The use of a rewriting mechanism as a foundation
for biosystems modeling has already been defended in
Fisher et al. (2000). In MGS, the use of a general ab-
stract neighborhood operator (the commas that appear
in the LHS of the rules of a transformation), makes the
specification of a transformation largely independent
of the precise neighborhood relationship involved by
the collection. This feature allows for instanceexactly
the same handling for multisets, sequences and grids,
when the evolution rules areisotropic (i.e. when there
is no need to distinguish between neighbors solely by
their spatial position, see the examples inSection 5.1).
Relying on a general abstract neighborhood operator
also implies that the evolution rules of the biosystem
are local, which is often the case considering the na-
ture of the physical laws involved (cf.Tonti, 1974for
the algebraic-topological structure underlying physi-
cal theories). In addition, the neighborhood operator
avoid the need for a global coordinate system: a point
which has been stressed as essential for the easy mod-
eling of developmental processes in the works of P.
Prusinkiewicz (see, e.g.Prusinkiewicz, 1999; Fisher
et al., 2000).

162 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

Acknowledgements

The authors would like to thank P. Prusinkiewicz at
University of Calgary where some insights have found
their right formulation. They are also grateful to F. De-
laplace, J. Cohen and the members of the “Simulation
and Epigenesis” group at GENOPOLE-Evry for fruit-
ful discussions, biological motivations and challeng-
ing questions. C. Boin and N. Thibault have developed
parts of the Bugrim model inMGS. The friendly at-
mosphere of the workshops IPCAT’01 and WMC’01
has also raised many stimulating questions that have
suggested many developments and rethinking. Finally,
the comments of the referees have greatly improved
the presentation of the paper. This research is sup-
ported in part by the CNRS, the GDR ALP, IMPG,
GENOPOLE and the University of Evry.

References

Amar, P., Ballet, P., Barlovatz-Meimon, G., Benecke, A., Bernot,
G., Bouligand, Y., Bourguine, P., Delaplace, F., Delosme, J.-M.,
Demarty, M., Fishov, I., Fourmentin-Guilbert, J., Fralick, J.,
Giavitto, J.-L., Gleyse, B., Godin, C., Incitti, R., Képès, F.,
Lange, C., Sceller, L.L., Loutellier, C., Michel, O., Molina,
F., Monnier, C., Natowicz, R., Norris, V., Orange, N., Pollard,
H., Raine, D., Ripoll, C., Rouviere-Yaniv, J., Saier, M.,
Soler, P., Tambourin, P., Thellier, M., Tracqui, P., Ussery, D.,
Vincent, J.-C., Vannier, J.-P., Wiggins, P., Zemirline, A., 2003.
Hyperstructures, genome analysis and I-cell. Acta Biotheoretica
(in press).

Banatre, J.P., Metayer, D.L., 1986. A new computational model
and its discipline of programming. Technical Report RR-0566,
INRIA.

Berry, G., Boudol, G., 1990. The chemical abstract machine.
In: Conference Record 17th ACM Symposium on Principles
of Programmming Languages, POPL’90, San Francisco, CA,
USA, 17–19 January, 1990. ACM Press, New York, pp. 81–94.

Brown, R., Heyworth, A., 2000. Using rewriting systems to
compute left Kan extensions and induced actions of categories.
J. Symbolic Comput. 29 (1), 5–31.

Bugrim, A.E., 2000. A logic-based approach for computational
analysis of spatially distributed biochemical networks. In:
ISMB, San Diego, CA, 2000.

Buneman, P., Naqvi, S., Tannen, V., Wong, L., 1995. Principles of
programming with complex objects and collection types. Theor.
Comput. Sci. 149 (1), 3–48.

Chaitin, G.J., 2002. Meta-mathematics and the foundations of
mathematics. Bull. Eur. Assoc. Theor. Comput. Sci. 77, 167–
179.

Chandy, K.M., Misra, J., 1988. Parallel Program Design: A
Foundation. Addison-Wesley, Reading, MA.

Dittrich, P., Ziegle, P., Banzhaf, W., 2001. Artificial chemistry—a
review. Artificial Life 7, 225–275.

Eden, M., 1958. In: Yockey, H.P. (Ed.), Symposium on Information
Theory in Biology. Pergamon Press, New York, p. 359.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C., 2002a.
Pathway logic: executable models of biological networks.
In: Proceedings of the Fourth International Workshop on
Rewriting Logic and Its Applications (WRLA’2002). Vol. 71
of Electronic Notes in Theoretical Computer Science. Elsevier,
Amsterdam.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J.,
Sonmez, J., January 2002b. Pathway logic: symbolic analysis of
biological signaling. In: Proceedings of the Pacific Symposium
on Biocomputing, pp. 400–412.

Fisher, M., Malcolm, G., Paton, R., 2000. Spatio-logical processes
in intracellular signalling. BioSystems 55, 83–92.

Giavitto, J.-L., Michel, O., 2001a. Declarative definition of
group indexed data structures and approximation of their
domains. In: Proceedings of the 3rd International ACM
SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP-01). ACM Press, New York.

Giavitto, J.-L., Michel, O., 2001b.MGS: a rule-based programming
language for complex objects and collections. In: van den
Brand, M., Verma, R. (Eds.), Electronic Notes in Theoretical
Computer Science, vol. 59. Elsevier, Amsterdam.

Giavitto, J.-L., Michel, O., 2002. The topological structures
of membrane computing. Fundamenta Informaticae 49, 107–
129.

Giavitto, J.-L., Godin, C., Michel, O., Prusinkiewicz, P., 2002.
Modelling and simulation of biological processes in the context
of genomics. Genopole Evry, Ch. “Computational Models for
Integrative and Developmental Biology” (final proceedings and
tutorials).

Hammel, M., Prusinkiewicz, P., 1996. Visualization of develop-
mental processes by extrusion in space-time. In: Proceedings
of Graphics Interface ’96, pp. 246–258.

Hanan, J.S., 1992. Parametric L-systems and their application to the
modelling and visualization of plants. Ph.D. thesis, University
of Regina.

Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W., 1999.
From molecular to molecular cell biology. Nature 402, 47–52.

Kanehisa, M., 2000. Post-Genome Informatics. Oxford University
Press, Oxford.

Kaufman, S., 1995. The Origins of Order: Self-Organization and
Selection in Evolution. Oxford University Press, Oxford.

Keller, E.F., 1995. Refiguring Life: Metaphors of Twentieth-
Century Biology. Columbia University Press, New York.

Lindenmayer, A., 1968. Mathematical models for cellular
interaction in development, Parts I and II. J. Theor. Biol. 18,
280–315.

Magnus, W., Karrass, A., Solitar, D., 1976. Combinatorial Group
Theory: Presentations in Terms of Generators and Relations.
Dover, New York.

Manca, V., 2001. Logical string rewriting. Theor. Comput. Sci.
264, 25–51.

Maynard-Smith, J., 1999. Shaping Life: Genes, Embryos and
Evolution. Yale University Press, New Haven, CT.

J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 163

Paniflov, A.V., Holden, A.V. (Eds.), 1997. Computational Biology
of the Heart. Wiley, Chichester.

Paton, R. (Ed.), 1994. Computing with Biological Metaphors.
Chapman & Hall, London.

Paun, G., 2001. From cells to computers: computing with
membranes (P systems). BioSystems 59 (3), 139–158.

Paun, G., Sakakibara, Y., Yokomori, T., 2001. P systems on graphs
of restricted forms. Publ. Math. Debrecen.

Prusinkiewicz, P., 1999. Modeling of spatial structure and
development of plants: a review. Sci. Horti. 74, 113–149.

Prusinkiewicz, P., Hanan, J., 1990. Visualization of botanical
structures and processes using parametric L-systems. In:
Thalmann, D. (Ed.), Scientific Visualization and Graphics
Simulation. Wiley, Chichester, pp. 183–201.

Stengers, I., 1988. D’une Science à L’autre. Les Concepts
Nomades. Le Seuil, Paris, France.

Tonti, E., 1974. The algebraic-topological structure of physical
theories. In: Glockner, P.G., Sing, M.C. (Eds.), Symmetry,
Similarity and Group Theoretic Methods in Mechanics. Calgary,
Canada, pp. 441–467.

Tyson, J., Borisuk, M., Chen, K., Novak, B., 2000. Computational
Modeling of Genetic and Biochemical Networks. Analysis
of Complex Dynamics in Cell Cycle Regulation. MIT Press,
Cambridge, MA, pp. 287–306.

Wilcox, M., Mitchison, G.J., Smith, R.J., 1973. Pattern formation
in the blue-green alga,Anabaena. I. Basic mechanisms. J. Cell
Sci. 12, 707–723.

Wolfram, S., 2002. A new kind of science. Wolfram Media.

Chapter 12

Using Rewriting Techniques in The
Simulation of Dynamical Systems:
Application to the Modelling of Sperm
Crawling

[1] Antoine Spicher and Olivier Michel. Using rewriting techniques in the simulation of dynamical systems:
Application to the modeling of sperm crawling. In Fifth International Conference on Computational
Science (ICCS’05), volume I, pages 820–827, 2005.

177

Using Rewriting Techniques in the Simulation
of Dynamical Systems:

Application to the Modeling of Sperm Crawling

Antoine Spicher and Olivier Michel

LaMI, umr 8042 du CNRS, Université d’Évry – GENOPOLE
Tour Evry-2, 523 Place des Terrasses de l’Agora

91000 Évry, France

{aspicher,michel}@lami.univ-evry.fr

Abstract. Rewriting system (RS) are a formalism widely used in com-
puter science. However, such a formalism can also be used to specify
executable models of dynamical systems (DS) by allowing the specifica-
tion of the evolution laws of the systems in a local manner.
The main drawback of RS is that they are well understood and well
known only for terms (a tree-like structure) and that their expressivity
is not enough for the representation of complex organizations that can
be found in DS.
We propose a framework based on topological notion to extend the notion
of RS on more sophisticated structures; the corresponding concepts are
validated through the development of an experimental programming lan-
guage, MGS, dedicated to the simulation of DS. We show how the MGS
rewriting system can be used to specify complex dynamical systems and
illustrate it with the simulation of the motility of the nematode’s sperm
cell.

1 Introduction

In this paper, we advocate the use of rewriting techniques for the simulation of
complex dynamical systems. The systems we are interested in, are often systems
with a dynamical structure [1]. They are difficult to model because their state
space is not fixed a priori and is jointly computed with the current state during
the simulation. In this case the evolution function is often given through local
rules that drive the interaction between some system components.

These rules and their application are reminiscent of rewriting rules and their
strategy. As a programming language, rewriting systems have the advantage of
being close of the mathematical formalism (transparencial referency and declar-
ativeness).

The aim of the MGS project is to develop new rewriting techniques on data
structures beyond tree-like organization, and to apply these techniques to the
modeling and simulation to various dynamical systems with a dynamical struc-
ture in biology. The key idea used here to extend rewriting systems to more

general data structures is a topological point of view: a data structure is a set
of elements with neighborhood relationship that specifies which elements of the
data structure can be accessed from a given one.

This paper is organized as follows. Section 2 recalls the basic notions of
rewriting system and sketches its application to the simulation of dynamical
systems. Then we present the MGS programming language. An example illustrates
the introduced notion: the MGS simulation approach on a dynamical system with
a dynamical structure. The system to be modeled is the motility of a cell, inspired
by a previous work [2].

2 Rewriting and Simulations

2.1 A computational Device.

A rewriting system [3] (RS) is a device used to replace some part of an entity
by another. In computer science, the entities subject to this process are usually
expressions represented by formal trees. A RS is defined by a set of rules, and
each rule α → β specifies how a subpart that matches with the pattern α is
substituted by a new part computed from the expression β. We call the pattern
α the left hand side of the rule (l.h.s), and β the right hand side (r.h.s).

We write e →∗ e′ to denote that an expression e is transformed by a series
of rewriting in expression e′. It is called a derivation of e. The transformation
of e into e′ can be seen as the result of some computations defined by the
rewriting rules and the derivation corresponds to the intermediate results of the
computation.

2.2 Rewriting and Simulation.

We will see how rewriting can be used for the simulation of dynamical systems
(DS), i.e., systems described by a state that changes with the time. Using RS
for the simulation of DS means:

– the state of the DS is represented by an expression,
– its evolution is specified by a set of rewriting rules defining local transfor-

mation.

Then, given an initial state e, a derivation of e following a RS corresponds to a
possible trajectory of the DS.

The role of a rule is to specify an interaction between different parts (atomic
or not) of the system, or the answer of the system to an exterior message.
So, at a cellular scale, c + s → c′ means a cell c that receives a signal s, will
change its state to c′ ; c → c′ + c′′ specifies a cell division and c → . represents
apoptosis. In these examples, operator + denotes the composition of entities into
subsystems. The formalism of RS has consequences of the properties of DS taken
in considerations, especially on the management of time and space.

Discretized Time. An important point in the modeling of a DS is the handling
of time. Clearly the model of time naturally supported by the framework of
rewriting is a discrete, event based, model of time: the application of a rule
corresponds to some event in the system and this event corresponds to an atomic
instantaneous change in the system state.

Locality of Space. The previous operator + that joins entities and messages ex-
presses the spatial and/or the functional organization of the modeled system and
is used to denotes interacting parts of the system and the composition of entities
into a subsystem. So, on the first hand, the l.h.s and the r.h.s of a rule specify
a local part of the system where an interaction occurs. As a consequence, rules
represent local evolution laws of the DS. On the other hand, the organization
structures specified in the l.h.s and the r.h.s can differ to generate a modification
of the structure. This allows the modeling of a special and difficult to represent
kind of DS, the dynamical systems with a dynamical structure or (DS)2 (see [4]).

3 MGS: a Framework for Modeling and Simulating
Dynamical Systems using RS

MGS is a project that aims at integrating the formalism of RS in a programming
language dedicated to the modeling and the simulation of (DS)2. In this sec-
tion, we will present this language. MGS embeds a complete, impure, dynamically
typed, strict, functional language.

3.1 Topological Collections

One of the distinctive features of the MGS language is its handling of entities
structured by abstract topologies using transformations [5]. The notion of data
structures is unified in the notion of topological collection, a set of entities orga-
nized by an abstract topology. Topological means here that each collection type
defines a neighborhood relation inducing a notion of subcollection.

Topological Collection and the Representation of a DS State. Topological collec-
tions are well-fitted to represent the complex states of DS at a given time. The
elements of the topological collection are the atomic elements of DS and each
element has a value.

3.2 Transformations

Topological collections represent a possible framework for an extension of RS.
Indeed, the neighborhood relationship provides a local view of the structural
organization of elements. Transformations extends the notion of RS to structures
other than trees and they are used to specify evolution functions of modeled DS.
A transformation of a topological collection S consists in the parallel application
of a set of local rewriting rules. A local rewriting rule r specifies the replacement

of a subcollection by another one. The application of a rewriting rule σ ⇒
f(σ, ...) to a collection S (1) selects a subcollection Si of S whose elements
match the pattern σ, (2) computes a new collection S′i as a function f of Si and
its neighbors, and (3) specifies the insertion of s′i in place of si into s.

Path Pattern. A pattern σ in the l.h.s of a rule specifies a subcollection where
an interaction occurs. This subcollection can have an arbitrary shape, making it
very difficult to specify. Thus, it is more convenient (and not so restrictive) to
enumerate sequentially its elements. Such enumeration will be called a path.

Replacement. The right hand side of a rule specifies a collection that replaces
the subcollection matched by the pattern in the left hand side.

4 Application to the Simulation of Nematode Sperm
Crawling

In this part, we are interesting in implementing a complex biological model
proposed by Bottino et al [2]. This model simulates the motility of the sperm cell
of the nematode Ascaris suum. We first describe the model and its discretization
in 2D. Then we see how this model can be translated in the MGS formalism.

4.1 Description of the model

The sperm of Ascaris suum crawls using a lamellipodial protusion, adhesion
and retraction cycle. The chemical mechanisms of motility are located in the
front of the cell called lamellipodium. In this model, the system corresponds to
the lamellipodium membrane stuck to the matrix surrounding the cell. First, a
fibrous polymerization occurs at the leading edge of the cell creating protusions.
These protusions push the cell membrane forward. Then, some elastic energy
is stored in the created fibrous gel. During the adhesion step, the protusions
stick the matrix with a traction process that makes the cell body traveling. The
fibrous gel undergoes a contraction. The final step occurs near the boundary
between the lamellipodium and the rest of the cell where the depolymerization
of the fibrous gel causes the deadhesion of the membrane. As a consequence,
the stored energy is released to pull the cell body forward. This mechanics is
moderated by a pH gradient.

The considered continuous equations corresponds to the elastic and tensile
stress in the membrane fixed to the extracellular matrix, and to pH distribution
to deal with the pH dependence.

Mechanical Forces. The equation given by Bottino et al. governing the mechan-
ical forces is:

µ(u)
∂u

∂t
= ∇.σ(u)

where u is a position vector. The l.h.s corresponds to the drag force due to
the contact between the membrane and the matrix. The r.h.s computes the

Voronoi polygon

Delaunay triangle

Perinuclear region

τij

µi µj

Xi Xj

κ

Fig. 1. The nematode sperm cell. At the left, a schematic diagram showing the cell
organization: on the left, the nuclear region is found, on right is the lamellipodium.
Its discretization is done by the nodes. The plain edges correspond to the Delaunay
neighborhood. The dashed edges are the boundaries of the Voronoi polygons. At top
right, a figure of a zoomed part of the mesh is given. At bottom right, a Delaunay edge
links two nodes with a spring of modulus κ in parallel with a tensile element of stress
τ . A friction of coefficient µ appears when a node is in contact with the exterior tissue
(these diagrams are inspired by figures from [2]).

mechanical forces from the stress given by σ = Elastic Stress − Tensile Stress.
All the coefficients depend on distribution of the pH.

pH Distribution. The pH distribution follows a diffusion equation with a leak.
But, this distribution is done in a shorter time scale. Therefore, considering a
quasi-static approximation, we obtain:

D∇2[H+] = P([H+]− [H+]ext)

where [H+] is the proton concentration at a given position, [H+]ext is the external
proton concentration, D and P are properties of the cell. The l.h.s represents the
diffusion and the r.h.s is the leakage.

4.2 The Finite Element Model

This 2D surface is divided into finite elements in order to approximate the pre-
vious continuous differential equations. Each element corresponds to a node of a
mesh (see figure 1). A node represents a Voronoi tessellated cell are represented
by dashed edges on figure 1. The neighborhood of each Voronoi polygon is given
by a Delaunay triangulation and is figured as plain edges.

There are three kinds of element: (1) the lamellipodial boundary (Bnodes)
where the protusion occurs (in black), (2) the interface (NRnodes) between the
lamellipodium and the cell body (in dark grey) where the retraction is done, and
(3) the interior (Inodes) of the lamellipodium (in light grey).

Polymerization and Depolymerization. The polymerization and the depolymer-
ization of the gel respectively correspond to the creation and the deletion of
Inodes. Two thresholds give the upper and the lower lengths of a Delaunay
edge. Let Xi and Xj be two nodes and lij the length of the Delaunay edge link-
ing Xi and Xj . If lij > lmax, a node is created is the middle of the edge with
a pH being the average between the pH at Xi and Xj . In practice, nodes are
created near the boundary. On the opposite, if lij < lmin and Xi is a NRnode,
Xj is deleted.

Discretization of the Continuous Equations. The previous equations are trans-
lated; for a node Xi:

∂ui
∂t

=
1
µi

∑

j

(κ|Xi −Xj | − τij)Cij2
Xj −Xi

|Xj −Xi| (mechanical forces)

∑

j

Cij1 ([H+]i − [H+]j) =
P
D

([H+]i − [H+]ext) (pH distribution)

In these two equations, the ∇ operators of the continuous one are replaced by
a finite iteration over the neighbors Xj of the node Xi. The computation is
local and well-suited to a rewriting framework. The coefficients Cijk depend on
geometrical properties of the Voronoi/Delaunay triangulation (such as the area
of Voronoi polygons). In the first equation, the term κ|Xi −Xj | corresponds to
the elastic force between Xi and Xj (on bottom right of figure 1). In fact, the
Delaunay edges are considered as an elastic element (emulated by a spring of
modulus κ) in parallel with a tensile element (with the stress τij). The coefficient
µi represents the drag effect.

4.3 MGS Implementation

The translation of the model in terms of transformations and topological collec-
tions is straightforward.

Data Structures. First, we have to represent a node of the Delaunay graph. We
use an MGS record (a data structure equivalent to a C struct) composed by 8
fields:

record Node = { px:float, py:float, vx:float, vy:float
H:float, pH:float, Bflag:bool, NRflag:bool };

Fields px and py represent the position of the node, vx and vy the speed vector,
and H and pH the proton concentration and the pH. We also define three pred-
icates Inode, Bnode and NRnode, to determine the type of the node. They use
the booleans Bflag and NRflag of a node.

A Delaunay graph is a predefined type of a topological collection available
in MGS. This type of collection is parameterized by a function that returns the
position of an element in space to automatically compute the neighborhood. So
we define this function for our example:

delaunay(2) D2 = fun elt ->
if Node(elt) then (elt.px, elt.py)

else error("bad element type") fi ;;

Evolution Laws. Now that we have a representation for the data, we have to
specify the evolution laws from the discrete equations. We start with checking
the structure to create or delete nodes. The following MGS rules compute both
polymerization and depolymerization:

polymerization: Xi, Xj / (length(Xi,Xj) > lmax) =>
Xi, {pH=(Xi.pH+Xj.pH)/2,...}, Xj

depolymerization: Xi:Inode, Xj / (length(Xi,Xj) < lmin) => Xj

where function length returns the length between two nodes, and Xi:Inode
specifies that the node Xi must be a Inode. As soon as these rules are applied,
the Delaunay neighborhood is automatically updated

After that, the pH distribution has to be updated to take account of the new
or the deleted nodes. The equation provides the value of the proton concentration
of a node as a function of the proton concentration of its neighbors:

trans update pH = {
Xi:Bnode => ...; Xi:NRnode => ...;
Xi => let num = neighborsfold(

(fun Xj acc -> C1(Xi,Xj) * Xj.H + acc),
0, Xi) + (P/D) * H ext

and den = neighborsfold(
(fun Xj acc -> C1(Xi,Xj) + acc),
0, Xi) + (P/D)

in Xi + {H = num/den, pH = -log10(num/den) }
}

The transformation update pH is composed by 3 rules. The two first deal with the
boundary conditions of the equation, and the last one applies the equation. The
function neighborfold is used to evaluate the sum of proton concentration of the
neighbors of Xi balanced by the coefficient Cij1 . neighborfold corresponds to a
basic fold on the sequence of the neighbors of Xi. Finally, Xi is replaced by Xi+{H
= num/den, pH = -log10(num/den)} that denotes the new value of Xi where
the fields H and pH are updated. To deal with the quasi-static approximation, this

transformation is iterated until a fixpoint is reached. This iteration corresponds
to the resolution of inverting a matrix as Bottino et al. do.

To end one step of the simulation, the force equation has to be computed
and the velocities and positions of the nodes updated. The implementation of
this transformation is quite similar to update pH.

5 Discussion and Conclusion

The simulation developed here mimics in MGS the initial model developed by
Bottino et al. and implemented in Matlab [6]. One of the main motivations
for the development of this example, was to compare the conciseness and the
expressivity of the MGS programming style compared to a more traditional pro-
gramming language. Our opinion (which is subjective) is that the developed code
is more concise and more readable, for instance because the management of the
Voronoi tessellation and the Delaunay triangulation is completely transparent
to the programmer. From the point of view of the performance, our approach
is comparable (with respect to the few indications available into the articles of
Bottino et al.) despite that the current MGS interpreter is a prototype version.

Acknowledgments.

The authors would like to thank J.-L. Giavitto and J. Cohen at LaMI, D. Boussié,
F. Jacquemard at INRIA/LSV-Cachan and the members of the “Simulation and
Epigenesis” group at Genopole for technical support, stimulating discussions and
biological motivations. This research is supported in part by the CNRS, GDR
ALP, IMPG, University of Évry and Genopole/Évry.

References

1. Giavitto, J.L.: Invited talk: Topological collections, transformations and their ap-
plication to the modeling and the simulation of dynamical systems. In: Rewrit-
ing Technics and Applications (RTA’03). Volume LNCS 2706 of LNCS., Valencia,
Springer (2003) 208 – 233

2. Bottino, D., Mogilner, A., Roberts, T., Stewart, M., Oster, G.: How nematode
sperm crawl. Journal of Cell Science 115 (2002) 367–384

3. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical
Computer Science. Volume B. Elsevier Science (1990) 244–320

4. Giavitto, J.L., Godin, C., Michel, O., Prusinkiewicz, P.: “Computational Models for
Integrative and Developmental Biology”. In: Modelling and Simulation of biological
processes in the context of genomics. Hermes (2002).

5. Giavitto, J.L., Michel, O.: The topological structures of membrane computing.
Fundamenta Informaticae 49 (2002) 107–129

6. Bottino, D.: Ascaris suum sperm model documentation (2000)

Chapter 13

Stochastic P Systems and the
Simulation of Biochemical Processes
with Dynamic Compartments

[1] Antoine Spicher, Olivier Michel, Mikolaj Cieslak, Jean-Louis Giavitto, and Przemyslaw Prusinkiewicz.
Stochastic p systems and the simulation of biochemical processes with dynamic compartments. BioSys-
tems, 2007.

187

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

BioSystems xxx (2007) xxx–xxx

Stochastic P systems and the simulation of biochemical
processes with dynamic compartments

Antoine Spicher a,∗, Olivier Michel a,1, Mikolaj Cieslak b,
Jean-Louis Giavitto a, Przemyslaw Prusinkiewicz b

a IBISC-FRE 2873 CNRS & Université d’Évry, Genopole Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France
b Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada

Received 12 May 2006; received in revised form 19 October 2006; accepted 23 December 2006

Abstract

We introduce a sequential rewriting strategy for P systems based on Gillespie’s stochastic simulation algorithm, and show that the
resulting formalism of stochastic P systems makes it possible to simulate biochemical processes in dynamically changing, nested
compartments. Stochastic P systems have been implemented using the spatially explicit programming language MGS. Implementation
examples include models of the Lotka–Volterra auto-catalytic system, and the life cycle of the Semliki Forest virus.
© 2007 Elsevier Ireland Ltd. All rights reserved.

Keywords: Stochastic simulation algorithm (SSA); Dynamic compartments; Biochemical processes; P systems; SP systems

1. Introduction

Numerous natural processes have been proposed
as unconventional paradigms of computation. Biology
has been a particularly rich source of ideas, inspir-
ing such notions as neural networks (McCulloch and
Pitts, 1943), genetic algorithms (Holland, 1973), cellular
automata (Ulam, 1962; Von Neumann, 1966), L-systems
(Lindenmayer, 1968; Prusinkiewicz and Lindenmayer,
1990), and membrane computing (Păun, 2001; Cardelli,
2004).

The synergy between biology and computer science
is well illustrated by the formalism of Lindenmayer

∗ Corresponding author.
E-mail addresses: aspicher@ibisc.fr (A. Spicher), michel@ibisc.fr

(O. Michel), cieslak@cpsc.ucalgary.ca (M. Cieslak), giavitto@ibisc.fr
(J.-L. Giavitto), pwp@cpsc.ucalgary.ca (P. Prusinkiewicz).

1 On sabbatical leave at the Department of Computer Science, Uni-
versity of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N
1N4, Canada.

systems. Introduced as a mathematical model of the
development of multicellular organisms (Lindenmayer,
1968), L-systems gave rise to a branch of formal lan-
guage theory (Herman and Rozenberg, 1975; Rozenberg
and Salomaa, 1980), before being reapplied to biology
and computer graphics as a method for simulat-
ing and visualizing plant development (Prusinkiewicz
and Lindenmayer, 1990; Prusinkiewicz, 1999). Further
applications of L-systems include the generation of
space-filling curves (Prusinkiewicz et al., 1991), and
geometric modeling (Prusinkiewicz et al., 2003).

In this paper, we present a formalism for stochastic
simulation of biochemical processes taking place in com-
partmentalized structures. Examples of such structures
include living cells enclosing the nucleus, the mitochon-
dria, the Golgi complex, and other organelles, or – at a
larger scale – tissues and organs comprising individual
cells. The formalism combines:

• Gillespie’s stochastic simulation algorithm (SSA)
(Gillespie, 1977), which makes it possible to simulate

0303-2647/$ – see front matter © 2007 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2006.12.009

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

2 A. Spicher et al. / BioSystems xxx (2007) xxx–xxx

reactions in well-mixed chemical systems using the
discrete-event simulation paradigm (Kreutzer, 1986)
and

• Păun systems (P systems) (Păun, 2001), which make
it possible to represent processes that take place in
nested, dynamic (changing over time) compartments.

Stochastic P systems preserve the definition of atomic
operations (application rules) previously defined for
P systems, but the commonly used maximum paral-
lel application strategy is replaced with a stochastic
sequential strategy. According to this strategy, atomic
operations are chosen at random and applied one at a
time. A related strategy was introduced by Obtułowicz
(2003), who assumed that the application rules are
assigned fixed probabilities. In contrast, we assume that
the probabilities may change in the course of simula-
tion. This feature is essential to the implementation of
Gillespie’s algorithm.

The idea of incorporating stochastic strategies into
rewriting systems has a relatively long history. Stochastic
and probabilistic L-systems were introduced to the the-
ory of formal languages by Jürgensen (1976); Eichhorst
and Savitch (1980), and Yokomori (1980). Related
notions were applied by Nishida (1980); Prusinkiewicz
(1987), and Prusinkiewicz and Hanan (1989) to simu-
late variations in the development of modeled plants.
The concept of dynamically computing the probabili-
ties of rule application in L-systems was introduced in
Prusinkiewicz (1987). A recent extension of L-systems
incorporates a stochastic application strategy based
explicitly on Gillespie’s algorithm (Cieslak, 2006).

In addition to Obtułowicz (2003), stochastic exten-
sions of P systems were proposed by Madhu (2003);
Ardelean and Cavaliere (2003), and Pescini et al. (2006).
That work was primarily devoted to a theoretical analy-
sis of variants of P systems, expressed in terms of formal
language theory. One exception is the paper by Pescini
et al. (2006), which was devoted to the modeling and
simulation of biochemical processes. We compare their
approach to our own in the conclusion. Furthermore, the
PhD thesis by Bernardini (2005) has led to recently pub-
lished results that largely parallel ours (Bernardini et al.,
2005; Cazzaniga et al., 2006a, b).

Mechanisms for the probabilistic application of rules
were also introduced into general rewriting system envi-
ronments. In Maude (Koushik et al., 2003), the authors
define the notion of probabilistic rewriting theories.
A probabilistic rewriting strategy was also proposed
for the Elan rewriting system (Bournez and Kirchner,
2002; Bournez and Hoyrup, 2003). In both cases, rewrit-
ing strategies can be specified by the user. Gillespie’s

algorithm could thus presumably be coded using these
systems, although no example has been given so far.

Gillespie-based stochastic simulation of biochemical
systems with static compartments has previously been
supported by selected systems biology packages, such as
E-cell (Tomita et al., 1999) and StochSim (Novère and
Shimizu, 2001). Dynamic compartments have been sup-
ported less frequently; a notable exception is the process
algebra of BioAmbients (Regev et al., 2004). In contrast
to that work, we are able to eliminate a compartment
and all its contents in one primitive operation, dissolve a
compartment and merge its contents with the parent com-
partment, create several identical sibling compartments
from a single one, and split the contents of a compartment
into several siblings.

Our paper is organized as follows. In Sections 2 and
3 we review the two foundations of our work: P systems
and Gillespie’s stochastic simulation algorithm. These
notions are combined into the definition of stochastic
P systems (SP systems) in Section 4. In Section 5 we
outline an implementation of SP systems in the MGS
programming language. A systematic translation of SP
system rules into MGS is described. The resulting imple-
mentation makes it possible to simulate biochemical
processes that take place in a well-mixed solution or
are dynamically compartmentalized. Two examples are
given in Section 6. The first example, the Lotka–Volterra
auto-catalytic system, only requires a single static
compartment. Dynamic compartments are used in the
second example, a model of a viral infection. In Sec-
tion 7 we present conclusions and directions for future
work.

2. P Systems

Păun systems, also called P systems or membrane sys-
tems, are a biologically motivated formalism describing
parallel distributed computation (Păun, 2000, 2001). P
systems are inspired by the organization and functioning
of a biological cell.

A cell is considered in an abstract way as a hierarchy
of compartments enclosed by membranes. Each com-
partment may include elementary objects (molecules)
as well as other compartments. Processes in a cell
are viewed as sequences of discrete events. Examples
of events are: a chemical reaction between molecules
within a compartment, transport of molecules outside
of, or into a compartment, and creation and dissolution
of compartments.

In the following sections, we give a formal definition
of the P system formalism. In contrast to the standard
approach, we do not represent membranes explicitly,

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

A. Spicher et al. / BioSystems xxx (2007) xxx–xxx 3

but consider them as a consequence of the nesting of
multisets.

2.1. Compartments and Multisets

LetO = {a, b, c, . . .} be the set of elementary objects
on which a P system will operate. These objects can
be contained in compartments, which are represented as
multisets: sets in which repetitions of the same element
are allowed. By analogy to set notation, the brackets
{|and|} are used to enclose the elements of a multiset
m. The empty multiset is written as {||}.

An elementary compartment contains only elemen-
tary objects. To represent the content of several nested
compartments, we consider multisets with elements that
are either elementary objects or, recursively, multisets.
For example,

m = {|{|a|}, b, b, c, {|a, b, {|c|}|}|}
is a multiset that contains three elementary objects (two
elements b and one element c), and two multisets: m1 =
{|a|} and m2. The multiset m2 contains one element a,
one element b and a singleton multiset containing one
element c. Several representations of this multiset are
shown in Fig. 1. When required, we assign types to com-
partments and indicate these types using labels (Fig. 1,
III).

We use the cons operator :: to add an element to a
multiset. For example, if m1 = {|1, {|1|}, 2|} and m2 =
{|2, 2, 3|}, then 2 :: m1 is equal to {|2, 1, {|1|}, 2|}, and
m1 :: m2 is equal to {|{|1, {|1|}, 2|}, 2, 2, 3|}. Further-
more, we use the comma operator to merge the content of
two (possibly nested) multisets. For example, m1, m2 =
{|1, {|1|}, 2, 2, 2, 3|}. Finally, we overload the comma
operator to allow one or both of its arguments to be
elementary objects. For example, if a and b are ele-
mentary objects and m is a multiset, then a, m = a :: m

and a, b = {|a, b|}. With this notation, the expressions
(a :: (b :: (c :: {||}))) and a, b, c denote the same multiset
{|a, b, c|}.

Fig. 1. Equivalent representations of a multiset: Venn diagram (I), tree
(II), and parenthesised expression (III). In the latter case, labels have
been added to indicate the type of each compartment.

2.2. Evolution of a P System State

The state of a P system is represented by a multi-
set, which may change over time in a discrete fashion.
These changes are specified using sets of rules associ-
ated with compartment types. A rule α → (β, �) consists
of the left-hand side α and the right-hand side (β, �). The
left-hand side α (the predecessor) is a pattern intended
to match a sub-multiset of objects that belong to some
compartment m. The right-hand side consists of a mul-
tiset of objects β (the successor or result) and a target
location �. When a rule is applied, the multiset matching
α is replaced by the multiset β at location �. The location
� is specified by one of the following expressions:

• here: the result remains in the same compartment m
from which α was taken,

• inm′ : the result is transported to a compartment m′,
included in compartment m (this rule can only be
applied if m′ is (directly) nested in m),

• out: the result is transported out of compartment m
and added to the parent multiset,

• δ: after replacing α by β as in the case here, the
boundary surrounding compartment m is removed
(compartment m is dissolved and all the elements of
m are added to its parent compartment).

To shorten the notation, especially when dealing only
with elementary objects, we drop the outside brackets
enclosing multisets α and β. We also omit the here
location. Thus a rule {|a, b, c|} → {|c, d, d|}, here is
written as a, b, c → c, d, d. This notation is consistent
with the definition of comma as an operator that merges
elementary objects or multisets into a nested multiset.

Examples of P system rules are given below and
illustrated in Fig. 2 under the assumption that each rule
applies to compartment m1:

a, b → c a and b react to create c

a → {||} a vanishes

a → a, out a is released into the enclosing

compartment

a → a, inm2 a is transported tom2

a → {|a|}m3
a is isolated in a newly created

compartment

a → a, δ the boundary surrounding a is dissolved

2.3. P System Rule Application Strategy

When a rule is applied to a multiset m, the predecessor
objects are consumed and deleted from m. Consequently,

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

4 A. Spicher et al. / BioSystems xxx (2007) xxx–xxx

Fig. 2. Example of a rule application in compartment m1. See text for additional explanations.

two or more rules cannot apply concurrently to the same
objects, and one rule has to be chosen. In rewriting
systems, the policy for deciding which rule(s) will be
applied is called the application strategy. For P sys-
tems, the maximal parallel strategy is commonly used.
According to this strategy, rules are applied simultane-
ously to as many elements as possible, so that no rule
matches the remaining elements of the multiset m. In the
case of conflicts, rules are selected non-deterministically.
The motivation for parallel rewriting in P systems is that
the passing time affects simultaneously all the elements
of the multiset m. The same motivation underlies parallel
application of productions in L-systems (Lindenmayer,
1968).

The maximal parallel strategy is well suited to the
modeling of discrete dynamic systems in which com-
ponents operate synchronously. It is less well suited to
capture events that occur asynchronously in continu-
ous time (Lindenmayer and Jürgensen, 1992), since, as
the time interval �t corresponding to a derivation step
decreases, the probability that two events will occur in
the same interval decreases as well. This is the case when
considering chemical reactions at an atomic scale.

One can consider such situations from the perspective
of discrete-event simulation, assuming that events occur
one at a time (the probability that two asynchronous
events will occur exactly at the same time is equal

to zero). This idea underlies Gillespie’s algorithm dis-
cussed below and leads to an alternative, sequential, rule
application strategy for P systems.

3. Stochastic Simulation of Chemical Reactions

Gillespie (1977) developed a stochastic method for
simulating well-mixed chemical systems. This method,
along with its subsequent improvements and extensions
(Gillespie, 2000; Gibson and Bruck, 2000; Gillespie,
2001), has recently found many applications in the area
of systems biology. This is due to its suitability for
simulating biochemical systems with small numbers of
molecules. Such systems cannot be adequately charac-
terized with classical continuous mathematical models
of chemical reaction kinetics, because the underlying
notion of concentration loses its meaning when the num-
ber of molecules is small.

From the computer science point of view, Gillespie’s
method relies on a discrete-event simulation (Kreutzer,
1986) of reactions between individual molecules. A reac-
tion Rμ, for instance A + B → C, may occur when the
reacting molecules (A and B) collide with sufficient
energy to yield the product (molecule C). The proba-
bility P(μ, dτ) that reaction Rμ will take place over an
infinitesimal time interval dτ is proportional to

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

A. Spicher et al. / BioSystems xxx (2007) xxx–xxx 5

• the stochastic reaction constant cμ, which depends on
the type of reaction and temperature;

• the number hμ of distinct combinations of react-
ing molecules (for example, if the total number of
molecules of type A is equal to [A], and the total num-
ber of molecules of type B is equal to [B], the number
of combinations hμ is equal to [A][B]; see Gillespie
(1976) for further discussion); and

• the length of the time interval dτ.

We thus have:

P(μ, dτ) = hμcμ dτ = aμ dτ, (1)

where the product aμ = hμcμ is called the propensity of
reaction Rμ.

Let X(t) denote the state of the considered system at
time t. We will characterize this state in terms of N multi-
sets Xi of molecules of different species i = 1, 2, . . . , N.
Gillespie (1977) showed that the probability p̃(τ, μ)dτ,
with which next reaction Rμ will occur in the infinitesi-
mal time interval (t + τ, t + τ + dτ), is equal to

p̃(τ, μ)dτ = aμ e−aμτ dτ, (2)

Eq. (2) differs from Eq. (1) by the term e−aμτ , which
captures the probability that no reaction Rμ will take
place in the interval (t, t + τ). If the total number of dif-
ferent reaction types is M, the probability that the next
reaction will be of type μ and will occur in the time
interval (t + τ, t + τ + dτ) is

p(τ, μ)dτ = aμ e−a0τdτ, (3)

where a0 = �M
ν=1aν is the combined propensity of all M

reactions (Gillespie, 1977). Adding up the probabilities
expressed by Eq. (3) for all reaction types, we obtain the
probability p1(τ)dτ that the first reaction of an arbitrary
type will occur in the time interval (t + τ, t + τ + dτ):

p1(τ)dτ =
M∑

μ=1

p(τ, μ)dτ

=
M∑

μ=1

aμ e−a0τ dτ = a0 e−a0τdτ. (4)

The evolution of the system state over time is simu-
lated by iterating the following steps:

• given system state X(t), determine the type μ of the
next reaction and the inter-reaction time τ before this
reaction takes place,

• modify the state X(t), taking into account the reactants
removed from the system and products added to the
system by reaction Rμ, and

• advance simulation time t by τ.

Gillespie proposed two methods to determine the
reaction type μ and the inter-reaction time τ in a man-
ner consistent with the distribution of probabilities given
by Eq. (3). They are called the direct method and the
first-reaction method. In the direct method, the time of
the next reaction is chosen using Eq. (4), considering
all reaction types at once. A particular reaction is then
chosen on the basis of the reaction propensities. In the
first reaction method, on the other hand, the time of the
first reaction of each type μ is chosen using Eq. (2). The
earliest reaction (with the smallest reaction time) is then
applied to update the system state, and the simulation
time is advanced accordingly.

Specifically, the direct method is based on the condi-
tional probability formula (Gillespie, 1977, p. 418):

p(τ, μ)dτ = p1(τ)dτP2(μ|τ), (5)

where p1(τ)dτ is the probability that the next reaction
will occur in the time interval (t + τ, t + τ + dτ), as
given by Eq. (4), and P2(μ|τ) is the conditional prob-
ability that the next reaction will be Rμ, if the time of
the next reaction is t + τ. This conditional probability is
obtained by dividing Eq. (3) by Eq. (4):

P2(μ|τ) = p(τ, μ)

p1(τ)
= aμ

a0
. (6)

The inter-reaction time τ and the next reaction Rμ are
chosen according to the probabilities given by Eqs. (4)
and (6) using the inversion method (Ross, 1989, p. 564).
Specifically, given two independent random numbers r1
and r2 generated with uniform distribution in the inter-
val [0, 1], the inter-reaction time is obtained using the
formula:

τ = 1

a0
ln

1

r1
, (7)

and the reaction index μ is determined by solving the
equation:

μ−1∑

ν=1

aν < r2a0 ≤
μ∑

ν=1

aν. (8)

In the first reaction method, the time τν of the first reac-
tion of type ν is chosen independently of other reactions
for each ν = 1, 2, . . . , M with the inversion method
applied to Eq. (2). To this end, M independent random
numbers rν are generated with uniform distribution in

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

6 A. Spicher et al. / BioSystems xxx (2007) xxx–xxx

the interval [0, 1], and times τν are calculated using Eq.
(9), similar to Eq. (7):

τν = 1

aν

ln
1

rν
for ν = 1, 2, . . . , M. (9)

The smallest value τν is then chosen as the inter-reaction
time, and the system state X is updated using the corre-
sponding reaction Rν.

4. Compartmentalized SSA and Stochastic P
Systems

4.1. Gillespie’s Algorithm as a Multiset Rewriting
Strategy

Gillespie’s algorithm makes it possible to simulate
reactions in a well-mixed chemical solution. If such a
solution is represented by a multiset whose elementary
objects are molecules (Banâtre and Le Métayer, 1986;
Dittrich et al., 2001), then chemical reactions can be
expressed as multiset rewriting rules. Gillespie’s algo-
rithm leads to a sequential application strategy for these
rules: only one rule is applied in each derivation (simu-
lation) step.

The sequential application strategy represents a
considerable departure from the maximal parallel appli-
cation strategy usually considered for P systems. In
the theory of formal languages, the distinction between
sequential and parallel rewriting plays a fundamen-
tal role, leading to different hierarchies of languages:
Chomsky versus Lindenmayer (Herman and Rozenberg,
1975; Rozenberg and Salomaa, 1980). This distinction
may also be relevant to the formal properties of P sys-
tems and deserves a further study. Nevertheless, here we
only consider the modeling applications of stochastic P
systems.

4.2. Handling Compartments

The potential presence of nested compartments in P
systems violates the assumption of homogeneous spatial
distribution of molecules on which Gillespie’s algorithm
is based. Nevertheless, the SSA can be extended to nested
compartments as follows:

• Reactions taking place within compartments are sim-
ulated by considering each compartment individually
(we assume here that molecules within each compart-
ment are distributed homogeneously);

• P system rules involving transport of molecules
and creation and dissolution of membranes are
assigned their own propensities and treated as reac-

tions, although they may affect two compartments at
a time.

Our extension preserves the discrete-event simulation
character of Gillespie’s method and treats reactions and
transport events as occuring instantaneously.

We define a derivation step in a stochastic P system
by analogy to the direct or first reaction method. In the
direct method, reactions of the same type, but associ-
ated with different compartments, are formally treated
as distinct reactions with their own propensities. This
distinction is achieved by renaming identical molecules,
and their associated reactions, that appear in different
compartments. After this renaming, the next reaction is
selected, and the simulation time advanced, as in the
single compartment situation.

In the first reaction method, the SSA is applied to
each compartment c separately, yielding reaction Rc and
reaction time τc for each compartment. The compartment
with the smallest reaction time is then selected and the
corresponding reaction is applied. A detailed algorithm
for the first reaction method is given below.

Let split() be the function that divides a nested
multiset m into two parts: the multiset of elementary
objects belonging toO and the multiset of the remaining
multisets:

split(m) = 〈m′;m′′〉
where m′ = {|x, x ∈ m and x 	= ∈O|},

m′′ = {|x, x ∈ m and x /∈ O|}.

Furthermore, let Rm denote the set of rules applicable
to m, and 〈τ; p〉 = SSA(m) be the result of the appli-
cation of one of these rules according to the original
Gillespie’s algorithm. In the pair 〈τ; p〉, τ is the time
increment related to the application of the selected rule
to m, and p is the new multiset. A simulation step of
a stochastic P system is then given by the following
recursive function:

function nestedSSA (m: nested multiset)
〈m′; m′′〉 := split(m)
〈τ0; n0〉 := SSA(m′)
let N = size (m′′)
for i = 1 to N do

〈τi; ni〉 := nestedSSA(m′′
i)

let j such that τj = min(0≤i≤N) τi

if j = 0 then return 〈τ0; (n0, m
′′)〉

else return 〈τj ; m′ :: m′′
1 :: . . . :: m′′

j−1 :: nj :: m′′
j+1 :: . . . :: m′′

N 〉

The above pseudo-code can be implemented in vari-
ous programming environments. An example is given in
the next section.

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

A. Spicher et al. / BioSystems xxx (2007) xxx–xxx 7

5. Implementation of Stochastic P Systems in MGS

MGS is a domain-specific programming language
supporting the modeling and simulation of dynami-
cal systems with a dynamical structure (Giavitto et al.,
2003). Numerous examples of such systems are found
in the area of biology. Computation in MGS consists
of the application of rewriting rules to dynamic data
structures. The rules and data structures are defined in
local terms, using the notion of neighborhood rather than
global coordinates or indexing schemes. Different types
of neighborhood (Giavitto and Michel, 2002) can be
specified within MGS, leading to a unified treatment of
collections of objects with different topologies (called
topological collections).

Below we present the features of MGS that are relevant
to the implementation of stochastic P systems.

5.1. Representation of P Systems States

As defined in Section 2, the state of a P system is a
nested multiset, called bag in the context of MGS. Each
element of a bag is a neighbor of all other elements.
Elements of bags can be any values supported by MGS
including numbers and symbols. Symbols are denoted
by back-quoted identifiers as ‘X.

The empty bag is written bag : (). The operations on
bags include cons (::) and comma, as defined in Sec-
tion 2. For example, the nested multiset of Fig. 1 can
be specified using the following MGS expression:

‘c :: #2 ‘b :: (‘a :: +bag : ())

:: (‘a :: ‘b :: (‘c :: bag : ()) :: bag : ()) :: bag : ().

The nesting of compartments is specified by the paren-
theses. The syntax #2 ‘X :: m is an abbreviation for ‘X ::
‘X :: m.

To handle P systems with typed compartments (cf.
Figs. 1 and 2), we rely on the notion of sub-typing pro-
vided by MGS. Sub-typing in MGS associates different
sub-types to various instances of objects of the same
type. For example, the following statements create bags
of two sub-types A and B:

collection A = bag; ;

collection B = bag; ;

The expressions A:() and B:() refer to empty bags of
different sub-types within the common type bag.

5.2. Transformations

To manipulate topological collections, MGS provides a
unifying construct, called transformation. A transforma-

tion is a function defined by cases. Each case corresponds
to a specific rewriting rule. AnMGS rewriting rule consists
of the left-hand side, a rule qualifier, and the right-hand
side. The left-hand side is a pattern that specifies a sub-
collection to which the rule may be applied. The qualifier
characterizes conditions of rule application. The right-
hand side evaluates to the sub-collection that will replace
the sub-collection matched by the left-hand side.

The pattern syntax follows the grammar:

Atom ::= l|id|id : t,

Pattern ::= Atom|Atom,Pattern|Atom \ /Pattern

An Atom matches a literal value (l) or a pattern variable
bound to an element and used in the right-hand side of
the rule (id). The construct id:t matches a variable id of
type t. A Pattern is a finite sequence of Atoms.

The comma operator in the left-hand side of a rule
denotes the neighborhood relationship. For example, the
pattern x, y matches two elements that are neighbors. In
the context of bags, in which each element is a neighbor
of any other element, x, y matches any pair of elements.

The \/ construct, termed down, is used to descend into
a multiset nested within the current one. For example, if
m = {|a, {|b|}, {|c, d|}, e|}, the pattern a,n \ /(c,d) will
match the sub-collection {|a, {|c, d|}|} of m.

As a simple example of MGS code, let us consider a
variant of the sieve of Eratosthenes that computes the
bag of all prime numbers between 2 and n, given the bag
that contains all integers from 2 to n. The idea is to iterate
the transformation that substitutes y for a pair x, y such
that y divides x:

trans prime = {x,y⇒ if (x%y) == 0 then

y else x, y fi}

The prime transformation consists of only one rule. The
operator % computes the remainder from the division of
x by y. If any two values x and y in the bag are such that
y divides x then x is removed. If y does not divide x then
the pair x, y is replaced by itself.

Once defined, this transformation can be applied in
several ways:

(1) only once, like an ordinary function: prime(M);
(2) n times, using the iter option: prime[iter=n](M);
(3) until some predicate P holds: prime[iter = P](M)

(the argument of the predicate P is the result returned
by the last application of the transformation); and

(4) until the fixed point has been reached:
prime[iter = ‘fixpoint](M).

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

8 A. Spicher et al. / BioSystems xxx (2007) xxx–xxx

By default, MGS transformations are applied using
the maximal parallel rewriting strategy. However, MGS
also supports a parameterized sequential application
strategy (Spicher et al., 2006; Spicher and Michel,
2006), which is suitable for implementing stochastic P
systems.

5.3. Gillespie’s SSA in MGS

A sequential stochastic rule is specified using arrow
qualifiers. The following two forms are available:

(1) = {C = cμ} ⇒ to explicitly give the stochastic reac-
tion constant cμ for the rule;

(2) = {A = \self.f(self)} ⇒ to specify the propen-
sity of the rule.

In the second case, f(self) is a function of the mul-
tiset to which the transformation applies. This function
is specified using a notation based on lambda-calculus,
\x.exp is a function of argument x with body exp. For
example, the propensity of the rule:

‘X,‘Y = {A = \self.count(self,‘X)

∗count(self,‘Y)} ⇒ ‘Z

is computed by evaluating the function that returns the
number of symbols ‘X multiplied by the number of sym-
bols ‘Y in the current bag self.

The use of the stochastic sequential application
strategy is indicated by the transformation option
[strategy = ‘gillespie]. For example,

T[strategy = ‘gillespie](m)

applies transformation T to the bag m. It is assumed
that each rule of T is qualified by either a stochastic
reaction constant or a propensity function. The elapsed
time is available through a global variable ‘tau. The
applied reacting rule is chosen using the first reaction
method.

5.4. Stochastic P Systems in MGS

The full implementation of stochastic P systems that
operate on nested multisets with dynamic membranes
is based on the nestedSSA algorithm presented in Sec-
tion 4.1. The translation of a stochastic P system into
MGS raises two problems: (1) P system rules can be
constrained to specific compartments while MGS trans-
formations are defined globally, and (2) there are no MGS
transformations that correspond directly to the P system
transport, compartment creation and dissolution rules.
In other words, only P system rules of type here are
supported in MGS.

The first problem is solved by considering as many
bag types as there are rule sets attached to specific
compartments. Thus, for each rule set M, there is an
associated bag type M and an associated MGS transfor-
mation TM . The MGS implementation of the nestedSSA
algorithm is then modified so that for a bag of type M
only the transformation TM applies.

The second problem is properly addressed by coding
the P system rules that transport into a compartment, out
of a compartment, or dissolve a compartment. This is
achieved by including out and δ rules in each transfor-
mation T. Table 1 gives the translation of all possible
stochastic P system rules.

The first case is obvious. For the in rule, we match
a bag m of type M′ (the destination of the result) and the
pattern α, then we replace the matched elements by the
bag m with β added. For the out rule, we match a bag m
of type M containing an occurrence of α, and we replace m
by β and m with α removed (cf. the previous description
of the down pattern \/). The propensity of the translated
rule is explicitly computed by counting the number of
occurrences of α in bag m. This rule is added in each
transformation. The rule for the dissolution makes use
of the flat qualifier (Giavitto and Michel, 2001): the
elements of the collection β that appears on the right-
hand side are added to the current collection, instead
of being nested into the current collection as a single
element. Using the flat feature, it is easy to translate a
dissolution rule: we match a bag m of type M that contains

Table 1
Translation for stochastic P system rules into an MGS transformation

Rule in M Corresponding MGS rule Appears in

α→cμβ, here α = {C = cμ} ⇒ β TM only
α→cμβ, in′

M m : M′, α = {C = cμ} ⇒ β :: m TM only
α→cμβ, out m : M \ /α = {A = \x.cμ ∗ count(m,α)} ⇒ β :: m Each T
α→cμβ, δ m : M \ /α = {A = \x.cμ ∗ count(m,α)flat} ⇒ β :: m Each T
α→cμ {|β|}M′ α = {C = cμ} => β :: M ′ TM only

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

A. Spicher et al. / BioSystems xxx (2007) xxx–xxx 9

Fig. 3. Results of two simulations using the Lotka–Volterra model.

an occurrence of α, and we replace it by inserting the
elements of the bag m with α removed and β added. The
propensity of the translated rule is explicitly computed
by counting the occurrences of α in bag m. This rule is
added in each transformation. Finally, the last rule builds
a new collection of type M′ with elements β within the
current collection.

6. Examples

Below we present two examples of stochastic P sys-
tems and their MGS implementations. The first example
is an application of the Gillespie’s algorithm coded in
MGS. The second example illustrates the use of dynamic
compartments.

6.1. A model of the Lotka–Volterra Process

The Lotka–Volterra process was introduced by Lotka
as a model of coupled auto-catalytic chemical reactions,
and was investigated by Volterra as a model for studying
an ecosystem of predators and prey (Edelstein-Keshet,
1988). The reaction rules are as follows:

X + Y1 → X + Y1 + Y1,

Y1 + Y2 → Y2 + Y2, Y2 → Z

The dynamics of these reactions is conveniently charac-
terized using the predator–prey interpretation. The first
rule states that a prey Y1 reproduces after feeding on
a food resource X; this resource is renewable and thus
its concentration does not change as a result of feed-
ing. The second rule states that a predator Y2 reproduces
after feeding on prey Y1. Finally, the last rule specifies
that predators Y2 die of natural causes.

In the MGS expression of these rules, the members of
(ecological or chemical) species are represented by sym-
bols in a bag. Stochastic reaction constants are specified
as the C qualifiers of the rules. In the example below we

assumed that these constants are equal to 0.001, 0.01 and
10, respectively:

A simulation of the Lotka–Volterra system consists
of an iterative application of the lotka volterra trans-
formation, beginning with the initial state of the system.
Such an application can be specified by the following
MGS code:

lotka volterra[iter\ = x.(tau >= tmax),

strategy = ‘gillespie]

(#10000 ‘X,#1000 ‘Y1,#1000 ‘Y2,bag : ()); ;

We assumed here that the iteration will proceed until
the elapsed time ’tau reaches tmax = 10. The ini-
tial state of the system consists of 10,000 members
of species X, 1000 members of species Y1, and 1000
members of species Y2. Traces of two stochastic simu-
lations, generated using different seeds for the random
number generator, are shown in Fig. 3. The simulations
reveal oscillations in the populations of both species Y1
and Y2, which is consistent with the dynamics of the
Lotka–Volterra model (Edelstein-Keshet, 1988). The use
of stochastic simulations reveals random variation in the
process, which is absent from deterministic simulations
based on differential equations.

6.2. A Model of Viral Infection

We present a high-level model of a viral infection
that follows the process outlined by Alberts et al. (1994,
pp. 273–280). The example involves the formation and
dissolution of membranes, as well as the transport of
individual molecules and entire compartments. This pro-

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

10 A. Spicher et al. / BioSystems xxx (2007) xxx–xxx

Fig. 4. Rough sketch of the seven steps describing a viral infection of the Semliki Forest virus. The description of each step is given in the text.

cess has previously been modeled using brane calculi
(Cardelli, 2004), which treats dynamic nested compart-
ments in a manner similar to P systems. However, brane
calculi do not capture the stochastic aspect of molecular
reactions.

6.2.1. Biological Background
Viruses are genetic elements enclosed in a protein

coat, which makes it possible for them to move from
one cell to another. The structure and life cycle of the
Semliki Forest virus are shown in Fig. 4. The virus con-
sists of a single strand of viral RNA surrounded by a shell
called capsid. The capsid is composed of many virus is
surrounded by a second shell called the envelope. An
infection is initiated when the virus binds to a receptor
protein in the membrane of the host cell (Phase 1 in Fig. 4.

copies of the same C protein. Outside a cell, the The
virus then enters a healthy cell following a standard
cellular endocytosis pathway. Upon entering, the virus
acquires an additional membrane, called a vesicle,
which is derived from the cell membrane. Subsequently,
both the vesicle and the envelope dissolve, releasing the
capsid (Phase 2). The capsid is then disassembled into
the viral RNA and the C proteins that formed the capsid
(Phase 3). The viral RNA is translated into the structural
proteins of the virus (Phase 4), and it is replicated
(Phase 5). The old and the newly synthesized C proteins
then bind to the viral RNA to form new capsids (Phase
6). When a capsid comes into contact with the cellular
membrane, it is lined with the viral envelope and buds
out to recreate the initial virus structure outside of the
cell. This virus may now infect another healthy cell
(Phase 7).

6.2.2. Stochastic P Systems Model
We model infection by the Semliki Forest virus in

the following way. A multiset of type Universe repre-
sents the whole system comprised of cells and viruses.
A healthy cell is an empty multiset of type Cell (we
ignore the internal structure of the healthy cell, as it does
not play a role in our model). In contrast, an infected
cell contains viruses and their components. A virus out-
side of a cell is a multiset of type Envelope, which
contains a single multiset of type Capsid. The capsid,
in turn, contains one RNA molecule. Inside a cell, an
Envelope multiset may be further contained in a Vesicle
multiset.

With the multiset representation of the biological
compartments involved in the model, endocytosis
(Phase 1) corresponds to an in rule:

This is the only rule associated with the Universe mul-
tiset. The stochastic reaction constant C1 is proportional
to the probability that a virus will encounter a cell in the
universe. This probability has the form:

c1[Envelope][Cell]

where c1 is a constant coefficient.
The dissolution of the vesicle and the envelope (Phase

2), as well as the disassembly of the capsid (Phase 3), are
captured by the P system dissolution rules. The trans-
lation (Phase 4) and replication (Phase 5) of RNA are
reactions taking place inside a cell. The assembly of a
new capsid (Phase 6) is a multiset creation rule, and
the release of the virus (Phase 7) is an out rule. The
entire set of rules associated with a cell thus has the
form:

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

A. Spicher et al. / BioSystems xxx (2007) xxx–xxx 11

We assume here that a capsid consists of five C pro-
teins. Now that the stochastic P systems rules have been
defined, we can implement them in MGS.

6.2.3. MGS Implementation
We represent compartments involved in this model as

bag collections of different types:

collection Universe = bag; ;

collection Capsid = bag; ;

collection Envelope = bag; ;

collection Cell = bag; ;

collection Vesicle = bag; ;

A virus outside a cell is defined as:

(‘RNA :: Capsid : ()) :: Envelope : (); ;

The processes describing the viral infection take place
in two compartments: the Universe, where the virus
enters or leaves a cell, and a Cell. The first MGS
transformation describes the activities in the Universe:

The numbering of the rules corresponds to the
numbering of phases in Fig. 4. The virus enter-
ing a cell is described by the in rule P1. The
virus exiting a cell is described by the out rule P7.
The propensities are computed explicitly. The func-
tion countAll(Cell,Capsid,x) counts all the capsids
present in all the cells within the universe x. A comma
operator is used in the right-hand side of rule P7 to
incorporate a virus that has left a cell into the universe.

The second MGS transformation describes processes
taking place in a cell:

In rule P2, the \/ operator has been used twice to
match a Vesicle that contains an Envelope contain-
ing a Capsid. The propensities of the first two rules are
computed explicitly. The propensities of the remaining
three rules are computed automatically by MGS, given the
stochastic reaction constants.

6.2.4. A Simulation Example
Fig. 5 shows the result of four simulations that began

with 20 healthy cells and 1, 10 or 100 viruse molecules.
The initial state was specified by the expression:

initial state := (#n(‘RNA :: Capside : ()) ::

Envelope : ()) :: #20 Cell : () :: Universe : (); ;

where #n is the number of viruses. In the absence of
quantitative data, all stochastic reaction constants were
set to the same value of 1.0. Fig. 5(a) highlights the
discrete-event nature of the stochastic simulation algo-
rithm, with the infrequent events separated in time for
small virus molecule numbers. Individual runs signif-
icantly differ from each other in this case. Fig. 5(b)
and (c) show two typical runs beginning with 10 virus
molecules. These simulations differ in details, but gener-
ally proceed in a similar manner. The variance between
runs is further reduced for larger initial numbers of
molecules (Fig. 5(d)). The mean time between con-
secutive events decreases as the number of molecules
grows.

As expected, the simulations show that the total num-
bers of RNA molecules, vesicles, capsids, and viruses

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

12 A. Spicher et al. / BioSystems xxx (2007) xxx–xxx

Fig. 5. Sample simulation results for the Semliki Forest virus infection. Simulation begins with 20 healthy cells and (a) 1, (b and c) 10, or (d) 100
virus molecules. Each curve shows the total number of molecules or structures.

increase exponentially with time. In contrast, after an
initial increase, the number of free C proteins appears
to saturate. We interpret this as the effect of almost
immediate reincorporation of free C proteins into newly
formed capsids. More in-depth applications of the pre-
sented model will be possible once experimental data
related to the reaction times become available.

6.2.5. Performance Analysis
Simulation times for the Semliki Forest virus infec-

tion model are shown in Fig. 6. The model was
expressed in the MGS language and implemented using
the MGSsystem.1 All simulations were performed on
a Dell GX 260 computer with the Intel Pentium IV
1800 MHz processor and 1 GB of RAM, running under
Linux Debian Sarge (Debian, 2006) with kernel 2.4.26.

Simulations of up to several thousand events are exe-
cuted in a few seconds, which makes it possible to
explore the model interactively. As the number of events
increases, the simulation times grow exponentially. This
reflects the linear relation between the exponentially
increasing number of molecules in the Semliki For-
est virus infection model and the search time for the
next reaction (Eq. (8)). The simulation times could

1 The source code and executables for the MGS system are freely
available at http://mgs.ibisc.univ-evry.fr.

Fig. 6. Performance analysis of the simulation of the Semliki For-
est virus infection. The plot represents mean values and variance of
execution times for 20 runs.

be reduced using binary search to determine the next
reaction (Gibson and Bruck, 2000), or using further
extensions of Gillespie’s algorithm, such as τ-leaping
(Gillespie, 2001) or R-leaping (Auger et al., 2006).

7. Conclusions

In this paper we presented stochastic P systems as a
formalism for modeling and simulating biochemical pro-
cesses that take place in dynamic, nested compartments.

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

A. Spicher et al. / BioSystems xxx (2007) xxx–xxx 13

We also proposed an implementation of stochastic P
systems in MGS, an experimental programming lan-
guage designed to support computing in topological
spaces.

Our objectives are related to those of Pescini et al.
(2006), who simulated chemical reactions using proba-
bilistic P systems. While their approach preserves the
maximal parallel rule application strategy originally
proposed for P systems, our method is based on the
sequential application of stochastic rules introduced
by Obtułowicz (2003). In contrast to that work, we
assumed, as does Bernardini (2005), that the rules may
have dynamically computed probabilities. This made
it possible to relate the resulting formalism to Gille-
spie’s stochastic simulation algorithm, the fundamental
algorithm for stochastic simulation of chemical reac-
tions. We also applied stochastic P systems to model
biochemical systems with dynamic and nested compart-
ments. The results are illustrated using two examples:
a simulation of the Lotka–Volterra process, based on
a straightforward application of Gillespie’s algorithm,
and a simulation of a virus infection, which involves
dynamic nested compartments. Our results show that
P systems are relevant not only as a biologically
motivated theoretical model of computation, but also
as a basis for modeling and simulation in systems
biology.

Many problems are open for further work. One
direction is the acceleration of computation. A straight-
forward approach is the replacement of Gillespie’s
algorithm by its computationally more efficient coun-
terpart, proposed by Gibson and Bruck (2000).
Furthermore, in a multiprocessing environment, the
simulation of biochemical reactions that take place
simultaneously in different compartments can be viewed
as an instance of parallel discrete-event simulation. The
effectiveness of such simulations can be improved using
the notions of virtual time (Jefferson, 1985) and time
warp (Jefferson et al., 1987).

The second direction is the addition of geomet-
ric features to stochastic P systems. The modeling
and simulation of systems in which compartments can
expand and contract represents a theoretical challenge
with important practical ramifications (Takahashi et al.,
2005; Lemerle et al., 2005). For example, such models
may represent fundamental processes in a cell, such as
cytokinesis and mitosis. As these processes take place
over an extended period of time, a further extension
of the model may be needed, lifting the assumption
of instantaneous reactions. In addition, inclusion of
geometry may provide a basis for considering the
impact of the volume of compartments on the propen-

sities of reactions. Stochastic P systems may represent
a potentially useful point of departure for modeling
and simulating such processes within a well-founded
formalism.

Acknowledgements

We thank Brendan Lane for editorial assistance,
and the anonymous referees for insightful and help-
ful comments. The support of the Centre National de
la Recherche Scientifique ACI grant “NANOPROG”
to O.M., and the Natural Sciences and Engineering
Research Council of Canada Discovery Grant RGP
130084 to P.P. is gratefully acknowledged.

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J., 1994.
Molecular Biology of the Cell, 3rd ed. Garland, New York.

Ardelean, I., Cavaliere, M., 2003. Modelling biological processes
by using a probabilistic P system software. Nat. Comput. 2 (2),
173–197.

Auger, A., Chatelain, P., Koumoutsakosa, P., 2006. R-leaping: accel-
erating the stochastic simulation algorithm by reaction leaps. J.
Chem. Phys. 125, 084103-1-084103-13.

Banâtre, J.P., Le Métayer, D., 1986. A new computational model and
its discipline of programming. Technical Report RR-0566, INRIA.

Bernardini, F., 2005. Membrane systems for molecular computing
and biological modelling. Ph.D. thesis, University of Sheffield,
Sheffield, UK.

Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Pérez-
Jiménez, M.J., Romero-Campero, F.J., 2005. On P systems as a
modelling tool for biological systems. In: Freund, R., Păun, Gh.,
Rozenberg, G., Salomaa, A. (Eds.), Workshop on Membrane Com-
puting, vol. 3850. Lecture Notes in Computer Science. Springer,
pp. 114–133.

Bournez, O., Hoyrup, M., pp. 61–75 2003. Rewriting logic and
probabilities. In: Nieuwenhuis, R. (Ed.), Proceedings of the 14th
International Conference on Rewriting Techniques and Applica-
tions (RTA’03), vol. 2706. Lecture Notes in Computer Science.
Springer, Berlin.

Bournez, O., Kirchner, C., pp. 252–266 2002. Probabilistic rewrite
strategies. applications to ELAN. In: Tison, S. (Ed.), Proceedings of
Rewriting Techniques and Applications, 13th International Confer-
ence, vol. 2378. Lecture Notes in Computer Science. Copenhagen,
Denmark, Springer.

Cardelli, L., 2004. Brane calculi. In: Danos, V., Schächter, V. (Eds.),
Computational Methods in Systems Biology, vol. 3082. Lecture
Notes in Computer Science. Springer, Berlin, pp. 257–278.

Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G., 2006a. Tau leaping
stochastic simulation method in P systems. In: Pre-Proceedings of
the 7th Workshop on Membrane Computing, WMC7, Leiden, The
Netherlands.

Cazzaniga, P., Pescini, D., Romero-Campero, F.J., Besozzi, D., Mauri,
G., pp. 145–164 2006b. Stochastic approaches in P systems for
simulating biological systems. In: Gutiérrez-Naranjo, M.A., Păun,
Gh., Riscos-Núñez, A., Romero-Campero, F.J. (Eds.), Proceedings
of the 4th Brainstorming Week on Membrane Computing, vol. I.
Fénix Editora. Sevilla, Spain.

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

14 A. Spicher et al. / BioSystems xxx (2007) xxx–xxx

Cieslak, M., 2006. Stochastic simulation of pattern formation: an appli-
cation of L-systems. Master’s thesis, University of Calgary.

Debian, 2006. The Debian project web site. http://www.debian.org.
Dittrich, P., Ziegler, J., Banzhaf, W., 2001. Artificial chemistries—a

review. Artif. Life 7 (3), 225–275.
Edelstein-Keshet, L., 1988. Mathematical Models in Biology. Random

House, New York.
Eichhorst, P., Savitch, W.J., 1980. Growth functions of stochastic Lin-

denmayer systems. Inform. Control 45 (3), 217–228.
Giavitto, J.-L., Godin, C., Michel, O., Prusinkiewicz, P., 2003. Mod-

eling and simulation of biological processes in the context of
genomics. In: Hermes, Dieppe, Ch. (Eds.), Computational Models
for Integrative and Developmental Biology.

Giavitto, J.-L., Michel, O., 2001. MGS: a rule-based programming lan-
guage for complex objects and collections. Electr. Notes Theor.
Comput. Sci. 4, 59.

Giavitto, J.-L., Michel, O., 2002. The topological structures of mem-
brane computing. Fund. Inform. 49 (1–3), 107–129.

Gibson, M.A., Bruck, J., 2000. Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Chem.
Phys. 104, 1876–1889.

Gillespie, D.T., 1976. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J. Comput.
Phys. 22, 403–434.

Gillespie, D.T., 1977. Exact stochastic simulation of coupled chemical
reactions. J. Phys. Chem. 81 (25), 2340–2361.

Gillespie, D.T., 2000. Chemical Langevin equation. J. Chem. Phys.
113, 297–306.

Gillespie, D.T., 2001. Approximate ¡!–¡query¿Please check the dele-
tion of reference Gillespie (2001b) which was the repetition of
reference Gillespie (2001a).¡/query¿–¿accelerated stochastic sim-
ulation of chemically reacting systems. J. Chem. Phys. 115,
1716–1733.

Herman, G.T., Rozenberg, G., 1975. Developmental Systems and Lan-
guages. North-Holland, Amsterdam.

Holland, J.H., 1973. Genetic algorithms and the optimal allocation of
trials. SIAM J. Comput. 2 (2), 88–105.

Jefferson, D.R., 1985. Virtual time. ACM Trans. Program. Lang. Syst.
7 (3), 404–425.

Jefferson, D.R., Beckman, B., Wieland, F., Blume, L., 1987. Dis-
tributed simulation and the time warp operating system. Oper. Syst.
Rev. 21, 77–93.

Jürgensen, H., 1976. Probabilistic L-systems. In: Lindenmayer, A.,
Rozenberg, G. (Eds.), Automata, Languages, Development. North-
Holland, Amsterdam, pp. 211–225.

Koushik, S., Kumar, N., Meseguer, J., Agha, G., 2003. Probabilistic
rewrite theories. Technical Report 2343, University of Illinois at
Urbana Champaign.

Kreutzer, W., 1986. System Simulation Programming Styles and Lan-
guages. Addison-Wesley Publishing Co., Reading, MA.

Lemerle, C., Di Ventura, B., Serrano, L., 2005. Space as the final fron-
tier in stochastic simulations of biological systems. FEBS Lett.
579, 1789–1794.

Lindenmayer, A., 1968. Mathematical models for cellular interac-
tion in development. Parts I and II. J. Theor. Biol. 18, 280–
315.

Lindenmayer, A., Jürgensen, H., 1992. Grammars of development:
discrete-state models for growth, differentiation, and gene expres-
sion in modular organisms. In: Ronzenberg, G., Salomaa, A. (Eds.),
Lindenmayer Systems, Impacts on Theoretical Computer Science,
Computer Graphics and Developmental Biology. Springer, pp.
3–21.

Madhu, M., 2003. Probabilistic rewriting P systems. Int. J. Found.
Comput. Sci. 14 (1), 157–166.

McCulloch, W.S., Pitts, W., 1943. A logical calculus of ideas immanent
in nervous activity. Bull. Math. Biophys. 5, 115–133.

Nishida, T., 1980. K0L-systems simulating almost but not exactly the
same development—the case of Japanese cypress. Memoirs Fac.
Sci., Kyoto University, Ser. Biol. 8, 97–122.

Novère, N.L., Shimizu, T.S., 2001. STOCHSIM: modelling
of stochastic biomolecular processes. Bioinformatics 17 (6),
575–576.

Obtułowicz, A., 2003. Probabilistic P systems. In: Păun, Gh.,
Rozenberg, G., Salomaa, A., Zandron, C. (Eds.), Membrane
Computing, International Workshop, Curtea de Arges, Romanai,
vol. 2597. Lecture Notes in Computer Science. Springer, Berlin,
pp. 377–387.

Păun, Gh., 2000. The P system web page: http://psystems.
disco.unimib.it/.

Păun, Gh., 2001. From cells to computers: computing with membranes
(P systems). Biosystems 59 (3), 139–158.

Pescini, D., Besozzi, D., Mauri, G., Zandron, C., 2006. Dynami-
cal probabilistic P systems. Int. J. Found. Comput. Sci. 17 (1),
183–204.

Prusinkiewicz, P., pp. 534–548 1987. Applications of L-systems to
computer imagery. In: Ehrig, H., Nagl, M., Rosenfeld, A., Rozen-
berg, G. (Eds.), Proceedings of the 3rd International Workshop on
Graph Grammars and their Application to Computer Science, vol.
291. Lecture Notes in Computer Science. Springer, Berlin.

Prusinkiewicz, P., 1999. A look at the visual modeling of plants using
L-systems. Agronomie 29, 211–224.

Prusinkiewicz, P., Hanan, J., 1989. Lindenmayer Systems, Fractals and
Plants. Springer, Berlin.

Prusinkiewicz, P., Lindenmayer, A., Hanan, J.S., Fracchia, F.D.,
Fowler, D.R., de Boer, M.J.M., Mercer, L., 1990. The Algorithmic
Beauty of Plants. Springer, New York.

Prusinkiewicz, P., Lindenmayer, A., Fracchia, F.D., 1991. Synthe-
sis of space-filling curves on the square grid. In: Peitgen, H.-O.,
Henriques, J.M., Penedo, L.F. (Eds.), Fractals in the Fundamen-
tal and Applied Sciences. North-Holland, Amsterdam, pp. 341–
366.

Prusinkiewicz, P., Samavati, F.F., Smith, C., Karwowski, R., 2003. L-
system description of subdivision curves. Int. J. Shape Model. 9
(1), 41–59.

Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E., 2004.
Bioambients: an abstraction for biological compartments. Theor.
Comput. Sci. 325 (1), 141–167.

Ross, S.M., 1989. Introduction to Probability Models, 4th ed. Aca-
demic Press.

Rozenberg, G., Salomaa, A., 1980. The Mathematical Theory of L-
systems. Academic Press, New York.

Spicher, A., Michel, O., 2006. Stratgie d’application stochastique de
rgles de rcritures dans le langage MGS. In: Michel, O. (Ed.),
Journes Francophones des Langages Applicatifs. INRIA, Roc-
quencourt.

Spicher, A., Michel, O., Giavitto, J.-L., 2006. Rewriting and
Simulation—Application to the Modeling of the Lambda Phage
Switch. No. 5 in Modlisation de systmes biologiques complexes
dans le contexte de la gnomique. Genopole, Evry.

Takahashi, K., Arjunan, S.N.V., Tomita, M., 2005. Space in systems
biology of signaling pathways–towards intracellular molecular
crowding in silico. FEBS Lett. 579, 1783–1788.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Mat-
suzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter

Please cite this article in press as: Spicher, A., et al., Stochastic P systems and the simulation of biochemical processes with
dynamic compartments, BioSystems (2007), doi:10.1016/j.biosystems.2006.12.009

ARTICLE IN PRESS+Model
BIO-2770; No. of Pages 15

A. Spicher et al. / BioSystems xxx (2007) xxx–xxx 15

III, J.C.C.A.H., 1999. E-cell: software environment for whole-cell
simulation. Bioinformatics 15 (1), 72–84.

Ulam, S.M., 1962. On some mathematical problems connected with
patterns of growth of figures. Proc. Symp. Appl. Math. 14,
215–224.

Von Neumann, J., 1966. Theory of Self-Reproducing Automata. Uni-
versity of Illinois Press, Urbana and Chicago.

Yokomori, T., 1980. Stochastic characterizations of EOL languages.
Inform. Control 45 (1), 26–33.

Chapter 14

An Analysis of a Public-Key Protocol
with Membranes

[1] Olivier Michel and Florent Jacquemard. An Analysis of a Public-Key Protocol with Membranes, pages
283–302. Natural Computing Series. Springer Verlag, 2005.

205

������� �	

�
������ �� � ������ �� �������� ����

���������

������� ���	���
 ������ �����������

� ���� ���� 	
� ��� � ����������� �������
��	� ������� !�" #$�%� ��� ��������� �� $��&��� '(�����)���%�
�����������	
�������	��

� ����*)����� ��� ��+ ���� 	
� �,�" � ��� �� ��%-��
,(����	� �	 .��������� /�$��� '��"! ��%-�� ����0)���%�
�������	����
���������	���������	��

�������� /� ����$�# �� ���$���� �1 �-� ����-�
��%-������ #	2$�% 3�� #����%�$
�� �-� 1��
�4��3 �1
�
2���� %�
#	���&5 �-�� ���$���� �� 	��� �� ��$����� �-�
#����%�$ ��� �0-�2��� �� �0#�%��� � 4�$$ 3��4� $�&�%�$ ����%35 �-� ����$�� �1 �	�
�##���%- �� �� 	��
	$����� ��4�����& �� � ���� �1
�
2�����5 �-� 	�� �1
�
2�����
���2$�� �� ��&-� �-� %��������� 1�� ����%���& �� ����%35 �-� �##���%- -�� 2���
��$������ 2� ����$�#��& � 1	$$ �
#$�
�������� 1�� ������$ �������� �1 �-� ���$����5

� ���� ��� ��	
��	
���

���� �	� ���� ������� ����������� �� ������ �� �	� ������������� ��
 !� �� ����� � ����� �� ������������ ��������
 ����������" 	�� ����
�� ��������� �� ������� #�	�������� ������������ ������� �������$% & �	��
�	�����
 '� '�� �� ��� � �������	 ����"�" �� �	� ������� ������(
�")*+, ���� �� ������� � '��� ��' ������������ �������- �	� ������� ��
� ������"���	�� ��������%
��� ������" ���� �� �	� ��"���� ������� �� �	� !���	��.��	������ ������

��� �������� /!�012% 3	� "��� �� �	� ��"���� ������� �� �� 4� � ��������(
�" �� ��������� ������ /����" �� ��'���" �����"��2 �	�� ����'� �
������� �� ����� ��4������ ���������% 5� 	��� �	��� �	�� ������� ��(
����� �� �� ������ �� �6����
 �� �	� ���� ���� �� �������� ���	��������� ����.
���������� ��� �	� �6�������� �� ��� ����� �����
 �� �� ������"����� �� �	�� ���
�� �����������
 �� ��� ������� �� '���.��' . 	��� '� �� �������� ���
������%
3	� �������	 ���� � �	�� �	����� �� ����� ����� �� ������� � �	� �6(

�������� �� �	� ����� ����� �� �	� �������� ��� � ���������� �����	 �� �������%

��� 65 ��%-�$)5 7�%8	�
���

&����
 '� ��� ��������� � �	� ����� �� �	� ������ ������������ �� "����(
���
 ���	�� �	� � ����"�" � �' �� ����� �����	 ������"�% 3	�� �������	
�� ��������� �� �	� ����� �	�� �	� ������������ �� ���� �� � ������ �������
� ����������"%
3	� ���� �� �	�� �	����� �� ��"��7�� �� �����'�% & ������ * '� "���

���� ����"���� � �	� ��"���� ������� �� ������"���	�� ���������% ������ +
��������� ��������� �	� !���	��.��	������ ������ ��� ��������% ������ �
������� �	� ���	���� ���� �� �	� �	�����% 5� ������� � ������ �� �	� ���(
���� �� !�01 �	�� �������� � � ������� ������� �������� �������� '��	�
�	� 89�! ��'����" �����'���):,
 '��	 � ���� �������� ������������ ��
������ ���" ����"% & �	� ������6 ��� "��� � �	��� ���������� �� �	� ���
��"��"�
 '	��	 ������ � ��� �� ������� �������"
 ��"��	�� '��	 �	�
��� ���� �� �	� ��"����	�� �������� � ������ �%

 ������ ���
���	
�� �� ����	������
� ���	����

& �	�� ������
 '� "��� � ����� ���������� �� �	� ����4����� ������� '� �	���
�������% ;�����"���	�� ��������� ��4� �	� �6�	�"� �� � ��' �����"�� ��(
�'�� ������� � ����� �� ���������� ���� ������� ���� ���� ������"���	�� ����
�� �� ���	������� �	��������% 3	��� �����"�� ��� ����� '��	 ������"���	��
����������
 ���� ��������
 ��"����� �� 	��	.�������
 �� �	������� �	� ��(
������ �� ��������� ������ � �	� ����"�	 �� �	� ������"���	�� ������� �
���% <�'����
 �� 	�� �������� �	�� ��� �	��"	 '	� �	��� ������� ���
������� ����������
 �	� �������� �� � �������� �� �� ����������� �� �
��6������ ���������" �� �����"�� ���'�� 	���� �"��� �� � ��������� �(
������ '	��	 	�� ���� ������� ������ ���� �	� ����������� ��'��� /����

�%"%
 '���.�����" ���� �����"�� �� ����������" ��������� '	��� ����"
�' ���2% ��� ������
 �	� '��� ��' �������� �� �	� ����������� �� ����
��� ��������� ������������� ���� �8� �� �	� ���	������� �� ������ ���� �
01&� ��� ����� �	� ����� �� �	� ����� �� �������� �������%
���	 ������� ������� �� �� �����7�� �� ������ � ������������ ���� ��

	��� �� 	��� ���������� ����������% =������ ������ ���	��� 	��� ���
�������� ��� �	� ��������� �� �	� ������� �� �	� ������������ �� ������(
"���	�� ��������� �� ��"���� �������
 ���	 ��� �����	�" �� >�'� �� �	�� ��� ��
��� �	� ������ ����� �� �	��� ������% ������� ������� 	��� ��� ����������
� ������� ��� �	� �����	 �� >�'�
 �%"%
)�?
 �@
 �+,% A�� ��� "����� ���(
���� ��"��"�� �� ����� 	��� ���� �������� ����������� � �	�� �����"
 '��	
�	� ������"� �� � "������ �6�������� ��'��
 �Æ����� �� ��������% 3� ����
��� � ��' �6������
 �	��� ��� ����� �	������ ���� � B)�C, �� ����)*�,

4��� ����� �	����� �������)*:
 ��, �� ����������� ��"��"�� ���� �� �����
�	������)@
 :,%
��� ������� � �	�� �	����� �� �� �������� � �6������� �� ��� ��������

��� ������" � ������"���	�� �������� �� 4��" �� ������� �� ����� �6���(
�����% 3	� ����������� ����� ��������� �� �	� ������� �������" �����(

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� ��"

'��� �� ����"�� ��������� �� �	� �������.������ ����� '	��	 �� "�������
��������� � ����� �� ����� ������ ���	��� �� ������"���	�� �������� ����4(
�����% & �	�� �����
 ���� �������� �� # ����.D�� �����$)?,
 �	� �"��� �6(
�����" �	� �������� ���������� ����	������� ��� � ����� �	��� '	��	
	�� ��� ����������� �� � �������% 3	� ������� �� ���� �� ��� �� ������
����� �����"� � �	� �	���
 �� ����7� ���� �����"��
 '��	 �	� ����������
�	�� 	� ���� ��' �	� ����������� �������� ��� � ����� �� �����	�� �
�������� �����"�% <� �� ���� ����� �� ��� �' �����"��
 �������� ����
� ���� �������% 3	� "����� ����� �� �	� ������ �� 	��� �� ���������� �� �
	�����"����� ��� ������" �	� ����� ������ �� ���	 �"�� /'��	 � ������
������2
 �	� �����"�� �� ���.�����"�� ��' �� �	� ������� �� �	�
�����"�� ��� �� �� ��� �������� �� � �"��% 3	� ������ �� �	� �"���
/�������" �� ����" �����"��2 �� '��� �� �� �	� ������� �� �� �������
���" ��'����" ����� � ���������% 3	� �����	 �� � ���������" �����" �� �
������ �� �� ����� ���� ������ '��	 � ����������� ������ �6������� ��
4� �������� �� ����� �� ��������� ��"�	%
3	� ������� �� 4��" ������� �� ��������� �� 	�"	�� ����������
 �	� �����

����� ���" �4��� ��� ������� ������- �	� ���������� �� �	� �����
�� �"��� � �������
 �	� ������� �� �"��� �� "������ ����	 ����� ����
/����2
 �	� �������� ��7� �� ����� "������� �� �	� �������% & ����� ��
�������� ��� �6�������� �� � 4��� �����	 �����
 '	��� �����" ��� ���������
��������� ��������
 '� �	��� ���� � ���� �	��������� ������� � ��������
����4�����% &� �� �	�' �)*�, �	�� �	� ������� �� �������� �������� /�(
�6������ �� �������2 ������� ��������� '	� �	� ����� �� �"��� ���������
�� ������% &����
)*�, �	�'� �	�� � �	�� ����
 '	����� �	��� �6���� �
������
 �	��� �6���� � ������ ������" �����"�� �� � ������ ��7�% 5� ��
��� �	�� ������ 	��� �� ����� �	� ����������� �� ��� ������ �����	 ���������

"��� � 4��� ����� �� �"���%

� ��� �������� �������� �!"�
� #�� ���	����

3	� !���	��.��	������ ������ ��� ��������)**, /!�01 ��� �	���2 �� �	�
�������� �6����� ��� �	� ���������� �� ������ ���	��� �� �	� ����4�����
�� ������"���	�� ���������% 3	�� ���������� �������� ����� ���� �� �� �	�
���� ������ ������� ����� � �	�� �����
 '	��	 �� �	� �������� � ���� ��
E% 9�'�)�C, �� � ������ ������ � �	�� �������� �C ����� ����� ��� ����������%
&)�C,
 E% 9�'� ������ �	� �������� � �	� ;�0 ������� ��"���� �� ����
�	� ����� �	����� � B �� �6����� �	� ����� �����% 5� ����� 	��� �	� ����
������ '��	 � ����� ����� � �������� �������"
 ���������� � �	�
��"��"� ��� %

��� �����	
�	� �� ��� ��������

3	� !���	��.��	������ ������ ��� �������� ������� �'� ����������� �����
/�2
 A�� /�2 '	��	 ��� '����" �� ���	������� ������������ '��	 �	��� ���(

��� 65 ��%-�$)5 7�%8	�
���

��"�� ���" ������ ����% 3	� ���"��� �������� ��)**, ������� ���� � ������
����������" �	� ������ ���� �� � �� � '��	 �	��� ��������� �����"��% 5�
���� �	� ������ �� ��� �	��� �����"�� 	���
 ������" �	�� � �� � ���	
�������� ��' ���	 ��	��F� ������ ���
 ���� �	�� ��� �� �������� � 9�'�F�
������% 3	� �����"�� ��� ��������� ����' � �	� ����� ������ /��� ���� ��"(
��� �2-

��� � � � - ����������

��	
 � � � - ���� �������

	��� � � � - ��������

& �	� 4��� �����"� /�������� ���2
 ����� "������� � ����� ����� /�����2
��
 ������ �� �� 	�� ��� � /�	� ����� �������� �� ������ � 2 �������
�	� ������� '��	 A��F� ������ ��� �/�2 /������ ��� �������� �� ������
'��	 �	� ����� �������� � � 2 �� ���� �	� ������ �� �	� ��'���% 5	�
A�� �������� � �����"� �� �	� ���� �� ���
 	� �����	��� �� �� ��������� �	�
������� � �� ����� �� �	� ��� ��% 3	� 	� "������� � ����� �����
����� ��
 ������ �� �� �� �� ���� ���� �	� ������ �������� '��	 �����F�
������ ����/�2 /�����"� ��	
��� � �	����"�2% �����
 �������" �����"� ��	

�� �����	�� �� �� �	��� '	��	�� �	� 4��� ������� ���������� �� �	�
��� �	� ��� � �����"� ���% 3	�
 �	� ������ A��F� ��� �� ��������
'��	 A��F� ������ ��� /�����"� 	���2% A�� �� �	��� �	�� �	� �����"� 	���
������ �	� ��� �� 	� 	�� "������� �� ����� ���� /��	
2%

�

�

�

�

����������
���

���� �������

����
��

������
����

�	
� �� :��%��#���� �1 �-� ��.9 #����%�$5

��� � ��
��� ������

B������" �	� �����"� 	��� ������ A�� �	�� ����� 	�� ������ �������� �	�
�����"� ��	
 �� ��'����
 ������� ����� �� �	� ��� �� ���� �� �����	��
�	�� �����"�% 5� ������ ����� �	�� ���	 �"��
 �� '��� �� �	� ������� /���
�� ���� 	�� ;	����
 �2
 ��'� ��� ��� �' ������� ���
 �� �	�� �	�� ��� ��
�������� �� �����	�� � �����"� �������� '��	 �	� ����������" ������ ���%
���������
 '	� �������" �	� �����"� ��	

 ����� �� ������ �	�� �� ������

����� ���� � /�� �� �� � ���� �����"� ���� ;	����2
 �� ����� �� �	�
������� �� �� ������� �	� ��'���"� �� A��F� ������� ��� �� �������� ���
�	� �6������� �� �� ���� �	� �����"� ���% <���
 �� �� �� ��� ���� ��
�	
���
���
�� � �	�� ��������
 �� �	�� ���� ����� ������% <�'����
 �	�

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� ��!

������ ��)**,
 ��������� � ��"��� *
 �	�'� �	�� �� �� �� �	� ����
 ��� '��	
�	� ����� 	����	���� ������" �	� ������� ����%
3	�� ������ ������� �'� ������� � ��������% & �	� 4��� ������
 �����

����� � ����������� '��	 ;	���� /'��	��� ��'�" �	�� 	� �� � �������2%
���� �	� �����"� ��� �� �������� '��	 ;	����F� ������ ��� �/�2
 ;	����
�� �������� ���� �� ������� �� '��	 A��F� ������ ��� �/�2% <� �	� ����
�	�� �����"� �� �	� 4��� �����"� ���� �� � ����� ������ ���'�� � �� �% &
�	�� ���� ����
 ;	���� ����������� �
 '	��	 �� ������ �/�2% A�� ��'���
�� ���� �� ;	���� ������� �	�� �����"� ��	
� /�� �� �� ������ �/�22% 3	�
;	����
 '��	 �'� �����"�� ��	
 �� 	��� �� �	� 4��� ������ ���� � �� �
������ � ����� �� ����� A��F� ��� ��%

�

�

�;�<

�

�;�<
�

�

�

�;�< �

����������

���
����������

��� �

���� �������

����
�

���� �������

������������

���� ��������

�����

�	
� �� * ��#$�� ����%3 1�$$�4��& =5 ��4�5

$ �
��
�� �� %		��& �� 	�� � �# '�
�� ���"�����

5� �	��� �������� 	��� �	� �����4����� �� �	� !���	��.��	������ �����.
��� �������� �� �	� ���������� �� � ������.�����	 ��������� ���" �����
�� ��������% ��� �	� ������������
 '� ���� � ��'����" ������ ��(
����������� �� ������������� /�;2 � ����� ���������" ����� ���������
/��������2% B�'����" ����� �� �� "������ �� ��������� ��������% 3	��
����� �� ������� �� �	� �	������ ����������� �������� �)�, �� '� ��� �	�
���� #�	������ �������$ �� ����� �	� ����� �� � �������% 86������ ��
������� ���������" ���	 ����� �� ����������� ��� E����
 89�!)*,

��G 8)+, �� ���)�,% 3	� �"������� �� �	�� ����� �� ���������� ���
���	�� ���	��������� ��� � ��������� ��� �	� ��������� ���� ���	�����
�� 0 ������� �� �������� �� '� "��� �)��, ���� ������� �	�� ������� �	��
��������%
5� ������ � �	�� �	����� �	� ��������� �� � ������ ������ �� �	� ������.

�����	 ���������% 3	�� ������ �������� � � ������� ������� �������� ���(
����� '��	� �	� 89�! ��'����" �����'���
 ������� '� ��� � ���� ��������

��, 65 ��%-�$)5 7�%8	�
���

������������ �� ������ ���" ����"% 3	� �������� ������������ �� �	� �(
��������" �� ������ �� ���� � �' ����% !��� �	�� ���	�� ������ �� ���������
�� ����� �������� �)*H,% 3	�� ���� ������ "��� ����	�� �� "������7�" �	�
�������	 �� �	� �6�������� �� "����� ����� ������ �� ���� �� ���� � �	�
��������� �	�� ������� ������ �����"�� �� ������ ��7�%
3	� ���������� �� �	� �������� ������� �'� ��I���� ��� �� ��������-

��
�
�� �� ����	
��� �	��% 3	� ������� ��� ������� �� �������� ����� ���
"��� �� ��'���� �����% � �
��
�
�
 '� �	��� ���� '���� ��	
���
 �� � 4���
��������� �� ������� '	��	 ��� �� �	��� ���- �"���
 �����"�� ����������
����"	 �	� ��'��� �� �����"�� �������� ������7�� �� �	� �������%
������� ������� � � ����� �	��� �����
 4��" � �������� ���� '	��	 ���������
� ������ ����� ��� � ��������� �����% 3	� ����� �� ��"��7�� ��� �	� �����'�"
�����
 �������� � �	� �6� �������-

� ������ ��4�����
 ���� �� �������� �	� �	��� ��� �� ������� /������ �%�2J
� ������� ���������� ���� �� ������
 � �	� ��� �� ������" �������
 � �����4�
����� �� � "��� ��� . � �"��
 � �����"� /������ �%�2J

� ����� ��������" �	� ��������� �� �	� ������� �� ������� ��� �	� �����"�� �	��
	��� ��� �6�	�"�� ���'�� �"��� �� �6������ ������� ���������
/������ �%*2J

� ����� ��������" �	� ��������� �� �	� ������� �� ������� ���� �����"�� ����
�	� ��������� "��	���� �� ��� /������ �%*2J

� ����� ��������" �	� �������� �� ����" �� �����"�� �� �"���- ���	 �����
��� ��4�� �� �������� ���'�� � �"�� �� � /��������2 �����"� '	��	
���4��� ���� �������� /������ �%+2J

� ����� ���������" � ����� �6�������� ��������� '	��	 	���� '��	 � ����(
����� �	����" '	��	�� � ��� ����� �� ����	��
 	��� �	�� �	� �����	 �� �
������ '�� ���������� /������ �%+2%

��� ��
�����	� ������ �������� �� ������� �� �����

3	� �	��� ��I���� ���� �� ������� /����������� ���������2 ���� � �	�
������ ������ /��������2 ��� ���������� ���" ������� /�	� ��� ���� ��� �	��
������ �� �� ���� � ������6 A%�2%

������5� �	��� �����"���	 �	� ����
 ����� �� A�� � ��� �6�����
 '	��	
��� ���"����
 ���� �	� ����
 �6�����" �	� ���"����
 �	��������7�� �� �
�����4�� /�"��F� ���2
 � ���� �� � ������ ������% & ����������
 �	���
�� �� ������� �"��� ��� �� ����% � �"�� ������� �-

� � ����
�
� � /��� ���J ������� �"��� ��� 	��� �	� ���� �������2

� �'�
��� � �� �� �� ������7� �	� ������.�����4� ������ �� �	� ����

�� �� ��

� � ������� ��	�
�� ��
 '	��	 �� ���� �	� ����� ��������� ����'%

8���� �"�� '��	 ���	�� ���� ����� �� A�� �	��� ������ � ��� �� �������
���	�� �� ����" �	� �6������ �� �	� �������� �� ������ +%�% 3	� 4����

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� ��>

� �� �� ����� �	��� �'� ������
 ��� �����
 � ������ �� �� �� ������ ��

�� ������������ ��� A�� /� ����� ��� ����� ���
���
 ������� '� �� ������
�	�� ���	 �"�� �������� ������� �	� ���� ������ ������" � ������ �� �	�
��������
 �� �� ����� ��� ����� ��������2%
3	� ���"��� ������ �� �� � �"�� �� ���� �	� �����'�" ������ /�	���

������ ��� ��������� ������� �� ���46�� �� � ���������2
 �������" �� �	�
����- ����
 �	��� �� ��������� ��� ����� �� ���	

 ��	�� �� ���������

��� A��% ��� �����
 �� K ���� ���� �	�� �	� �"�� �� ����� �� ��� �	�
�����"� '��	 �	� ����������" ����� � �	� �������� �����4�� � ������ +%�

�� ��������� ��� �� K �	��� /���� �����2 �� ���	
 /A��2% ��� � �"��
�����" �	� ���� �� A��
 �� K ��	�� ���� �	�� 	� �� '����" ��� �	� ��'��
�� ����� �� 	�� �	����"� ��	

 �� �� K ��������� ���� �	�� �	� �"�� 	��
��������� 	�� ������ �� �	� ��������%

��������� 3	��� ��I���� ���� �� �����"�� ��� �6�	�"�� ���'�� �����
�� A�� ����" �	� ��������% 5� ��4� � ��������� �� ����"�7� ���	 ���
�� �����"��- ���
 ��	
 �� 	���% �����"�� ��� ���� ������� �� �	�� ���
�	��������7�� �� �	� ��� �� ��������� �	�� �	�� 	���% ��� ������
 �����"��
�� ���� ��� ����� � 4��� �� ���������" �	� ����� �� �	� �����"� �� �
4��� �� '	��	 �� �	� ������ ��� ���� ��� ��������% ��� �	� ���� �� ����������

� ��� ���"���
 ����� ������ ��� �� ������� ��� �� ���������� �� �	� �������
�� �	� �'��%

������� �� ������ 3	� ��'���"� �� �	� ������� �� ���� ����������
�� ������� '��	 4���� ����
 �����
 ���
 �� % 5� ��4� ������� ����������
/�!� ����
 �!� �����
 �!� ��� �� �!� �� 2 ��� ���	 ��� �� ����(
����� �	�� �	� ������� '��� �� ���� �� ������ ���� �	� '	��� 	������ ��
�6�	�"�� �����"��- ���
 ���
 ������ ��� �� ������� ���% 3	��� �����(
����� ��� ���� �� �������� �	� ������� �� � �����"� �� � "��� ��� '��	 �
"��� ��������� � �	� �������%

��� !�� ������� !������"��	� �����

3	� ��'��� �� ����� �� ��� �"��� �� �	� �������
 	��� �	� ������ �� ����
�� ���� �� ������� �' �����"��% 3	�� ��	����� �� ���������� �� �	� �����
�������� � �	� �'� �����'�" ������� /�	� ��� ���� ��� �	�� ������ �� ��
���� � ������6 A%*2%

����	� �� ����#	� ��������� & ��� �������	
 �	� �6����" ���(
��"�� ��� ���� �� �	� ������� ���� �	� ������ ����� �� �	�� ��� ��� ����
��	�"��% ��������
 �	� �������� ������ �� � �����"� ��� ����� �� �'
��' ��������� �� �	� ����� �� ��������� �� ��������% ���� ���������
 �	�
������� �� ���� � ������6� �������� '��	 � ������ ��� /��� ������ �	�
��� �� �������� '��	 �� � �����"� 	���2 ��� �� 	� ��'� �	� ���������(
�" ������� ���%
3	� �����'�" �	��� ����� ��4� �	� �������� �� �	� ��'���"� �� �	� �(

������
 �������" �� �	� �����"�� ������ � �	� ��'���% 3	��� �� �6����� ��

��� 65 ��%-�$)5 7�%8	�
���

���� ��� ���	 ��� �� �����"�% 3	�� '��� �������� �� "������ ��� �	� ����(
����� �	�� �	� ������� �� �6����� ���� ��������� �����"�% <�'����
 �	���
������������� ��� ��Æ���� �� �6����� ��� �	� ��������� ����� �� �����
�����"�� '��	 �	� ���"�" ����� ����'% ��� ������
 �� � �����"� � ������ �
�	� ������� 	�� ���� ���
 �� �	� ������� ��'� �	� ������� ��� ����������
�� �	��
 �	� 	� ����� �	� �������� �	�� �� �	� �� �% 3	�����������

	� ���� ����� �	� ���� /�	����	�2 ��� �����" ���	 � ��������� �� �������
���� '� ������ �	�� �	� ������� �� ���� �� ����� ����� �����������%

� �� �� ������ K �	���� ����� K �	��
"#��� � � ��� � �
 � ���� �%�%
	�� K �	��

� �� �� ������ K �	���� ������ K �	���
"#��� � � ��	
 � �
 � ���� �%�%
	�� K �	��

� �� �� ������ K �	���
"#��� � � 	��� � �
 � ���� �%�%
	�� K �	��

3	� ���'��� #����$ ���� � �	� ����� ������ �	� ������ �������� /�%�%
 �	�
�������� ���� '	��	 � �� �	���2% 3	� �6�������� �����4�� � �	� "���� ��
�	� ����� �	���� �	�� ���� ������� �� �����4�� �� � ������
 � � "���
��������- ���	 ��� �� ��������� �� ������ �������� �� ��� �� �������� �����%

$���	� %�"� &� ��������� & �	� �������� ������
 '� 	��� ��������
�	� �$����� ����� ��� '	��	 ��� ������� ��������� �������" �� �������
��' �����"�� � ����% 3	� �����'�" ���� ����	�� � �' ���� ��� �����"�
���� ��' ��������� � �	� �������-

� ��� �� ��� K �	������ � K �	����� �� K
	����

"#��� �!� ���/
2 � �!� ����/�2 � �!� �����/�2

3	��� �� �� ���	 ���� ��� �	� �'� ��	�� ���� �� �����"�� ��	
 �� 	���%
3	��� ����� ��� ���� �� ������� �� ��������� /46�� ���� ����������2 ���
�������� ���� �����"� �	�� �� �� ���"�� ���� �	� ��' ����� � � ��������%
� ������ ������� � �������" ��� �������� ��������� ���" �	� �����

����� �� �	� ������� ����� 	���" ���"�� ��� �������� ���� �����"��% ��������

'�F�� ��� � �	� �����'�" �	�� � ���� ������ ��'��� ������� � �	� ����������
�� �	� ������ ����� �� ������ �%+ ���� � 46�� ���� �� ����	��%

��� ������ ����	��� �� �	�	� �� '(
���� ��� %���� %
���

3	� 4��� ���� �� �������� �	� ��"���� ������� �� !�01 �� �� �""��"��� ���
�	� ������� ������� ��� �	� �������� � � ��"�� �������� ����" �� � �	������
������� ������" �	� �"���
 �	� �����"�� �� �	� �������� ���������%
3	� �"��� �� �	� ������� '��� ����� '��	 �����"�� �� ��"��� �	� �������
'��	 �' ���������% ��� ��������� ��� � �	� ������� �� �	� ���� �����%
� ������ � �	� !�01 �������� ������� 	��� � 4��" � ���������" ��

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� ��'

�	� �"��� ������ ��������� ����' ���	 �	�� A��F� ��� �� �������� /�	� ���
���� ����������" �� �	�� ������ �� �� ���� � ������6 A%+2%
3	�� �������	 ��I��� ���� �	� �����'�" �������- ��� � �� � ������� ��

 �� � �"�� � � ����� '	��� 	� ��"	� ����� �� �'� ��I���� �����"�� ��

�� ��% 3	� �'� �����'�" �������� ����� 	����-

�% 3	� �"�� ������� �� ���	 �����"��- �� �� �� "��� �
�
� �� �� �� �� "���

��
�% <���
 ����� �	� �"�� �����
 � ������� � 	��

� 	��
�% & �	� ������

�������� �� �	� ��������
 ���	�� �"�� ��� ����� �� ��
� ��
� ��� ��

�

�����" �� � �������� ��������
 ��� '	��� �	� ������� ��� ����� �	�
�������� �� ������ �	� ���%

*% 3	� �"�� ������� �� ��� �� �� �	� �'� �����"��- �� �� �� ������� �
�
�
%

& �	�� ����
 � ������ ��"	� �� �� ���� ������� �	� ���� '	��� �	�
����� �	���� 	��� ������� �	� ��	�� �����"� 	�� �� ��� ���������%
3	� �������� ������� �� �	������� ��� '���%

3	� ��������� �� �	�� '� 	��� �� ���� ��� ������ �	� ��I���� �����(
���� �� �	� �������� �	�� ��"	� 	���� '	� � �"�� �������� ���� �	� ��
�����"�% 3� ����� ���	 � ��������
 '� ���� ��� �� ������� ��������� /���(
�����2 �� ������7� �	� ���������� �� �� ����� �	� /��������2 �����������%
3	� ������ ����� ������� � � �������� �� ���������% 8��	 ������ � �	� ���
�������� /�	� ��� � �	� ��"��"� �� 0 �������2 �� � �������� ����� � �	�
�������� �� �������� ���� �������� ��������
 �� �������� � ��"��� +%

�

�

�

�

�

�

�

�
�
�
�
�

�
�
�
��
�
�
�

�
�
�
�

�

��

��

��

��

����� ��

��

��

��

��

��

�� ��

��

�

��

�� ��

��

�

��

����� ����

�	
� � ��������� �1
�
2�����5

!�� ������ 3	� ��	����� �� ���	 �"��
 �� ���	 �������� ��
 �� ���������
�� � ��� �� �����% ��� �6�����
 �	� ��	����� �� 	%�� '��	 �� K �	��� �� ��
�'���	 �� �	� ����� �	��� �� �� ������� � �' �����"�-

�� � �� /�L ��� K �	����2� ��� K �	��&$� �� K �	�� � K �	��

"#��� � � ��� � �	� K �%��� � K �'(

�	� �������� L �� �	� ���������� ���"� �� ������� �� �	� ������� �� �L��� K
�	���� �� � ������ ����� �� � �6���� ��� �	� 4��� �� �	�� ����� �	� ����� �	���%

�' 65 ��%-�$)5 7�%8	�
���

3	� �������� � ����	�� � ������ ���� �� �	���� �� �������� �	� ����- �� �	�
������ �� ������ /�%"%
 � K �'(2 �	� �	� ���� �� �� ���""����% &� �	� ������
�'(�� �� ������ � �	� �	������ �������
 �	� ���� �� �	������%
3	��� ��� �	��� ��������� ������� ����� �� �������� �	� �������� �� �����

'����" ��� �	� ���	��������
 A�� '����" ��� � �	����"� �� A�� � �	�
4��	�" �����%
!��� �	�� �	� �����"�� ��������� �� � �"�� ���� �� �� ������� ����

�	� ������� �� ��� ��������� ��� ��	�� ���� �����������%

!�� �	�	�� %����� 3	� ������ ����� ��� �	� ������ �����	 ������� � � ��������
/�� ���������2 '��	 ��� �� ������-

� �	� �'� �"���
 ����� �� A��
 �������7�� '��	 �	��� ���������� �������

�	� ��������� �� �	� �����"� ��� �����
 ������ ���� �� ��������� ���"��
������
 ���"��� ������

� ������� ��'���"� /������ ���� ��� ��� ����������� �� ��� �' �������
���2%

)���	� ��� � ������� & ��� ��4���� �� �	� ������ �����
 �	� ����� ��
�"��� �� 46�� �� ������ ���	% 3	�������
 �	� ����� �� �6������ ����� ��
������ �������"��% 3	� ������� ������� � 4��" �	� ������� ���������"
�� ����� �� A�� ������ �����" �� � ���������� ������%
3	� ����� ���� �� �� "������ ��� ����"� �� ������ ��"�	 ���� �� ����

������� ���������" � �������� �� �� �� �	� �"�� /��� �	� ���� ��� �� �
�"�� ��������� �����2% 3	� ������������ "������� �� ���	 ����" �� ����
�� �� �� ��� �������% 3	� � ���� �� ���� �� ���""�� �	� #����������$
�� �� ���	 ����" �� � �"�� �� ���� �	�� �"�� ������-

�� ��%�� ��)**� �� �� �'(� �

3	� �6������� ��%�� ��)**� ������ � ����" ��"��" '��	 �	� ������
�	%�� ��)% !��� �	�� �	� ���� � �� �	� ����" �� �������� � �	� �������% 3	�
��������� �� �	� ���""���" ������ �'(��������� �	� �������� ���� � �%
A� ��M���" � ���""�� �� �	�� ����
 '	��	 �� �������� �� �	� �"�� ��������
���� �� ������� �� �	�� ���� ����������
 '� �� ��������� ��������� �	�
�������� �� � �"�� ���� �	� �6	������ �� �	� ����" �%
5� ����� ���� ��� � ���������" �����" �� �������" �	� ���% � ����������

������ �� �� 4� � �	� �	������ ������� �	� ��� �� A�� ��������% 3	�� ��
��� �� ����" � �����4� ����
 �%"%
 � ���� �����" �� � ���������� �� ���
������" ��������%

*��	���	� 	 ��� ��� ������""	�)������� 3� �������� ��� �����(
������
 '� 	��� ���������� ���������� �� ��������� ������� ������� �� �	�
��"���� ������� ���" �	� ��� ���"�����" ��"��"�% � ���������� �� ���
�� �	� �������� ���� �� �� ���� � �	� ������6%

��� �� � �������	 ���M��� ������� �� �	� ����" �� �	� ����������
�� � ���"�����" ��"��"� ��������� �� �	� ��������� �� �����"���� ���(

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� �'(

������)�
 ��,% A���� � ������"���� �����
 ��� �������� �	� ���� �� ����(
��������- � ������7�� ���������� �����4�� �� �����% �� �� ��� �6�����
��4�� �������� ��'����" �����)�, �	�� ��� � � ��� �� ��������� /�%�%
 ���(
�����2% 3	��� ����� �� �� ���� �� ���� ������ ���� � �������� �� ���	��
��
 �� '��� �� �� ��������
 ������ �� ������ �' ���������% ��
 ��� �� ����(
������ �� ���� �� ������� ��������% <�'����
 '� ������ �	�� �	� ��� ���M���
������� � �	� ����" �� � ���"�����" ��"��"� ���	�� �	� �	� ����������
�� � '��� ������ ������������ �����%

(!�����

& �	�� �	�����
 '� 	��� ���� �	� ������� �������" �������	 �� ��������
�� ����7� �	� !�01 ��������% 3	�� ���������� �� ������� �������" ��
�' �� �	� ���� �� ��� ��'���"�% &� 	�� ��� �	�' �	�� ���" ��� �������	

�	� '���.��' �������� 	��� ��)�C, �� ������ /� ���� �	� �� �����2 ����������
�� ��� ����� �6�������� ���������%
& �	� �������� ������
 '� ��� �����	�" ��� �	� ������� ���������" ��

�	� �"��� ������ �����" �� � �������� ������% G��" �������� ������� ��
�� 	���� ��������� �	� ���� �	�� � �"�� ��� 	��� �� ����� �� ���� �	� ��
�����"� �����" �� ���� �	� �� �������� �� �	� �����%
!�����	�����
 �	�� ���	�� �� �������� ��� �	� �����	 �� � ���������" ��

�"��� ������ �����" �� �	� ��������� �� �	� ���% 3	�� �� �������� �������
'� �������� ��' �	�� ���	 � ���������" ���� ���� �� � ���������� ������%
5� 	��� �������� �)��, � ���� "����� �������	 '	��� � ���� ����� �����
�����	 �� ���% 3	� �������� ���" ���� �� �	� �'� ������� 	��� ���
���������� � ��� �� �� �������� �)*H,% 3	� �������� ���� �� ������������
������ �� ��������% ��������
 �� �� ���� ���� �� ������ �	� ������ ������� ��
���� ���	��������� ���%
3	� �������	 �������� 	��� 	�� ��� ��������� ��� �	�� ������� ��������

�� 	������ ������ � �	� ����" �� �������� �� ������7� �	� ����������
�� �� ����� �������� ���������� �����" �� ���� �����6����� �������% 5�
������� �	�� �	� ��������� �� ��� ������" ��� "����� ���"	 �� ������ �
���������� '�� �� ������ � ���"��� ��� �����	�" ������� ���� � �������� ��(
�������� �� �	� �����"�� �� � �������� "��� '��	 �	� ������� �� ������ +%�

�����'�")��,%

���� ����"���� 3	� ���	��� ��� "������� �� ���.9���� E�������
 �����
;�	� �� ����� ����	�� �� 9��& ��� ���������" ���������� �� �	��"	����
�������% 3	�� �������	 �� ��������� � ���� �� �	� ;!B�
 �	� E B �90
 �	�
G�������� �� N8���
 E������ ��
 &!B&� �� 8!� ;��	�
 �	� B!39 ���M���
0B�G=N8 �� �	� �;&(�& B����"��%

�'� 65 ��%-�$)5 7�%8	�
���

)���������

(5 75�.5 ?��@���� .5)����� :5 �� ��������A =�

� ��� �-� �-�
�%�$ ���%����
����$A)�1���� B���� *1���5 ������� ����	
� ������� ��
���� ��"! �#���&��
?��$�� �((>���5

�5 .5 ?�������3� �5 9��%-��� C5 9��%-��� .5�5 �����	 �5 +����3A ��*� �
* ��&�%�$)��
�4��3 ?���� �� ��
#	�������$ �����
�5 ��������
� ����	
�
�������
��� ������� ��
���� � ;('',<5

"5 �5 �$���$)5 :	���� �5 �3�� .5 ���%�$� �5 �����D�6$��� 75 ����&	�� 75)5 E	��
����A �-� ��	�� �����
5 ������� ����	
� ������� ��
���� (,"(�#���&��
?��$�� (''' �����"

�5 �5 ��������� �5 :	�&�� .5:5 ���%�$� 75�5 ���%-�$$ *5 �%�����A * �����
�������� 1�� .����%�$ *��$����5 �� ����� ���� ���� ������� �����
�� �����
���
��	 ����	��� �����!!!" ������� ���$� !!�,'5

!5 C5 �������A �#�%�1���& *	�-����%����� .����%�$� ����& ��*�5 �� ����	��� ��
#����
�$ ��� %��
&���
�� ('''5

,5 :5�5 :�$$ *575 :��0$�� *575 C	 �5C5 B��&A .����%�$ +���F%����� �� � C���4���
:���&� *��5 �� ��������
���� ���'������ �� ������� (�	
$�) %���
� ���
�����	 ��� �����		��	 ���(�!!�" !���!�! ��� *$�
���� ��5 ��* !���!�!5

>5 =5 :��3�� 75 ����&	�� �5 ��$%���A .����%�$ �#�%�F%����� ��� *��$���� ��
��	��5 �� ����	��� �� ����� #�����	 ��� �����
�� ��������	 (''�5

�5 :5 :�$�� *5 B��A 6� �-� ��%	���� �1 .	2$�% 9�� .����%�$�5 ���� ����	���
��	
�� ��'����
�� ������ ����' � ;('�"< ('����5

'5 75��5 =�������A ��#�$�&�%�$ ��$$�%����� �����1��
������ ��� �-��� *##$�%��
���� �� �-� ����$��& ��� �-� ��
	$����� �1 :���
�%�$ �����
�5 �� *�+�
�
�$
�����
�	 ��� ,���
���
��	 *�,-./" ������� ����	
� ������� ��
���� �>,
�#���&�� ?��$�� �" ����""5

(5 75��5 =������� 65 ��%-�$A �-� ��#�$�&�%�$ ���	%�	��� �1 ��
2���� ��
#	���&5
��������� ��'����
��� �' ;��< (>�(�'5

((5 75��5 =������� =5 ��$%�$
 65 ��%-�$A ��4�����& �����
� ��� �-� ����$��& �1
?��$�&�%�$ �����
�5 �������
0� ��� �����
���� 1���
�	 ! ;��< '!�''5

(�5 �5 .����� 7���� �5 C�$$ 95 C�

��� /5 .������ .5 /��$��A �-� =$��&�4
C��3�$$ ��
#�$��A * ��%-��%�$ 6������45 �� 2�
�� ����+��� '�� ��'����
��
��������$� �����
��� ���'������ (''"5

("5 *5 C	�
�A �Æ%���� ��F���������� *��$���� �1 ��%	���� .����%�$�5 �� �������
�$	
�' ��3�-!! ����	��� �� ����� #�����	 ��� �����
�� ��������	 ('''5

(�5)5 7�%8	�
��� �5 �	����4��%- �5 +�&�����A ��
#�$��& ��� +���1���& ��%	�
���� .����%�$�5 �� ��$
� '�� ���$��
�$ ��� ,������� *��	��
�$ ��,*-.."
������� ����	
� ������� ��
���� ('!! �#���&�� ?��$�� �5

(!5 G5 �����A �-� 62H�%���� �*�� �����
 ��$���� "5>5 :�%	
�������� ���
������ ���	�$5 ��%-��%�$ ��#��� ����* ��5

(,5 =5 ��4�A *� *���%3 �� �-� ����-�
��%-������ .	2$�% 9�� *	�-����%�����
.����%�$5 ��'����
�� �����		
�$ ������	 !, " ;(''!<5

(>5 �5*5 �����4�A �-� ��� .����%�$ *��$�I��A *� 6������45 2������ �' ��$
�
���$��
�$ �, � ;(''!< (("�("(5

(�5 7595 ��$$�� �5�5 �$��3 �5?5)����
��A �-� �������&����A .����%�$ ��%	����
*��$����5 ���� ����	���
��	 �� ��'�+��� ��$
����
�$ ���(" � ;('�><5

('5 65 ��%-�$)5 7�%8	�
���A *� *��$���� �1 �-� ����-�
��%-������ .	2$�% 9��
.����%�$ 4��- �=�5 �� �
'�� ����	��� �� #�4���� �����
�$ �#�5"
��$��� �� �'!�"(!5

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� �'"

�5 65 ��%-�$)5 7�%8	�
��� 75��5 =�������A �-��� +��������� �� �-� *��$����
�1 �-� ����-�
��%-������ .	2$�% 9�� .����%�$ 4��- �=�5 ��%-��%�$ ��#���
�����'���� ����5 ������� � ���� �� � �! #�&��5

�(5 75 ���%-�$$ �5 ���%-�$$ �5 �����A *	��
���� *��$���� �1 ���#��&��#-�% .���
��%�$� ����& �	�#-�5 �� �������
�$	 �' ��� ���� ����	
� �� �����
�� ���
��
0��� (''> (�(�(!(5

��5 �5�5 ����-�
 �5:5 �%-������A ����& ��%��#���� 1�� *	�-����%����� �� ���&�
���4��3� �1 ��
#	����5 ����
���
��	 �' ��� ,�# �((� ;('>�< ''"�'''5

�"5 =-5 .J�	�A #�4���� �����
�$� ,� ���������
��5 �#���&�� ?��$�� ��5
��5 �5 �	����4��%- �5 �	�	���A .����%�$ ����%	���� 4��-)����� �	
2�� �1 ����

����� �� �.���
#$���5 �� �������
�$	 �' ��� �6�� ������� �����
�� �������
��	
����	��� �����..�" (>��('5

�!5 �5 /�����2�%-A ��4���� �� *	��
���% *��$���� �1 ��%	���� .����%�$� ��)�����
6���� ��&�%5 ������� ����	
� ������� ��
���� (,"� �#���&�� ?��$�� ('''
">��"��5

%�����
* %+ % ,�
�� -�	���!�	
�� 	� 	�� ��� .���!���

5� ����>� ������ � �	�� ������ �	� ��� ��"��"�% 5� �� �� ������ ���
�	� �������� �� �	� ��"��"� ��� '� ���	�� ����� � �	� ����� �������� ��
�������� �	� �6� ������%

��� ��� �� � $���	���)������

��� ������ � ��������
 ������
 ���������� �����
 ������
 �������� ��(
"��"�% 5� ��� �������� 	��� �	� ��M�� ��I������ ���'�� �	� �������(
���� ��������� � ��� '��	 ������� �� �������� ��"��"�� ���� '�	�
)�:, ��
�	�(�

)�*,%

*������ ������ ������ /���� ���"���
 >����
 �������
 ����"�
%%%2 '��	 �	���
����� �������
 ��� ���������% ;������ ��� ������ '��	 � ���������- ����
/�	�� ��� ��������� ��
��+ �������2% 3	� ��� ��������� ����'�� � �
������ �� �� ����� �� �� �� ������� �� ��� �������� '��	 ���	�� �����%
B������ /�������� �������� '��	 ������2 ��� ��4�� ���" ������- �,-./

0-1� ������� � ���� '��	 ����� , �� 0 /��� ������ ��� ������� �� +�&��%F�
������ �� �F� ������2% 3	� 4���� ��� ���������� ���" �	� ��� ������- %�$

- �,-./ 0-1� � 2, 	�� ����� .% ���� ������� ��� ���� � ��� �� ��4�
� ���������� ����� �� � �����
 ��� ����'� �	� ��4���� �� ���������� �����
��� �	� 4���� ���� � � ������% 3	� ���'��� ������ �� ���� �� ��4� ���	
����������-

������ �3��$ - 45�/ �/ ��/ ��46

��4�� �	� ��������� �3��$ �	�� 	���� ��� �� ������� � � ������ ����� �	��
	�� �� ����� ��� �	� 4���� �/ �/ �� �� ��% B����� �%�� ��4�� �� ������
�%�� - ���&$� 7 �3��$ �6���� ��������� �3��$ '��	 �	� ����������� ��(
������ 4��� ��&$% �� ���
 �	� ������ ���������� ��� �������� �� 	��� �	� 4����
�� 	���% 3	� ��������� ��) ��4�� �� ������ ��) - ��� - ����� 	���� ���
�� ��� ��"���� 	�� � 4��� �� '��	 � ����� ����� �� �	� ������ ����%

�'� 65 ��%-�$)5 7�%8	�
���

�"
����	+� *��	�,��� �� %�-���	�� =�������� � � �������� ��(
"��"�� ��� �� ���� ���������- �	�� ����� �� ������ �� ���� �� �������%
��� 	�� � ���� �� ������
��� �������� /���� ������ �	
����2 �	�� �� �� ��(
�����% 3	� *- �������� ����'� �� ��4� ���	 ���������% ��� �6����� �� *- .

��4�� �� '��	 ����� . �	�� �� �� ����� ������� '��	 �	� ���� ����������%
3	� ���� ����� �������� 8 �� ���� �� �6����� �	� �������" �� �6����(

����- �	� ����� �� !9:839: �� �	� ����� ������� �� 39: ��� !9: 	�� ���
�������� ������%

$���	��� ���� ��� �� � �������� ��"��"�
 �� 	�� ������� �� 4���.�����
������% ������� ��� ��4�� ���	�� ���" �	� ���������� !�� ���� � !��

��,9,/ 0: - ! 9, ; 0: $#�� , �%&� 0 ! �� ���" �	� ��������� ������
������ �� �
,2
02! 9, ; 0: $#�� , �%&� 0 !

;���������� �� 46����� ��� 	������ ���� � ����������� ���� ����������
�� ����� ����� �6���������% ��� �������� � �������� �� ������� ���������
�� 46����� �� �������% 9�� ! �� � ������
 �	� !<$�� - �=9,: ���(
����� !�9,: �� !<>=9,: ������ �	� 46���� �� ! ������" ���� ,%
������� ��"��	�� '��	 �������� �� ��������� ����'� �� ��4� �������

�	�� ���� ���������� ���'�� �����% ��� �6�����
 ������ ! ��4�� �� !��
!<���-.=9,:-9��� *- ���718 ,7���: ����'� �� ��4� � ����������� ���
'	��	 ������ � ����� �	�� �� ��������� ���'�� ���	 ����% 3	� ����� ��
!<?$�� - 1./ ��� - .=91: �� @A%

%+ �������
��� ������	
��� ��� 	��
� ����������	
���

3	� ���������� �������� �� �	� ��� ��"��"� �� ��� 	����" �� �������
���������� �� ��
���

�������� ���"
��������
���)�H,% � ��� �� �������
��"��7�� �� � �������� ������"� �� ������ �
���������� ������
���% 3�����"����
���� 	��� �	�� ���	 ��������� ���� ��4�� � ��"	���	��� ������� �����"
� ���� �� 	��������
���% � ���.��������� � �� � ��������� � �� � ������ ��
������� ������� �� � �� �	�����" ��� ��"��7���� ���� �%

.������	� !�
��� ��� ��I���� �����4�� �� ����.��4�� ���������
����� ��� ��������� � ���% 5� '�F� �������� �	�� 	��� ���� ����
 ���������
�� �������� ��� �	� ��� ��������� ���� ���� � �	�� �	�����%
��� �� ��������� ���� �
 �	� ����������" ����� ��������� �� '�����

9:*�% 3	� ��� �� � ��������� ���� �� ���� � ��������� ���� �� ���� �� � �����
�� �� �	�� ����- �9�: 	���� ��� �� � �� �� ���� �% 8��	 ��������� ���� ��
�� ��������% 3	� ���� ���������� ��%%��$�� � - � ��������� � �'
��������� ���� � '	��	 �� � ������� �� �% 3	� �' ���� � �	���� �	� ����
������"� �� �% <�'����
 � ����� �� ���� � �� �� �����"���	�� ���� � ����� ��
���� � ���" �	� � ��������� /�%�%
 �	� �������" ������� ������� �	�� �/�2�
�/�2
 ��� �� ����� �
 ��� �� �	� �������2% 8������ � � ��������� �� �� ��
�� ����
 ������" ����������%

/
����	�� � .������	��� 3	� M�� �� �'� ���������� �� �� �� /'���(
�� �� � �����- ��/��2 �� �	� ��� �������� � ����������% 3	� �����

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� �'!

�������� �� ���������� � ��� �� �� �� ���� �� ����� �� ��������� /�	�
���� �� �	� ��"����� �������"����� �	� ��������� �����2% ��
 �	� �6�������
1/ 171/B71/9:*&�$ ������ �	� ��� '��	 �	� �	��� ������� �� * �� +
 '	���
�	� �6������� 1/ 171/B71/9:*��3 ����� � �������� '��	 �	� ���� �	��� ��(
�����%

!������"��	��� 3	� ������
��������
��� �� � ������"���� ��������� �
������� � �	� �������� �������
��� �� � ��� �� �����
��������
���% � �����
������������ �� �����4�� �� � ��'����" ���� � �	�� �����4�� �	� ����������
�� � ���.��������� �� ���	�� ��% 3	� ���������� �� � ��'����" ���� � �
�/�� 			2 �� � ��������� �-

�% ������� � ���.��������� � �� � '	��� ������� ����	 �	� ��

��� �

*% �������� � �' ��������� � �� � ������ � �� � �� ��� ��"	����

+% �� �����4�� �	� ������� �� � � ����� �� � ��� �%

�� �	���� ��� ������� �� �	� ���� �	��
 ��� �� �	� �������� ����������
������"� �� �����
 ��� ��
���
 ��
���� �� ��
�� 	��������
��� ��
���� ��

�� � ��

��� ��� ���	�
����	�� ��������� ��
�� �/��2% 3	�� �� ���� ���(
����� ���� �	� ��������� ������"��� �����'�� �� ��������� ��'����" ����� ����
��G 8)+,
 89�!)*,
 ����)C,
 ��B)�,
 ���%
3	� ��� �6��������� ���"�����" ��"��"� ��������� �	� ���� ��

������������� �� ������"���� ��������� ��� �	� �����'��� �� � ������ ��(
�������� ����� �������� ��"��"�% ;��������� ��� M��� �' ��� �� ������
�� ������������� ��� ������� ����" � ���������� �� ��4�� �� � ���(
��4� ����6 ���" �����% 3������������ /���� �������2 ��� 4���.����� ������
�� �� �� ������ �� ��"����� �� ������� �� �	� ������ �� � ����������%

%�,0�������	� �������� � ������������ �� ��4�� �� � ��� �� �����
/������ ���'�� ������2% � ������ � �	�� ������� � �	� ���� 	�� ���� ��
� ���� �� � �6������� ���� �� ������ � ���.��������� �� �� ��������% �������
��������� ��� ���������J '� '��� �����' 	��� ��� ��' �� �	��-

�)	�����- � ������� ����� ����	�� � ������ '��	 �	� ���� �����% ��� �6(
�����
 1BC ����	�� � ������ '��	 �	� ���"�� ����� �*+%

� *��	�,��- � ������ �������� ����	�� �6����� �� ������% 3	� ��������
 �� �	� ����� ����'	��� � �	� ���� �� �	� ���� �� ������ �	� �����
�� �	� ����	�� ������% 3	� �����4�� �� � ������ �������� �� �� ����
��� ��� � � ������% 3� ����	 � ������ '��	��� "���" �� � ���
 �
��������� �� �� ����%

� ��	��- �	� ������ � �& � ���������� �	� �������� � �� �	� ����� ����	��
�� �	� ������ �% � �� � ��"���� �������� �	� �� �� ���� �� ����������
���������%

� &�	��,��- �	� ������ � / � ����	�� � ���.��������� �������� �� �
������ ����	�� �� � ��"	��� �� � ���.��������� ����	�� �� �%

� 1����- ����� ����	�� � ���.��������� ����	�� �� � ���	 �	�� �	� ����(
����� ��� 	���% ��� ������
 �/� D � ;� ����	�� �'� ��"	��� �������
���	 �	�� �	� ����� �� �� "������ �	� �	� 4��� ��%

�', 65 ��%-�$)5 7�%8	�
���

� ��
��	�	�- �> ����	�� � ���.��������� ���� �� � /�������� �����2 ���(
������ �� ���.���������� ����	�� �� �% &� � �� � ������ ��������
 �	� ���
����� ������ �� �	� ������� �� ����	�� ������� �� �� �� �� �� �	�
��������� ������% ��� �6�����
 C7 ����	�� � �(����� ���.���������
���� ��� �� CF�%

��� �� ��",��� .�"
��	�� 3	� ��� ��"��"� ������ � ��� ��
������� �������"% &� ������ �	� ��'����" �� ��������� /�� ����2 � �	�
�����'�" '��- � � ��������
 � ������ �� ����������� �� ������� '��	 ��
��	�� ������
 �� �	� �������� ������"� �� � �������� �� �	� ������"� �� � ���(
����� ������� "���	- �	� ��"	���� �� � ������ ��� ��� �	� ��	�� �������
� �	� ��������% 3	�
 � ������ � �� ������ � ��������� ���.�������� �� �
�������� ��'����" ���� �� ������ � ����� ������������ � �	�� ������"�%

%+� /*�����0 ����!	
�� ��� 	�� �1	!���
� � �	

9�� � �� � ��� �� ������% 3� ������� ��� �	� �(������ �� �� ��� �	�
������������-

����� � �
!��"���# �$ % &

' (�� �) * ��+�'�) %% � * '��� ,% �,,���- �����) %. //'0)-

 %. ���
��'���)

1

& ������������ � $��%�
 ���������� ��� �� � ��� �������� '	��� ���(
����� ��� ����� �� �	� ������������% 3	�� ��� ��� �� �	� 4��� ���� �� �	�
������������% ������� �� � ��������� �
 ������ �� �	� 4��� ���� 9 > �& E:
D &F�9E: -- �: ����	�� � ���.��������� � �� � �� ��7� � ���	 �	�� ��� ���(
���� �� � ��� ��"	���� /'��	 ������� �� �	� ������"� ������ �� �2% ��� � ��
����
 ��������� 9��� *- �**���8 !�%&�: �� ����������- ��������� � �� �����
�� �	� ����������� /** �� �	� ���������� �� � ����� �� � ���������2 �� �	�
����� !�%&� �� �������% ���� �	� ��������� ���� �� 	���
 �	� ��"	� 	�� ����
�� �	� ���� �� �� ��������� /�	� �6������� GG9.: ������ �	� ���"���2 ��
�	� ���� �� ����� �"���� ���	�� ������
 �����" ���	 ���� �	� ������� �� �	�
����	�" ��� �	� �����������% ��� ��� �	� ������������� 	��� ��� ����� ��
������
 �	� ����� ���� �� �����% 3	�� ���� �������� � ����	�" ���	�" ��
������ �	� ����� �� �	� �����������% 3����������� � $��%�<���-&�$*9:/
�-B=99C/H/@/A/&�$*9:::88 �������� ��� �	� �����

''2# 3),4���# '2# 5),4���# '2# 6),4���# '3# 2),4���# '3# 5),4���#

'3# 6),4���# '5# 2),4���# '5# 3),4���# '5# 6),4���# '6# 2),4���#

'6# 3),4���# '6# 5),4���),4���

'	��� 9C/ H:*?&�) �� � ���� 	����" �	� �'� ���"��� �����%

%�����
* ,+ ��� ���� ��� 	�� 2����
�	
�� �� 	�� %		��&

5� "��� � �	� �����'�" ������� �	� ��� ���� �	�� ��������� �	� �����	
��� � ������ �	�� �� ��������� � ������ �%

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� �'>

2�� ��
�����	� ������ �������� �� ������� �� �����

3	� ���� �������� � �	�� ������ ��������� �	� ���� ���������� ��4��
� ������ �%�%

������ �� ��� �� ������� �� ���� �� ��4� ����

 ��4�� ��-

������ �7��� % & ��# ��# ��# !�1--

������ ����� % & ���� 1 8 �7���--

������ 9�9 % �7���--

���� ������� ��� �	� �	� ������� �������� �"�� �� ��� ��4�� �� �����'�-

������ ��� % & !� % :��� 1--

������ ���� % & !� % :���� 1--

������ �
�� % & !� % :���� 1--

������ ;��� % & !� % :<�=� 1--

������ �������� % & !� % :>=?=@��A 1--

��������� � ��������� �� ��4�� ��� ���	 ��� �� �����"�-

������ �����7���� % & ��# �# B9 1--

������ �����7����� % & ��# �9# B� 1--

������ �����7��
�� % & �9# B9 1--

������� �� ������ ������
 '� ��4� � ��������� ��� ���	 ��� �� �(
�������� �	�� �	� ������� '��� �� ���� �� ������ ���� �	� '	��� 	������ ��
�6�	�"�� �����"��-

������ ���� ���� % & ���� 1--

������ ���� ����� % & ����� 1--

������ ���� !
9 % & !
9 1--

������ ���� !��� % & !��� 1--

0��������� ��� ��4�� ��� ���	 ��� �� �����"� �� �������� �	� �������
�� � �����"� �� � "��� ��� � �	� �������-

�
� �����7��������'�# �) % �����7����'�) C '�	B9 %% �	��)--

�
� �����7���������'�# �) % �����7�����'�) C '�	B� %% �	��)

C '�	�� %% �	��)--

�
� �����7��
������'�# �) % �����7��
��'�) C '�	B9 %% �	��)

C '�	�9 %% �	��)--

�
� D�����7����'9# ���) % �E����'�����7��������'9)# ���)--

�
� D�����7�����'�# ���) % �E����'�����7���������'�)# ���)--

�
� D�����7��
��'�# ���) % �E����'�����7���������'�)# ���)--

2�� !�� ������� !������"��	� �����

3	� �������F� ��	������ ��������� � ������ �%* �� ��4�� 	��� � �����
�� ��� �������������%

����	� �� ����#	� ��������� 3	� �����'�" ������������ ����� ��(
4� �	� �������� �� �	� ��'���"� �� �	� �������
 �������" �� �	� �����"��
������ � �	� ��'��� -

�'� 65 ��%-�$)5 7�%8	�
���

����� ����
��� % &

� * �����7����'�) C �E����''FB	'���� !���'B)

C 'B	!��� %% �	B9)))# ���7�9���'�))

%. �# &����� % �	��1# &���� % �	�1-

� * �����7�����'�) C �E����''FB	'���� !���'B)

C 'B	!��� %% �	B�)))# ���7�9���'�))

%. �# &����� % �	��1# &����� % �	�91-

� * �����7��
��'�) C �E����''FB	'���� !���'B)

C 'B	!��� %% �	B9)))# ���7�9���'�))

%. �# &����� % �	�91

1--

3	� ������ ��3#���& ���� � �	� ������������ �� � ������� ���� �	��
������ ��� �	� ��"	���� �� �	� ������ ������ �� � ������ ��������%

$���	� %�"� &� ��������� & �	� �������� ������
 '� 	��� ���������
�	� �$����� ������������ '	��	 ��� ������� ��������� �������" �� ��(
����� ��' �����"�� � ����% 3	� �����'�" ������������ ����	�� �'
���� �����"�� ���� ��' ���������� � �	� �������% 3	��� �� �� �������(
����� ��� ���	 ��� �� �����"�-

����� ���7� ���"��� % ���,')$ %

&

''B,���� !
9)# '�,���� ����)# '�,���� �����)) �� G

* ��� ,% &�� % �	�����# � % �	����# B9 % B	!
91#���- �����

%. //'0)-

 %. ���
��'���)

1--

����� ���7� ����"��� % ���,')$ %

&

''B,���� !
9)# '�,���� �����)# '�,���� �����)) �� G

* ��� ,% &��%�	�����# �9%�	�����# B�%B	!
91#

&�9%�	�����# ��%�	�����# B�%B	!
91#���- �����

%. //'0)-

 %. ���
��'���)

1--

����� ���7� �
��"��� % ���,')$ %

&

''B,���� !
9)# '�,���� �����)) �� G

* ��� ,% &�9%�	�����# B9%B	!
91# ���- �����

%. //'0)-

 %. ���
��'���)

1--

�
� ���7�'�) %

�# ���7� ���"���%���,')$'�)# ���7� ����"���%���,')$'�)#

���7� �
��"���%���,')$'�)--

�
� �����B'�) % ����
���'���7�'�))--

;������ �	� 4��� ������������- �� �	���� ������ �	��
 ���� �	� ������
���� �� �!� ���
 �!� ���� �� �!� ����� ��"	� �� �� �����
 '� 	���

*� *��$���� �1 � .	2$�% 9�� .����%�$ 4��- ��
2����� �''

�� ��� �	� ���� ��� �� ��������� ��������� � ������ �%+ �� ������� ���

����	�" ������% 3	�� '��
 '� ������� ��� �������� ���� �����"�� ��'�"
������ ����
 ���� �� �"��� ������� � �	� ������� �� �������� ����%
������ !��3�
 ������� �� �	� ������� & ���� �� �	� ���"��� ������� �	�

������ �� �	� ���������� �� �	� �	��� !��3� �������������%
� ������
 ��������� �� �	� �$$��� ������� � �	� �������" �� ��� ���������

���������� �� �	� �$����� ����� 	���" ���"�� ��� �������� ���� �����"��%

2�� &���������	��� �� �	�	�� �' ��������� ���� �� ��4��- ��������
'	��	 ������� ���� �	� ��������� ���� &�) /�������� �� �	� M��� � �������
'��	 � ��I���� ���2% 3	� ����� ��������� �� �	�� ��� �� 9:*��������%

���������� ���9���� % ���--

!�� ������ 3	� ������������� ��������" �	� ��	����� �� ���	 �"�� ���
��������� ����'-

����� ����� ��� % &

E * '���'E) C �����'E)) %. 'E 8 &!� % :����1)#

&B9 % E	����# �� % E	��# � % E	��1

1--

����� 9�9 ���� % &

� * 9�9'�) C ����'�) C D�����7����'�# ���7�9���'�))

%. ��� ��� �����7�� % ������'�����7��������'�)# ���7�9���'�))

�� ���
��'��!''F�	''� 8 &!� % :<�=�# �� % �	��1)#

&B� % �	�# �� % �	��# �9 % �	��1#

������'���7�9���'�))))# ��� �����7��))

1--

����� ����� �
�� % &

E * �
��'E) C �����'E) C D�����7�����'E# ���7�9���'E))

%. ��� ��� �����7�� % ������'�����7���������'E)# ���7�9���'E))

�� ���
��'��!''F�	''E 8 &!� % :>=?=@��A1)#

&B9 % E	����# �9 % �	�91#

������'���7�9���'E))))# ��� �����7��))

1--

����� 9�9 ������ % &

� * 9�9'�) C ;���'�) C D�����7��
��'�# ���7�9���'�))

%. ��� ��� �����7�� % ������'�����7��
������'�)# ���7�9���'�))

�� ���
��'��!''F�	''� 8 &!� % :>=?=@��A1)#

������'���7�9���'�))))#

��� �����7��))

1--

!����� �	�� �	� �����"�� ��������� �� ����� ��� �� ������� ���� �	�
�������% ���� �	�� �� �� ������ � �	� ������ ���� �� �	� ����
 �	�� ���
�� ����	�� �� �	������� �� #�������$ ���� �	� �������%
;��� 	�� ��� ���� � �	� �������� ������������� �� "������ �	� �������

������� ��������� /�	�� �� �	� &�$!09��3#���&90:: ��"���� � �	� ���
�� �	� �%	%�% �� ���	 ������������J &�$!0 �������� �	� ��� �� ������� ��

" 65 ��%-�$)5 7�%8	�
���

��� ��������� ��"���� �� �	� ������ ��3#���& ������ ��� �	� ��"	����
�� �	� ������ ������ �� � ������ ��������2%

��+���	� � %��������� ������� � ���������� ������ �� �� 4� � �	� �	��(
���� ������� �	� ��� �� A�� ��������% ���� '� 	��� � ������� �� ����

�������" � ���������� ������ ������� � �����" � ���	 ��� �� �	� ��� ��
��������-

�
� ��9��B��'E) % ���9��'&����� % H1# E)--

�
� 9��B��'E) % �E����'��9��B��# E)--

!�� �	�	�� %����� 3	� ������ ����� �� � ������� �� ���� '��	 ��� �� ���-

������� ,% '&�� % I�����I# �� % 0# ��# !� % :���# ���� % I������I#1#

&�� % I9�9I# �� % H# ��# !� % :����1#

&!��� % I������I1# &!
9 % I������I1# &!
9 % I�����I1#

&!
9 % I9�9I1# ���,')

),, ���9����,')--

B����� �	�� �	� �� 4��� �� �� ��� � �	� ��4�����- � �	�� ����
 �� ��
��4�� '��	 � ���4�� ����� /�� '��� ����� �� ��� �� � ������� ����� ���
� �����"� �� ��������2%

)���	� ��� � ������� �� ������ � ������ �%+
 �	� ������� ������� �
4��" �	� ������� ���������" �� ����� �� A�� ������ �����" �� � ����������
������% 3����������� �����& �������� �� ���	 � ���������" �6����% &� ��
������� � !���$��& '	��	 �� �	� ��� �� �	� ������������� ��������" �	�
�"��� ��	�����% 3	� ��� ������ �6������� 9 >: �& �'��� ����	 ��� ��������
����������� �� �	� ������� �� !���$��&% ��� �	� ���� �� �6�������
 ���
� �� �	� �������)��� 			� ��, �� ��� ������ ����	
�
���% 3	� "���� �	����
'	��	�� ������ 	���� ��� � ������ � �	� ����� �$$���� Æ �� Æ 			 Æ �$$���

� Æ
��/�$�%2%
�� ��� �	� �����	 �� � ������
 '� ����� ���� ��� � ���������" �����" ��

�������" �	� ���% 5� �' 	��� �� ��� �� !%�$$�� �	� ������ �	�� �����'�
� ����� �� �� �� �	� �"���-

�
� ���!'�# �) % �������'��!'�# �))--

����� 9���B % &

' () �� > * 9��B��'����''F��	F�	'���!'�����B"($# ���!'��#�))))#

�������# >))

%. ���
��'��
�)

1--

�
������� ,% ����� ���# ����� �
��# 9�9 ����# 9�9 ������# ���,')--

�
������
� ,% 9���B'�
�������)--

3	� �����	 ��� � ������ �������� � ���� �	� � ����� � � 	��I12H�#F

��, �����D����0 ��������
 �� ������� �	�� �	� ������� ���������" ��
������� ��
 �� �6������
 ��� !�&#Æ�%�� ��$#Æ��� �#�%Æ�%�� ��)% 3	�
���������� ���� �� �	� ��� ���������� ��� ��������� ���� GB9 �3&2%��2

�� I� �02!� %

Chapter 15

Algorithmic Self-Assembly by
Accretion and by Carving in MGS

[1] Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto. Algorithmic self-assembly by accretion and by
carving in MGS. In 7th International Conference on Artificial Evolution, 2005.

227

��������	�
 ��������	���

�� �

������ ��� ��
������ �� ���

������� ���	
��� ������ ��	
��� ��� ���������� ��������

���� ��� ��	
 ��� � ����������� ������� ���������

! ���"� ��� #�������� �� ��$%���� &'��� ����� (���"�

��������	
������
���������������������	���	�
����������������������	���	

���������)� ������ �*� +�� �, ���� � ��"�������� ��� �+��-.���� ���-
%+�%�� ,�� �*� /������% �, �����+� ���,-����/.�� ���"�����0 #*� ������"*
�� ���+������� �� �*� ,�.��"����� �, � ,��"��� �������� � �������1� �����%���
+���% �2� ������"*��3 .� ��������� ��	
�� ��� .� �������0 #*� ������
�, ������%�"�� "����"����� ������.�� �� ��� ���.��� �*� ���� ��� "��"���
/������% �, ���,-����/.�� ���"����� �� �����+� �����"� %��/������ �� 2���
�� /��� ��.������ "�����+"����� �, /+���-��/�������� �.4�"��0

� �������	�
��

������������� �� � ���	��� �
�� 	������ ��	���������� 	������
�����	
�	�� �������
����	������ ������ �������� � ���� �� ��������� ��� �� ���� 	��������!����� ��
�
���	� �� ����
� ������ �� ������������� ����� �� "
��� �� �� ���#�� ������
�
���� �� �������������� � ��� � ���$�� ��#������� %�&����� ������������ �
�
����	����� ��������� ������������� ���	����� &��� ���� ������ ��& ����������
���� ��� ��� ��	
���� �	�� 	������������ �������������� ������� 	�� �� �
��
� ��
�� ����� �� ����	 ������� �������� '����	����� 	����� ��	�() �� ��
�� �
��� ����	
�������� ��
���� � ��&� �����
�
��� 	������ ��
�������

*�� � 	������� �	�������� ������������� ���	����� ��� �����	������ ��������
��	���� �
� ������	 �� ���!����� �� �
� �������� �������� ���� � ���� ����
��	�������!�� ��� ��	�� ������	����� �
�� �		�� 	��	�������� �� ������� ���� ���
���	� �	����� �� � ������ �� ��	�� �
��
��� �������� ������� ��& 	������������
������ ��+� ��������� 	����
�� ,-. �� ��
�����	 	����
�� ,/.�

"
� ���� ��	� �� �
� ����� ����	���� �� �������������� ������� 	����� ��
����	�� ���� �
� ���������� 	������� ��������� "� ������ � ������ ����
� ��
�
��� 	������ �������� ���������� ������ ��� ����� �
� ���� ��������� �������
%�&����� �
� ������� ��� �
� ���������� �� ������������� 	�� �� ���� ��Æ	���
�� �	
����� ��	���� �� �
� �������������� �� �
� ��������� ���	� ��� �� �
�

������ �� 	������ ������� ����	����� ����� �� �
�� ���	��

��� ������		�
��� �� ������� ������ ��� �� �������

� 	������ �
��� �� �
� ������	
 �� ������������� ���	����� �� �
� �� ���!�������
����	����� �
�� 	�� �� ���� �� ����	���� � ���������� �� ����	 ��������� "
�

����	���� �� ��	���������� ����� ��� ����� 	���������� �� � ������� ����	����� 0�
�
�� ����� &� &��� ��	�� �� �
� ������� �� �&� +���� �� ��������������

������������� �� �		��
��� ����
�� �� �� �
� ���� ����������� +��� �� �����
�������� �� 	�������� ���	����� &
��� ����	 �������� ��� ������ ���� � ����	����
����� � ���
� ���	���� � ��&�
 ���	��� 	�� �� ���	����� �� �� ���������
���	���� 0� ��	
 � ���	��� �
� ������ �� �� ��������� ���� �� ���� � ��� �� �����
��� �
� ���� ��������� ����� 0� � ��&�
 ���	��� �
� ���� �� � ��&�� ��1�	�
�� � 	������ ��&�
 ��� � �� ���� ���������� �� �
� ���� �� �
� ��1�	� �� �
�
���	���� ��&�
 ��� �� 0� ��	
 ��&�
 ��� �� ��& ����	 �������� '�� �� ��������(
��� ����� �� �
�� ���	���� ��&�
 ��� ��

2� ��� �
� ���� �		��
��� ���
� �� $������ � ��&�� ���	��� �
�� ��+�� ���	�
�� �
� ���������� �� �
� ������� "
�� +��� �� ��&�
 �� �� ������ �� 3�����	�����
 ��&�
4 &
��� �
� ��&�� ���	��� �� ���� �
� ������ �� �
� ���������

������������� �� ������� ���	� �� ���
��� �������	�� � ����&
�� �������
���� �� 	���������� ������ � 	����� 	����
�
��� �� 	����� ,5.� "
� ���� �� ��
 ������� � '��� �(��� �� 	�������� ��������� �� � �������� �
�� ������ �
� ����
��������� ��	
 �
�� &
�� ������� �� �
� ��� �� ���������� "
�� ���� �� ������
��&����� �������� �� ���� ������� �� ������� �
���� �� ���	� 	����� ,6.� ��
�� ����
� �� 	������ � ������ �
�� �� 	��������� &��
 � ��� �� �
���� �� �
78 �
���� "��������� �� �
� ������ �� �������������� �
�� ����� �� �
� ���� ��
����������� ������ ��������� ������� ���� �� ������� �
����

��� ��� ��� ��� ��
������� �� ������		�
���

�� ����� ������ �
� ���������� �� ������������� 	�� �� ���� ��Æ	��� �� �	
�����
0� �
�� ������ &� ����	��� �
� ��� �� � ������ ���	�#	 ��� �� � '8��(��� �
�
������� ��� �
� ����������� �� �� ������	� ��� ������� ������ � �� �		������
 ��&�
 ��� 	����� �

8��� ��� ���	����� �������� ��� ������ ��� �� �� ���� ��� ��� ������ �����
���� �� � �����	���� ������� "� �
�� ���� � 8�� �������� ������	����� ��� �����
����� ��� �
� ������ ��
���� 8��� ��� ������� ������ ��� ���� ��	�������� �
��
����������� ��������� 8��� ��� ���� �����	���� ��� ��� ������ �� �
� �����
	���� ������ �
�� �������������� ��� �� �� ��	���� �� ������ ��� ������ �
���������	 ������ ������ �����	������ ��� 9���������� �� ������	
 ������ �� �&�
����	���� �������:

� ����	���� ���������	������ 	�����
������	�� 	����	
���� ��� ���� �� ������
���� �
� ���	� ��������� � ������������� ���	��� ���;�� �
� ��������������
������) ���

� ��&����� ����� �� ������ �	�� 	����	����� 	�����
���������
����� ��� ���� ��
��������� �
� ��	�� ��������� ����� ������� ���� �� ���	��� �
� �������������
���	����

"
��� �&� ������� ��� ������� �� �� ������������ ��� ������ ��� �� � 	�����
���� ��� �� � ��
�	�� ���� �� ������� ��� �
� ������� �� ������ �	�� 	����	�����

��� ��������������� ��� �� ����� �
��� ���$��	� �� �
� ���������� �� �������
����� �	�� ��� ������������� ���	����� ,<� =.�

�� !�����"����� �� ��� #�$��

"
� ���� �� �
�� ����� �� �� ���!�� �� �����&�� "
� ���� ��	���� �������� � $��	+
�������	���� �� ���� "&� +���� �� ������ �	�� 	����	����� ��� �+��	
��: �����
����� ���� #���� &
�	
 ��� ���� �� ��#�� ������� �����	�� ���� �� �
� ������� ��
�		������ ��&�
� ��� ������	� 	������� 	�������� ���� �� ����� ��������� �
���
��� 	����� � ��	���� 7 �������� �
��� �
��� ��� &����+��&� �������� �� ��&�

�� � �� ����� ���	����� ������ ��	���� = �
�&� �
� ������������� �� ��������+�
����� ��� ��� ��	���� > ����� �
� ���� �
��� ��� ���� � 	����� ���	���� "
�
	��	������ �����&� ���� ��������� ������� ��� ������ &��+�

� � ���� ��� ���������
��

��� %���	���
�����	 �� %�$������� ���������	

0� �
�� ��	����� &� ������� �
� ������� ������ �� ���������� �
� ��� 	����
�� �
� �������� 	���������� ���	������ ��� �� � ��	�������� ��� ������ ����
 �� � ����� �� �
� �������������� ��� ������������ �� ��	�� ��������������� ��
�������� ����	����� �� ���
��	

�������� ,=.� � ��� �� �������� �� ���!�� �� ��
������	� ������ � �� 	����� �
������	�� 	����	
���� "����� �	�� �����
��� �
��
��	
 	����	���� ���� ��#��� � ���
���
��� �������� ���	����� �
� ������� ��
��	���
�� ��
� ��� ����	����	
���� � ���
 �� � #���� ��$���	� �� �������� �� &
���
���� �� � ���
��� �� ��� � ����	����	���� � �� � 	����	���� � �� � ������ �� ���
������ �� � ��#��� �� ���� ���
 ��� ��
������ ��� �� ���!����� ���� �� "
�
�����
���������
��� �� � ������ �	�� 	����	���� � 	������� �� �
� �������� ������
	����� �� � ��� �� ��	��
���������
����� � ��	�� �������������� �� ���	�#�� �� �
��&����� ���� � �
�� ���	�#�� �
� 	
�� � �� � ����	����	����� "
� �����	����� ��
� ��&���� ���� � � �'�� 			(�� � 	����	���� �:

-� ����	�� � ����	����	���� � �� � &
��� �������� ���	
 �
� ��

��� ��
?� 	������� � ��& 	����	���� � �� � ���	���� � �� � ��� ��� ���
�����
7� ��� ���	�#�� �
� ��������� �� � �� ���	� �� � ���� ��

"
� 	����	���� ����� 	�� ��� � �� ��� ���� ������� ������	����� &��
 ���� ���
��������� �� ���� ����	����� &��
 ��$���	��� 3 ���������� ���� #����4 ��� 3���
����	� 	������� 	��������4� "
��� ��� �&� +���� �� �������� �
�� 	�� �� ���� ��
� ���������������

��
� ��

����� @��
 �������� ���	
 ���
� �� � 	����	����� � ���
 ������� �� �
��$���	� �� �������� ��������� �� � 	����� "
� ���
 ������� �� � ��#��� �
���
 �� �&� ��������� &
��� � ���� �� � ���
��� �� �� ��������� 	�������� 	��
�� ������ ���� ����� �������� �� � ���
 �������: �� � ����� �� � ���� ���	
��
�&� �������� � ��� � ��	
 �
�� �
� ����� �� � �� ����	��� �������� ��� � �� �
���
��� �� � ��� �
� ����� �� � ���� �� ������ �
�� �
� ����� �� ��

��
	� ��

����� @��	
 �������� ����& �
� ���	
�� �� ��������� ����	����	�����
� ���	
 ������� �� ���	�#�� ���� � ��� �� 	������� 2� &��� ������� �
� ���	

������� �������� &� ���� �� ��	���� >�

��� ����$�&�	�� ���� '����

����������� ���� #���� '�A* �� �
���(��� ���� �� ��#�� ������ �	�� 	����	�����
&��
 ������� ���
���
���� � �A* �� �� ��������� �� �
� ������ �� ������ &
���
�
� �������� ��� ������� �� �
� �������� �� � ����� 	����� �
� ����� �� �
�
�A* ,>.� "
� �������� �� �
� ���� ��� 	����� �
� ����
���� �� �
� �A*� *��
�������:

	
� ���� � � ����� ���� �

��#��� � �A* 	����	���� ���� 	����� ����� 	����������� �� �
� �� ���� B��
������ ���
���
��� �� � 	�����	�� ����� '� 	��� ������ ����&� ���� �� ��
� C ���
��� ����(� "
� �&� ����� ���� ��� ���� '�� ��
�� &��
 �
��� �������� �����
��� ������ ��&��� �������� �� � ���� ����	����(����� �� �
� ����	����� �
��
	�� �� �����&�� �� ���	
 �
� ���
���� �� �� �������� "
��� ����	����� ��� �
�
�����
��� �� �
� ��������� ���� ����	����� "
� ��
�
��� ���� '��
���(�� �
�
�A* ��#������ ���� � #���� ������������ �� �
� ���� ����	�����

"
� ���� �� �
� ��������� 	�� �� 	�������� �� ���� �$������� �
�� 	���
������� �
� ������	������ �� �
� �
���:

	
� ���� � � ����� ����� ��������� ����� ���� � �������� �

��#��� ��
��� ���� �����	� �
�� ����� �
� ������ ��� # ��� -� D�	
 	���
�� ���
���
���� '�����&�� �
� �
��� ��������� ��� �
��� ��������(� "
� �$������ ����

� ���� � �������� ���	�#�� �
�� � ���� �����&�� �������� �� �
� ����
�� � ���� �����&�� �
� ���� ����	���� �����&�� �� � ���� �����&�� �
� ����

����	�����

*�� 	��������	�� &� �������� �
� ���� �� � �A* &��
 �
� ������������ �� �
�
��������� ����� � �A*
 �� ���� � 	�� �� �������!�� �� � ������� ���	����

 ���� �
� ���� ���	�#�� �� � �� ���� ��� �� ������:
 ����	����� � ����� ��
���� ���������� 0� ��
�� &���� �
� ���� �������� �	� �� ����	�� �� � �������!��
������ �� ����� �A* �� �
� �����&
��� ����#��� ���	�����

"
� ������ � �� �
� 	����	����� �� ���� � �� ������ �������!�� �� �
� E�����
 ���
 � �� �: ��	
 ������ �� �
� E����� ���
 �� �� ������� �� �
� ���� �

��� ������ � ��� ��� ���+�� �� �
��� �� � �������� � �� �
� ������������ �� �
��	
 �
�� �F � G � � &��� '� ��� �� ���������(�� � ���
� @��
 	����������
	���������� �� ���� ��������� � 	����� ���
 '� 	�	��(�� � &��� �$��� �� � '�
�
�������� �� �
� ����(� �� �$������ � G � 	�� �� ��&������ � � � G � ��� �
��
	���������� �� � 	�	�� �� �
� ���
� "
��� ��� �&� +���� �� 	�	��� �� �
� ���
:
�
� 	�	��� �
�� ��� ������� �� ��� E����� ���
� ��� 	����������� �� ���� ��&�
'�����������: � ��	+���	+�� ���
 ��+� ����F ����� ����� ����(��� 	�����
���
� ���	�#	 �� �
� �&� ���� �$������� '�� �: ����� ����� ����F ����(�
"
� ���
 	����	������ '�
��� �� ��&��� � ���
 ��� ���� � �� �(�� �$��������
�� ��� �
�� �
��� �� ��&��� � �������� � �� �$������ � F � G ��

� ������ ���	�����
� ���

������ ���	���� 2� ����� &��
 � ������ ����� �� ��&�
 ��������� 	����� �
�
D��� ����� ,7.� "
� �����
�� ���� ���� ���	� �
� -5<HI� �� � ����� ��� ��	

�
�� � �� ����� ��&�
 ��� ��&�
 �� 	������ 0� �
�� ������ � ?8 ���	� �� ����
�������� �� ����� �� �		����� 	���� '&� ��� �
� ����� ��� ��� �� �		����� 	���
��� ���� ����#��� �
� ���		����� 	����(� 2� ����� &��
 ���� ��� �		����� 	����
�� ��	
 ����� �		����� 	���� &��
 �� ����� ���
��� ��� ����	���� ��� �
� 	���
��������� ����� 	��� �� ���� �		������

"
� D���I� � �� ����� ���	��� �� ������ ���	����� �� �
� �����&�� ���
 ����� ��������������: ���� ���� � � �� ������� �� �� ��� ��

C

C

C

C

C
C

C

C

C
C

C
C

C

C
C

C
C

C

C C
C

C

C

C
C C

C

C

C

CC
C

C

C

C

C

C
C C

C
C

C

C
C

C
C

CC

C

C

	
�� �� ������ /���� �� �� *�5�%���� /��* 6������� ������ ��� ������ �,��� ! ��� 7
��/� �����80 #*�� �*��� "���������� �� �*� ������ %���* �, ���� 2��* �*� ,����2��%
"����������3 � �����5 �� ����������� �� � ,�"� ��� �2� ���%*.��� �� �*� ������ %���*�
�*��� �� ��%� �� �*�� ��������������0 $� �/��� "��� *�� �� +���9��� ���+�0 :��� � ����
�, �*� ��9���� ��/��� �� 9%+���0

��� ����
� �� � ���� �!�� � 	������ ����� &
�� � ��$��� �� 	����� ����& ���
����!�� ������ E������� ����� ���� � ���� ��� �
�� ��& �� ��� ��������� �����
���� ����	���� �� �
��� �����	�� �� �� ������!������ �
� ����	���� �� � ���&9�+�
��� �� ��
��� ���� ��� ��� &
�� � ���	� �� �	� �� ����� �� �
� ���&9�+�� �
�

��� �������� �� �
�� ���	��� ��
����� �
� �������� �� �	� �������

"
�� �
�������� ����� �� �
� �����&�� 	������� �������� ���� ,-<.: � ���	+
	��� '����� (���������� � ���	� �� �
� 	������ #���� &��
 �	� ��� � &
��� 	���
'����� �(�� �� ����� ���	�� � &
��� 	��� ��	���� ���	+ �� ��
�� ���	��� ��� ���	+
���
���� ��
��&��� �� ������� &
���� "
� 	����������� ��� �������������� ��:

���� !��"#$�%� � � � �� � � ��#�$�&��	�
�'���(��� �� �

"
� 	������	� #�$�&��	�
� �� ��� � ���	���� ��� �� �������� ��������� ����
&��
�� � ����: �� ������� �� ���� � ���	���� �� �
� ��#��� ���
���� �� �� �������
���	
�� �� �
� ��
��� %���� �
�� �������� �� ���� �� 	������ �
� ������ ��
���
���� '�
� �		�������� ���	���� �� �
� ��� ��� �
� ������� ����� �� �(� "
��
�������������� �	�� �� � ����� �� ���� ���� ��� � �������� ��� �� ����������� ��
��� ?�

"�#����� $���
�� ����
���� 0� � ��#����� ����
�� ����
��� ���	���� ��
8�� ,->.� � ��� �� �����	��� ��J��� �������� �� � ���� ������� ������� 0��������

	
�� � (��/����� �, � ���2;�1�0 #*� ��"�+��� ������ ��� �*� ����� �� ��/� ����� '� 	�
�� '
� '<� '��
� ���
!0

��� �����	��� �
� ����� �� #���� 2
�� � ������ �����	�� 	������� � #��� ����
�
�� ���	+ �� ��
�� ��� ���� #���� "
�� ���	��� ����� �� � ������ �����	� ��
�������� �
�� 	���� �� ������ ���� �� ��� ���� � ������ �	�� 	����	���� ���
��������������:

���� �$� � �
)*�
�$��)����� ��)������)�����

)*�
�$�� ������� �� ��������)*�
�$�

�

2� ��� �&� �������)*�
�$� ���)����� �� ��������� �����	������ � ������
��� � #��� �����	�� '���I� ������� ��� ��+� ����I� �����(� "
� �&� ����� �� �
�
�������������� ���� &��
:

-� �
� � �� �����: �
� #��� ���� ���	�#�� �
�� �� � ��J���� �����	�� �� �
�
���
��� �� � #��� ���� �
�� �� ��	���� #��� '�� �
� 	������ ��������()

?� �
� ��J�����: �� � ������ �����	�� �� ���
��� �� �� ����� ���	� '��������(�
�
�� �� ��� ����� ��� 	������ �������� �� �		��� �
� ����� ���
��� '��� ���
	������ �������� �� ���� �����(�

���� �
�� �
� ����� �� �
� ����� �� ��������� ��	����� �����&�� �
� ����
�����	����� �������	� �� ���� �
� #��� ���
�� �������� ���� �
� ��	���� *� ���
7 �������� �
� #��� ����� �� �
� �����	����� �� �
� �������������� �$� �� �&�

	
�� �� �5�/��� �, =�$ �� �2� ��>����� ������%���3 �� *�5�%���� /��* ��� � ��*���0
#*� ����� *�5�%��� ��� ,�"��� ��������� 95�� �����"���0 :� �*� ��*���� �*� �/���
��������� ��� ��� ���2�0 #*� ��/� �����,��/����� �� +��� �� �*� �2� "����"�����0

+���� �� ������ �	�� 	����	�����: �� �
� ����� �
� ���
���
��� ���������
�� ��

��� ������ ��� � �A* �� ����� � �
� ��
�� �
� �$� �������������� �� �������
�� � ���
�� ��
���� "
� �������� ��� �
� ��	���� ��� �&� ��	��� ��� ���
����
�� �
�� �
��� �� �� �� *�� ���� �������� ����� �� ,-7.�

� �		���
�� ������ ��
���
���
 ��
������

"
� ��������+� ����� ��� '�" ���� ��& ��(�� � ���	��� ���	����� �� ��������+�
�� -5-> ��� �������� �� 0������ ��� ���� �
� -7�
 	������� 0� �� ���� 	����� �
�
��������+� ��+�� �� ��������+� ����� ,-=.� "
� �" 	�� �� �����	�� �� ��+��
�
� @��	��I� ����� �� ������ ? '��� # ��� =(� �� �$���������� �� �������� �
�
������������� ����
��� ��#��� �� �H� -� �� H �� � �

� �
��� - �� � �

� �
� �������

���� -� &� ������:

- ��
- H
- -

��

- H H H
- - H H
- H - H
- - - -

��

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�� 	 	 	

"
� ������� ��� �
� �������� 	��Æ	���� �� @��	��I� ����� �� ��: � 'H� �(G -�
� '�� �(G H ��� � � � ��� � '�� �(G � '�� -� � � -(F� '�� -� �(��� �
� ��������
	����� E��������� ������ ?� �
�� ������� ���� ����� �� �
� �������������� ����&
�	��� �� � �����	� ����:

���� !+ � � ������� ,������ � ,"���� � �� �����*���� ��� �

0� �
�� ����� �
� 	���� �� ��#��� ���� � �A* ��������: � ,������
 �����
�
��
 �� � ���
��� �� � �����&�� �
� ����� ����	����� "
� �������������� ����
�� �������� �� �� ������� �����	� &
��� �
� �������� 'H� �(��� #���� &��
 ���
��������� '�� H(��� #���� &��
 � ��� � � H�

%�&����� �
�� �������������� ���� ����
����	 ��������� '�
� � ��� *��(� �
���� ���������� 	���������� �� ��������� ������ �
� ������� ������ ? ���� �
����� ���	���� *����&�� ,--. &� 	������� = ����� 	����������� �� �
� �&� �������
������ � 	��� '�� �(��	����� ���� �
� 	���� '�� -� � � -(��� '�� -� �(� "
�� �����
�� ������ 	���� ��� �
�� ��������� �� ���� 2� ��� �
� ���� = �������)+���
)+ ��)+� ���)+ �� ���������� �
� = ����� �� �����: ����)+�� �� �������� '�� �(
����� �
�� � �� �
� ����� �� � '�� -� �(��� � �� �
� ����� �� � '�� -� � � -(� ��
�
� ����� � �� ����������� �� ���
��)+�� ��)+ ��� �
� ����� ��)+ � ��
)+� � *������� &� ��� � �������������� &��
 = ����� �� ���	��� �
� ���	����� ��
�
� �����:

���� !+� � �
������� ,������ �)+��,)+ � �� � ,"���� �)+� ,)+ �� �� �

��)+� � �� �

������� ,������ �)+��,)+ � �� � ,"���� �)+��,)+ � �� �

��)+ � �� �

--- ��� �������	�
 �������� ��
� ---

�

"
� ���
 ������� &��+� �� �����&: �
� , �������� �� � ������� ������� �� ��������
����:)+��,)+ ���	
�� �
� ������)+�� �� �
� ������)+) �
� �� 	������	�
�� ���� �� ���� �
� ����� �� � ������� ��� ���� �� � ��������: �� �)+��,)+ �

�� � �
� ������� �������� �� ����� �� �
� �	���� ����� ���	
�� �� �
� ��������

1

1

1

1

3

2

1

0

3

0

0

1

1

0

0

0

1

1

1

1

0

1

0

1

0

0

1

1

0

0

0mod 2

1

north

south

east

west

	
�� �� ���� ����� ��1��% �*� .���/��� "��Æ"����� /��+��
 ����+"�� �*� �*��� �, �*�
#0 �	
�� ����� # "�� ���� .� ����+"�� .� ��������% �*� "�����% �, � �����%�� ������
����*�� �����%��0

� ����
��
���
���
 ��
������

A������ � �" �� 	����� �� ����������� �� # ��� =� "
�� ���	��� �� ���� ������
	���� �� ��� ���� ��
	� ��

���� �� ���
��	
 	������� 	�����%���

�� ������	� 	������� 	������ �� 	������� �� �������� �� ������� ������
����� '�����	��� �� ��� �����	��� � � � (�����
������	�� 	���� �� ��������� � ��
��	���� ,-H.� "
��� ����	 �������� ��� �� ���!�� �����&�� �
� ��	����	� ����
����
���� �
�� ������ �� �
� ������ �� ��������: ��� �� ��� �� �� �����	������ � ���	���
��� �� ���	��� &��
 �� � ��� �� �� ��	����� �� �� �� �� ����� � �� �
� ������ �� ���
���� ����	������ �� �� G �� � -� �� �� 	����� � ��	� �� ��� ��� �� �� � 	���	� �� ���
"
�� ���� ����	���� �������!�� �
� ���� �� ���
� �
�� �� � 	������ 	�������
�� H�	���� ��� -�	����� �� �
� ��#������ �� � �A* 	����	���� ���� �
� ��������
�� � ���
�����	�� ���� �� ��������
��� ��	���� ��� ���� �� ������� �� ��#��
� 	������� 	������ ����� ������ �	�� 	����	����� A���	����� � ����� �� ����	�����
&��
 ��	
 ������ �	�� 	���� "
�� 	���������� �� �
� 	��	��� ��
������	�� 	����
�� �� �����	 ������ �� "
�� ������ &��I� �� ��������� �� �
� ������ �� �������
�� ��	
 � 	����	���� �� ���� �� # ��� >�

��
	�
���������
����
��� ���� 	������ ��
����� ��� ��������� 	������� ����
	������� "
� ���� ������� � �� ���� �
��� 	�������� �� �
�� &� 	��
�����
	���� �� ������� ���������� �� ��������� ��� �
� �������� �
�� 	������ �
� �"� 0�
��	�� �� �
� �������� ��������������� �
� �" &��� �������� �������� �� � ������
�� �� ���� �
�� ��� �� � �����#��� ���	�� %��� �
� 	��	���� �������	 ����	����
�� �
� �" �� ���	�#�� ��� �
� ������� �� �
� �" ���� ������ 3��� �&� �������
���	�4�

f
v1

v2v3 e2

e3 e1

(3,0)(−3,0)

(0,4)

5 5

6

12

	
�� �� :� �*� ��,� �� �� �5�/��� �, � "���+��� "�/���53 �� �� "�/����� �, ! �-"���� 6���
��� ��8� ! '-"���� 6��� ��� ��8� ��� �
-"��� � 0 #*� .�+����� �, � �� ,��/�� .� ��� ��"�����
"���� ��� ��� ��� ��� �� ��� ��0 ����"������ �*� ! ��%�� ��� �*� ,�"�� �, � � ��� �*���,����
� �� �*� "�,�"� �, ��� �� ��� ��0 :� �*� ��%*�� ���� ��� ����"����� 2��* �*� ������%�"��
"����3 ��������� ��� ����"����� 2��* �����"��� ���%�*� 2��* ��%�� ��� ���� 2��* � 0

"� ��������� �
� �"� &� ��� �� ������	� 	������� 	������ &
��� �
� ����� ��
� ������ ���������� �
� 	��������� �� �� �������� �� �
� �" �� �
� ������

"
��� ��� �&� ��������������� ���� �� 	���� �
� �"� "
� #��� ���� ./� ����
� ������ �� �
� ������ �� ��	
 �� �� '��� # ��� <(:

0��1� ./ � �
23 � �4'��* � (� 23�

��)34'��* � �� 1���1�� � �)� �)����

3�$ � � ���3 -��3�-����� ���3 -��3�-����� ��"���� �(
)� 4'��* � � ��1�� � �3 �)3�(

)��4'��* � � ��1�� � �3��)3�(

�

"
� +��&��� 0��1� �� ���� ������� �� �
� +��&��� ���� �� ������� �
�� �
�
��#��� �������������� ���� ���	
 �������� �� ��� ������ 0� �
�� ���	
 ���������
������� 3 ��� 3� ��� ��� 	������� '�
� K $����#�� �� ����� �� �� ������#��(
�� ����& �
� ���	
�� �� ��� �
� �� �� ��	����� �� � ���� ������� 0������ �� ��
������� �� ���	
�� �� � �������� �� 	��I� �� ���	
�� �� ����
�� ���: �&� ���	���
��	����� ���	
�� �� �
� ��
��� �� ���� ����� �� � �������������� 	����� ��������
2� ��� �
�� �
� �������� ���	
�� �� � ������� ��� 	�������� %���� �� � ������
&�� ���	
�� ��� 	������� �� ��
�� &��
 ��� �� ��� ��	����� �� ��� �� ��� ��
��
��	����� �� �� 	���� �� ���	
�� �� �
� ����� � 	����� 1 � 1� ����� �
�� 	���
1 �� ��	����� �� 	��� 1� ��� �� ��&�� ���������� "
� ��
�
��� ���� �� �
� ���� ��
� ���	��� ���� ���� �� ��������� �
� ���	
�� �� � � ���� �&� �� ��)� ���)��

��	����� �� � ��& ������)3� � 9� ��" ������ ���
�� �
� ��&�� 	������ �����	���
"
� ���� ���� ���+� ��� ��� �
�
��� ��� ��� �����	�� �
�� &��
 �
��� ������

 ��� '��� # ��� <(:

0��1� 5# � �
�4'��*��� ��1�� � �� �����6��7��8��9�(

23 � 2� � 23�4': 3�-��"(� 2�� �

236 � 2�6 � 2374': 37-��"(� 2�7 �

238 � 2�8 � 2394': 39-��"(� 2�9 � 23

��)��74'��*� � ��1����3��37�(

)�794'��*� � ��1����37�39�(

)�9�4'��*� � ��1����39�3��(

)� 4'��*��� ��1�����9�� �)�9��(

)��4'��*��� ��1��������6�)��7�(

)�64'��*��� ��1�����7��8�)�79�(

�

0� �
�� ���	
� ���� �
�
��� �� � �� ���	
�� ��� 	�������� 2� ����	� ��� ������
��� &��
��� 	������� ��� ���� �
� ����� �� �
� ���	�#	����� �� �
� ���	
��
�����	��: � 9� �� ���� �� ���	
 ���� ��&�� 	������
��� ����

e2

v1

v2

v3v4v5

v6

e1

e3e4

e5

e6

f
v1

v2

v3v4v5

v6

e1

e3e4

e5

e6

‘f2‘f3

‘e46

‘f1

‘e62

‘e24

RFAV

	
�� �� ������% � �����%��0 #*� 9��� �����,��/����� �� ���� �����5 �� �*� /����� �, ��
����� ��%�0 #*� ��"��� �����,��/����� � ��9��� �*� "������ *�5�%���� ,�"� ���� �*���
�����%���0

 !
�	���
�� ��� ���	���
��

0� �
�� ����� &�
��� ��������� �
� ��� �� � 8�� ��� �� � ��� �
� �������
��� �
� ���������� �� �&� +���� �� ������������� ���	�����: �� �		������ ��&�

��� �� ���	� 	����� � 8������ �
��� ���	�#	������ &� ��� 	�����	�� �
�� �
�� ���
������ ����	 �� � ���� 	���� �� ������������� ���	������

���� �� �
� �������� ���	����� �� �
�� ����� ����� �� 	
���	�� ���	������ "
�
��������+� ��+�� �������
�� ���� ������ ����������� ���� 8�� ����	�����
@���������� �
� ���	���
�� ���� ���� ��� ��� ��������� ���� �
� !���
�	 ����
��������� &���� '+"��(,--.� +"�� �������� � 	������� �����&��+ ��� �
�
���	������� �� ��	
 	
���	�� ���	����� &
��� � ��� �� �
���	�� ���������� '��+�
������������ ����� ������ � � � (��� ��+�� ���� �		���� �� ����& �		����� ������� ��
	��������!����� ���	������ "
� 8�� �������� �� �������������� ���	���
�� ����
�������� ��� ������� �� ,?.� ����� �� 8�� ��� ���� ������ E������� �� �
�� &��+�
�
� ��� ������� � ��������� �� �
�� &��+ ��� ��	
 ���� ������	�: �
� �������
�� ��� �� ����� �
� �
���	�� �������������� ���� � 8�� 	������� ������ �
��� �� ������� ��� �
� �
��� �����	�� �� ���� �������� �� ������	� �������������
���	������

��������� �
� ��	
������ �������� �� ��� ����& �
� ���	�#	������ �� ����
	������ ��� ������	� ����������� �
�� 	���� �� ���� ��Æ	��� �� ��������� ���
�� ��������!����� ��� ����������!����� ���	����� �� +"�� ��� ������	�� "
���

�
�� ����� �������� 	�� �� ���� �� �
� ������ �� ������	� �������������� *��
������	�� ,-/. �������� �
� ����������� �� � ������������	�� ��	
���� "
�� ���
	
��� �� 	������� �� ���������� 	���	 �������� D�	
 ������ �� ���� �� ��
��� ��
��J����� &���: ������� � 	����	��� �� ���	����	��� &��
 ��
�� �������� ������
����� ���� ��� ��&�� �� ��� 	����	��� ���
����� "
� �� ���!����� ��� �
�
	������ ��
������ �� �
� &
��� ��	
��� 	���� �� 	������� �� � ��� �������
���� ������ �	�� 	����	����� ��� ���������������� "
� ������� �� ��� �� ��	

	������ ������������� ���	������ &
��� &� ���� ���	��� �
� 	������ ������	����
�� � ��& 	������ ��������� �� � ���� �� ��� 	������ &��+�

2� ������ �� �
� ������������ ����
� �� �
� ������� �� ������ �	�� 	����	�����
��� �
��� ���������������� *�� �������� �
� ���	
 ��� �� � ���� �� ��	���� > ��
��&����� ����
 �� �����	� ��������+� ��� ��� �� ���� � '� �������!����� ��
	����� � �����
����� ��� � 	��� �� 78(� ��� # ��� /� ���
�� ���� ���� ��	�
	������� ���� �� ����� ������� ����� �	�� ��&�
 ���	������ ��+� �
� �����������
�� �� ����
����� �
��� �� � ����������� ���	��� ,-?.� �� &��� �� �
� 9�	+ �� �����
�� �
� ����������� �� � ����� ������ �����	��

	
�� �� :� ���� �������1� ����%� .+�����% ���"���3 ������� ����� ��� ����� '�
� ! ���
	0 $� .����/� ���%�� ����%� .+�����% ���"���3 ������� ����� ��� ����� ' ���
0

"������	��

'0 $.������ $����� ������ ?������ ?�/��� @��%*�� ��%���� ��+"*� +��/��� ���
)����0 $/���*�+� "�/�+���%0 ����� �	���������	�� 	� ��� ���� 	!�
���0

0 $0 ���.���� �0 ���� A0 �0 �����������+� B0 =��%� C0 @�����"*�)0 B0 *��/���
��� �0 �0 ��/��0 != ,��"��� =�$ ����/.�� ,��/ "����%� %��/���� ��� �����"-
����0 ������� �	�������� !6!83
! �

�
��	0

!0 �0 ����0 �� ?0 A0 D�"1��� ������� ����	���� 	� ���	�����	� ���	�� �� ��	�	���
��%� ! &� ��2 D��1� '& �0 A��%�/�� A����0

	0 C0-�0 ��������0 ������� ���13 #�����%�"�� "����"������ �����,��/������ ��� �*���
�����"����� �� �*� /������% ��� �*� ��/+������ �, ����/�"�� �����/�0 �� ��
������
�������� �� ���������	�� !���"#$%� ���+/� ���
7�< �, ����� ��%��
�� �
!!�
E����"��� C+��
��!0 ����%��0

 0 C0-�0 �������� ��� :0 ��"*��0 =�"�������� ��9������ �, %��+� ����5�� ���� ���+"-
�+��� ��� �����5�/����� �, �*��� ��/����0 �� &�	��� ���� 	� ��� $� ���������	���
��� ��'&��� �	�������� 	� &��������� �� &������� 	� (���������� &�	����)
���� !&&(&)#*%0 $�� A����� ���0
��'0

<0 C0-�0 �������� ��� :0 ��"*��0 �������% �*� ������%�"�� ��%���F����� �, "���+���
���"�����0 ��	�������� 7�6
83'	&�'<!�
��!0

70 A0 ?���0 $+����/�" "�/�+���%3 �B��� ������"���� �� �*� ����� �, ��,��/�����
��"*����%�0 #�"*��"�� ������� �B� ������"*� :"�0
��'0 �������!!!�	����	���

�"�����������������������������������#����������$�%0
�0 @0 �0 @+�+��1�� ��� 0 �0 ���F0 $ �*���� �, �*��� .� ���"� "�����%0 ���������	���

+	����� 	� �	������ ,���	�� !�6!83'&&�
'�� C+��
���0
&0 E0 ���"�� �0 ������-E���� ��� �0 A�+�0 ��2 "�/�+���% ������%/� �+%%����� .�

��� "�/�+���%3 "�/�+���% .� "�����%0 ��	��������
6'-!83	7� 	� :"�0 '&&&0
'�0 C0 �+�1���0 -������� 	� ����.���� �	�	�	��0 $������-)������ '&�	0
''0 A0)0 @0 ���*�/+��� �0 A�����1��� ��� �0)��,���0 $�%����*/�" ���,-����/.�� �,

��� ��������1� �����%���0 &�	� ��	��
6'
83�	
	�
��	0 2220����.����%�0��%0
'
0 $0 ��"*�� ��� :0 ��"*��0 =�"�������� /������% �, � ��+�+������-��1� ���"���0

�� ��/�� ���������	��� 0	�1��	� 	� ���	�����	� &�	������� �� ����� �� �������
!�&���"#2%� ��%�� !�	�!'7� D��1� $+%+��
�� 0

'!0 $0 ��"*��� :0 ��"*��� ��� C0-�0 ��������0 $ ������%�"�� ,��/�2��1 ,�� �*� ���"�-
9"����� ��� �*� ��/+������ �, ���"���� ����/�"�� �����/�0 �� ��/�� ���������	���
�	�������� 	� �������� ���	���� �	� �������� �� �� ����� !����"#3%� ���+/�
!!� �, ����� $/������/� :"��.��
��	0 ����%��0

'	0 �0 ��2���0 (�+� ��"�+����� 2��* ��������1��� %��1��0 ������������ ��������������
'73
�<	� '&& 0

' 0 #0 $0)����� ��� �0 �0 �����0 =�>+����-��/���� �%%��%������ � 1�����" "����"��
�*���/����0 &���4 ���4 ����4� 	73'	���'	�!� '&�'0

'<0 0)��,��/0 � ��
 1�� 	� �������0)��,��/ ������
��
0
'70 E0 G�1��� �0 ������������ B0 $��/�� ��� ?0 ������0 ��,-������+"��% /�"*����0

������� 	! 67�!�83'<!�'<	�
�� 0

Part III

Elements of Implementation

241

Chapter 16

Design and implementation of 81/2, a
declarative data-parallel language

[1] Olivier Michel. Design and implementation of 81/2, a declarative data-parallel language. Computer
Languages, 22(2/3):165–179, 1996. special issue on Parallel Logic Programming.

243

Pergamon

Cornput. Lang. Vol. 22, No. 2,:3. pp. 165-179, 1996
Copyright 0 1996 Elsevier Science Ltd

SOO96-0551(96)00012-4
Printed in Great Britain. All rights reserved

0096-0551/96 $15.00 + 0.00

DESIGN AND IMPLEMENTATION OF 8,/z: A
DECLARATIVE DATA-PARALLEL LANGUAGE

OLIVIER MICHEL
LRI u.r.a. 410 du CNRS, Batiment 490, Universite de Paris-Sud, 91405 Orsay Cedex, France

(Received 18 March 1996; revision received 17 April 1996)

Abstract-In this article we advocate a declarative approach to data-parallelism to provide both
parallelism expressiveness and efficient execution of data intensive applications. 81.2, an experimental
language combining features of collection and stream oriented languages in a declarative framework, is
presented. A new structure, the web, allows the programmer to write programmes as mathematical
expressions and to implicitly express data and control parallelism. The first part of this paper proposes
a classification of the various expressions of parallelism in programming languages. We show that hybrid
execution models combining both data and control parallelism are possible and necessary to get an
effective speedup. We sketch the advantage of the declarative style with respect to parallelism expression
(application side) and exploitation (compiler side). In the second part we describe the 8,‘~ language and
the concepts of collection, stream and web. A web is a multi-dimensional object that represents the
successive values of a structured set of variables. Some 8,‘> programmes are given to show the relevance
of the web data structure for simulation applications (a resolution of O.D.P.E. and a simulation in artificial
life). Examples of 81.2 programmes, involving the dynamic creation and destruction of webs, are also given.
Such programmes are necessary for simulations of growing systems. In the third part, the implementation
of a compiler restricted to the static part of the language is described. We focus on the process of web
equations compilation towards a virtual SIMD machine. We also present the clock calculus, the scheduling
inference and the distribution of the computations among the processing elements of a parallel computer.
Copyright ‘Q 1996 Elsevier Science Ltd

data-parallelism declarative languages collection-oriented languages synchronous data-flow
recursive collection data-distribution and scheduling

1. INTRODUCTION

I. 1. A proposal for a taxonomy of parallelism expressions

Table 1 proposes a classification of the various expressions of parallelism in programming
languages. Such a framework is required for the analysis of existing languages and the development
of a new one. We propose to mimic the Flynn classification of parallel architectures [l] and to
compare parallel languages constructs following two criteria: the way they let the programmer
express the control and the way they let him manipulate the data. The programmer has three
choices to express the flow of computations:

l Implicit control: this is the declarative approach. The compiler (static extraction of the
parallelism) or the runtime environment (dynamic extraction by an interpreter or a hardware
architecture) has to build a computation order compatible with the data dependencies exhibited
in the programme.

a Explicit control which refines in:
-Express what has to be done sequentially: this is the classical sequential imperative execution

model, where control structures build only one thread of computation.
--Express what can be done in parallel: this is the concurrent languages approach. Such

languages offer explicit control structures like PAR, ALT, FORK, JOIN, etc.

For the data handling, we will consider two major classes of languages:

l Collection based languages allow the programmer to handle sets of data as a whole. Such
a set is called a collection [2]. Examples of languages of this kind are: APL, SETL,
SQL, *Lisp, C* . .

I65

166 Olivier Michel

l Scalar languages allow also the programmer to manipulate a set of data but only through
references to one element. For example, in standard Pascal, the main operation performed on
an array is accessing one of its elements.

Historically, the data-parallelism has been developed from the possibility of introducing parallelism
in sequential languages (this is the “starization” of languages: from C to C*, from Lisp to *Lisp
. . .). It relies on sequential control structures (*when . . .) and parallel data. However, Table 1
shows that the concept of collection can be freely mixed with other expressions of control. As a
consequence, collection based languages can be mixed with concurrent languages (multiple SIMD
model or MSIMD) and declarative languages (Gamma [3] or 81,2 [4]).

I .2. Declarative structure and massive parallelism

Now a short overview of the advantage of the declarative style with respect to the parallelism
expression and exploitation is going to be presented. Nowadays new architectures appear [S-S] to
efficiently support an SPMD or MSIMD execution model. This motivates the development of new
programming paradigms able to express more than one kind of parallelism. However, to quote [9]:
“simplicity and efficiency of the SIMD approach” must be preserved while acquiring the “processor
utilisation and the flexibility of control structure afforded by the MIMD approach”.

The development of a declarative framework supporting both data and control parallelism relies
on the construction of an adequate data structure and its subsequent algebra. As a matter of fact,
stream algebra is well fitted to control-parallelism [lo] while collection algebra supports implicit
data-parallelism [111. Consequently, this leads to merge streams and collections into a unique data
structure. The 8,,* language is based on webs which is such a combination. From the parallelism
point of view, managing streams and collections in a declarative framework exhibits several
advantages:

l There is no explicit construct for parallelism in the language, in accordance with the
“parallelism as an implementation property” point of view (i.e. parallelism is in the scope of
implementation, and is irrelevant at the semantic level).

l The declarative form of the language makes it easy to perform dependence analysis between
tasks and the subsequent exploitation of control parallelism.

l Collections are a natural support of the data-parallelism and collection operations between
webs naturally lead to a data-parallel implementation.

l Collections introduce a natural support for the distribution of data.
l Introducing collections corrects some of the drawbacks sustained against the stream oriented

data-flow model [12], mainly by adding some specific handling of arrays with a consistent
concept of time.

l Transparential references allow a formal treatment of programmes, and programme
optimization using programme transformations are possible (cf. for example [13, 141).

Furthermore, embedding collection in a synchronous data-flow model combines the advantages
of the synchronous and asynchronous parallel styles [9]. Consider for example the actor model: it
proposes a minimal kernel to deal with control parallelism but handling of homogeneous sets of
data, like arrays, is definitively inefficient [15]. From another point of view, the handling of
communications in sequential data-parallel oriented languages, like *LISP, forbids overlapping of
communications and computations because there is only one thread of control.

Table 1. A classification of lanrmaaes from the oarallel constructs ooint of view

Declarative Sequential Concurrent
languages languages languages

0 instruction counter 1 instruction counter n instructions counters

Scalar languages Sisal, Id, LAU, Fortran, C, Ada,
Actors Pascal Occam

Collection languages Gamma, *LISP, HPF, CM Fortran + multi-
81,~ CM Fortran threads

Design and implementation of 8, z 16;

These two examples show the advantage of combining data and control parallelism. Using
implicit data- and control-parallelism enables:

l the maximal expression of the parallelism inherent to an application (this does not imply the
maximal exploitation of parallelism);

l the use of the effective parallelism which implies cheaper implementation overheads (with
respect to the target architecture); and

l the hiding of communication costs by overlapping computations of independent activities.

The rest of the paper describes the language 8,,Z and its compilation. It is an embedding of
data-parallelism in a declarative framework. 8,,2 does not support all styles of parallel
programming, but we argue that it combines advantages of the two approaches for a large class
of applications. A stream is a direct representation of a trajectory of a dynamical system (i.e. the
sequence of the successive states of the system), a collection corresponds to the value of a
multidimensional state or to the discretization of a continuous parameter. In addition. the
declarative form of the language fits well with the functional description of a dynamical system.
Thus we advocate the use of 8,,? for the parallel simulation of dynamical systems (e.g. deterministic
discrete events systems [161).

2. THE DECLARATIVE DATA-PARALLEL LANGUAGE 8’:

8, 2 has a single data structure called a web. A web is the combination of the concept of stream
and collection. This section describes these three notions.

2.1. The collection in 8,.?

A collection is a data structure that represents a set of elements as a whole [17]. Several kinds
of aggregation structure exist: set in SETL [18] or in [19], list in LISP, tuple in SQL, ptlar in *LISP
[20] or evenjinite discrete space in Cellular Automata [21]. Data-parallelism is naturally expressed
in terms of collections [2, 221. From the point of view of the parallel implementation, the elements
of a collection are distributed over the processing elements (PEs).

Here we consider collections that are ordered sets of elements. An element of a collection, also
called a point in 8,,*, is accessed through an index. The expression T.n where T is a collection and
n an integer, is a collection with one point; the value of this point is the value of the rzth point
of T (point numbering begins with 0). If necessary, we implicitly coerce a collection with one point
into a scalar and vice-versa through a type inference system described in [23]. More generally, the
system is able to coerce a scalar into an array containing only the value of the scalar.

Geometric operators change the geometry of a collection, i.e. its structure. The geometry of a
collection of scalar is reduced to its cardinal (the number of its points). A collection can also be
nested: the value of a point is a collection. Collection nesting allows multiple levels of parallelism
and exists. for example, in ParalationLisp [24] and NESL [25]. The geometry of the collection is
the hierarchical structure of point values. The first geometric operation consists of packing some
webs together:

T = {a,b)

In the previous definition, a and b are collections resulting in a nested collection T. Elements of
a collection may also be named and the result is a system. Assuming

car = {oelocitj~ = 5,consumption = 10)

the points of this collection can be reached through the dot construct using uniformly their label.
e.g. car.z!elocity, or their index: car.0. The composition operator # concatenates the values and
merges the systems:

A = (a,b}; B = {c,d}; A # B*{a,b,c,d)
ferrari = car # {color = red}*{velocity = 5,consumption = 10,color = red}

168 Olivier Michel

The last geometric operator we will present here is the selection: it allows selection of some point
values to build another collection. For example:

Source = {a,b,c,d,e}
target = { 1,3,{0,4}}

Source(target)=>{b,d,{u,e}}

The notation Source(target) must be understood in the following way: a collection can be viewed
as a function from [O. .n] to some co-domain. Therefore, the dot operation corresponds to function
application. If the co-domain is a set of natural numbers, collections can be composed and the
following property holds: Source(target).i = Source(target.i), mimicking the function composition
definition. From the parallel implementation point of view, selection corresponds to a gather
operation and is implemented using communication primitives on a distributed memory
architecture.

Four kinds of function application can be defined:

Operator Signature Syntax
application: (collectionP+X) x collectionP+X f(c,, . . ., cp)

extension? (scalarP+scalar) x collectionP+collection f^(c,, . . ., c,)
reduction\: (scalar2+scalar) x collection -scalar f\c

scan\\: (scalar2+scalar) x collection +collection :f\\c

X means both scalar or collection; p is the arity of the functional parameter f.
The first operator is the standard function application. The second type of function application

produces a collection whose elements are the “pointwise” application of the function to the
elements of the arguments. Then, using a scalar addition, we obtain an addition between
collections. Extension is implicit for the basic operators (+, *, . . .) but is explicit for user-defined
functions to avoid ambiguities between application and extention (consider the application of the
reuerse function to a nested collection). The third type of function application is the reduction.
Reduction of a collection using the binary scalar addition results in the summation of all the
elements of the collection. Any associative binary operation can be used, e.g. a reduction with the
min function gives the minimal element of a collection. The scan application mode is similar to
the reduction but returns the collection of all partial results. For instance: + \\{ l,l, l}=~-{ 1,2,3}.
See [26] for a programming style based on scan. Reductions and scans can be performed in
0(log2(n)) steps on SIMD architecture, where n is the number of elements in the collection, if there
are enough PEs.

2.2. The stream in 8,,*

LUCID [27] is one of the first programming languages defining equations between infinite
sequences of values. Although 81,2 streams are also defined through equations between infinite
sequences of values, 8112 streams are very different from those of LUCID.

A metaphor to explain 8112 streams is the sequence of values of a register. If you observe a register
of a computer during a programme run, you can record the successive store operations on this
register, together with their dates. The (timed) sequence of stores is an 8,12 stream. At the beginning,
the content of the register is uninitialized (a kind of undefined value). Then it receives an initial
value. This value can be read and used to compute other values stored elsewhere, as long as the
register is not the destination of another store operation.

The time used to label the changes of values of a register is not the computer physical time, it
is the logical time linked to the semantics of the programme. The situation is exactly the same
between the logical time of a discrete-events simulation and the physical time of the computer which
runs the simulation. Therefore, the time to which we refer is a countable set of “events” meaningful
for the programme.

8112 is a declarative language which operates by making descriptive statements about data and
relations between data rather than describing how to produce them. For instance, the definition
C = A + B means the value in register C is always equal to the sum of the values in register A
and B. We assume that the changes of the values are propagated instantaneously. When A (or B)

Design and implementation of 8, I

Table 2. Examples of streams

169

0 I 2 3 4 5 6 7 8

I 1
1+2 3
Clock 2 1rue 1rue flue li-ue fi-I&
Assuming A 1 2 3 4 5 6
Assuminy B I 2 I 1
C=A+B 2 3 5 6 6 7 7
$C 2 3 5 6 6 7

changes, so do C at the same logical instant. Note that C is uninitialized as long as A or B are
uninitialized.

Table 2 gives some examples of 81/z streams. The first row gives the instants of the logical clock
which counts the events in the programme. The instants of this clock are called a tick (a tick is
a column in the table). The date of the “store” operations of a particular stream are called the
tack of this stream (because a clock is thought to make “tick-tack”): they represent the set of events
meaningful for that stream (a tack is a non-empty cell in the table). At a tick t, the value of a
stream is: the last value stored at tack t’ I t if t’ exists, the uninitialized value otherwise. For
example, the value of $C at tick 0 is undefined. whilst its value at tick 4 is 3.

A scalar constant stream is a stream with only one “store” operation, at the beginning of time,
to compute the constant value of the stream. A constant n really denotes a scalar constant stream.
Constructs like Clock n denote another kind of constant streams: they are predefined sequences
of true values with an infinite number of tacks. Scalar operations are extended to denote
elementwise application of the operation on the values of the streams. The delay operator $ shifts
the entire stream to give access, at the current time, to the previous stream value. This operator
is the only operator that does not act in a pointwise fashion. The tacks of the delayed stream are
the tacks of the arguments with the exception of the first one.

The last kind of stream operator is the sampling operator. The most general one is the “trigger”,
which is very close to the T-gate in data-flow languages [28]. It corresponds to the temporal version
of the conditional. The values of T when B are those of T sampled at the tacks where B takes
a true value (see Table 3). A tick t is a tack of A when B if A and B are both defined and t is
a tack of B and the current value of B is true.

8, ? streams present several advantages:

l 8li2 streams are manipulated as a whole, using filters, transducers . . . [29].
l Like other declarative streams, this approach represents imperative iterations in a

“mathematically respectable way” [30] and to quote [13]: “. . series expressions are to loops
as structured control constructs are to gotos.”

l The tacks of a stream really represent the logical instants where some computation must occur
to maintain the relationships stated in the programme.

l The 8, 2 stream algebra verifies the causality assumption: the value of a stream at any tick t
may only depend upon values computed for previous tick t’ < t. This is definitively not the
case for LUCID (LUCID includes the inverse of $, an “uncausal” operator).

l The 8, z stream algebra verifies the finite memory assumption: it exists as a finite bound such
that, the number of past values that are necessary to produce the current values remains smaller
than that bound.

The last two assumptions have been investigated in two real-time programming languages derived
from LUCID: LUSTRE [31] and SIGNAL [32]. Such streams enable a static execution model: the
successive values making a stream are the successive values of a single memory location and we
do not have to rely on a garbage collector to free the unreachable past values (as in Haskell [33]

Table 3. Example of a sampling expression

A I 2 3 4 5 6 I 8 9

B false false false WU.? false true IIW? ,false ww
A when B 4 6 I 9

170 Olivier Michel

for example). In addition, we do not have to compute the value of a stream for each tick, but only
for the tacks.

2.3. Combining streams and collections into webs

A web is a stream of collections or a collection of streams. In fact, we distinguish between two
kinds of webs: static and dynamic. A static web is a collection of streams where every element has
the same clock (the clock of a stream is the set of its tacks). In an equivalent manner, a static web
is a stream of collections where every collection has the same geometry. Webs that are not static
are called dynamic. The compiler is able to detect the kind of the web and compiles only the static
ones. Programmes involving dynamic webs are interpreted.

Collection operations and stream operations are easily extended to operate on static webs
considering that the web is a collection (of streams) or a stream (of collections).

8,,* is a declarative language: a programme is a system representing a set of web definitions. A
web definition takes a form similar to:

T=A+B (1)

Equation (1) is an 81/z expression that defines the web T from the web A and B (A and B are
the parameters of T). This expression can be read as a dejinition (the naming of the
expression A + B by the identifier T) as well as a relationship, satisfied at each moment and
for each collection element of T, A and B. Figure 1 gives a three-dimensional representation
of the concept of web.

Running an 8,/z programme consists of solving the web equations. Solving a web equation means
“enumerating the values constituting the web”. This set of values is structured by the stream and
collection aspects of the web: let a web be a stream of collections; in accordance with the time
interpretation of stream, the values constituting the web are enumerated in the stream’s ascending
order. So, running a 8,,* programme means enumerating, in sequential order, the values of the
collections making the stream. The enumeration of the collection values is not subject to some
predefined order and may be done in parallel.

2.4. Declarative definition of recursive collections

A definition is recursive when the identifier on the left-hand side appears also directly or
indirectly on the right-hand side. Two kinds of recursive definitions are possible.

Values
t

Time

Space=

Fig. 1. A web specified by an 81,~ equation is an object in the (time, space, value) axis. A stream is a
value varying in time. A collection is a value varying in space. The variation of space in time determines

the dynamical structure (cf. Section 2.6).

Design and implementation of 8, ? 171

1.4.1. Temporal recursion. Temporal recursion allows the definition of the current value of a
web using past values of it. For example, the definition

T@O = 1
T=$T+ I when Clock 1

specifies a counter which starts at 1 and counts at the speed of the tacks of Clock 1. The (U 0 is
a temporal guard that quantifies the first equation and means “for the first tack only”. In fact.
T counts the tacks of Clock 1.

The order of equations in the previous programme does not matter: the unquantified equation
applies only when no quantified equations apply. The language for expressing guards is restricted
to ‘alw with the meaning “for the nth tack only”.

Z.d.2. Spatial recursion. Spatial recursion is used to define the current value of a point usmg
current values of other points of the same web. For example,

iota = 0 # (1 + iota:[2])

is a web with three elements such that iota.i is equal to i. The operator: [n] truncates a collection
to II elements so we can infer from the definition that iota has 3 elements (0 is implicitly coerced
into a one-point collection). Let {iotal,iota2,iota3} be the value of the collection iota. The definition
states that

{iofal,iotaz.iotai) = {O}#({l,l) + (iotal,iotaz})

which can be rewritten as:

i

iota, = 0
iota: = 1 + iota,

iota? = I + iota?

which proves our previous assertion.

-7.5. E.uarnples ?f webs with static structure

2.5.1. Numerical resolution of a parabolic partial difSerentia1 equation. We want to simulate the
diffusion of heat in a thin uniform rod. Both extremities of the rod are held to O’C. The solution
of the parabolic equation:

au aw -=)
at a.Y-

(2)

gives the temperature U(.x,t) at a distance x from one end of the rod after time t. An explicit
method of solution uses finite-difference approximation of equation (2) on a mesh
(X, = ih,c = jk) which discretizes the space of variables [34]. One finite-difference approximation
to equation (2) is:

u 1.1 + I - u,,, _ u, i 1.r - 2 ui., + U! - l.1

k - h?
(31

which can be rewritten as

U ,,,+, = rU,-I,, + (1 - 2r)U,,, + rU,+l,, (4,

where r = k/h’. It gives a formula for the unknown temperature U rJ+l at the (ij + 1)th mesh point
in term of known temperatures along the jth time-row. Hence, we can calculate the unknown
pivotal values of U along the first time-row T = k, in terms of known boundary and initial values
along T = 0, then the unknown pivotal values along the second time-row in terms of the first
calculated values, and so on.

The corresponding 8,,‘? programme is very easy to derive and simply corresponds to the
description of initial values, boundary conditions and the specification of the relation (4). The

172 Olivier Michel

stream aspect of a web corresponds to the time axis, while the collection aspect represents the rod
discretization.

start = some initial temperature distribution;
LeftBorder = 0;

RightBorder = 0;
U@O = start;

U = LeftBorder # inside # RightBorder;
float inside = 0.4*pU(left) + 0.2*pU(middle) + 0.4*pU(right);

pU = $U when Clock;
left = ‘6;

right = left + 2;
middle = left -I- 1;

The second argument of the when operator is Clock which represents the time discretization (cf.
Fig. 2). The expression ‘n generates a vector of n elements where the ith has a value i.

2.5.2. The simulation of a reactive system. Here is an example of a hybrid dynamical system,
a “wlumf” which is a “creature” whose behaviour (eating) is triggered by the level of some internal
state (see [35] for such model in ethological simulation).

More precisely, a wlumf is hungry when its glycaemia is under 3. It can eat when there is some
food in its environment. Its metabolism is such that when it eats, the glycaemia goes up to 10 and
then decreases to zero at a rate of one unit per time step. All these variables are scalar. Essentially,
the wlumf is made of counters and flip-flop triggered and reset at different rates.

boolean FoodInNeighbourhood = Random;
System wlumf = {Hungry@0 = false;

Hungry = (Glycaemia < 3);
Glycaemia@O = 6;
Glycaemia = if Eating then 10 else max (0, $Glycaemia - 1) when Clock fi:
Eating = $Hungry && FoodZnNeighbourhood;}

The result of an execution is given in Fig. 3.

2.6. Examples of web with dynamic structure

Webs with a static structure cannot describe phenomena that grow in space (like plants). To
describe these structures, we need dynamically structured webs. The rest of this section gives some

inside = .,.

f--X-+ Thin uniform rod
0°C

t
0°C

u (x, t)
Values already computed
Constant web

Fig. 2. Diffusion of heat in a thin uniform rod.

Design and implementation of 8, 2 173

behaviour

L-

12 _ food in the nei

10'

* - .I ..I .T1

6:
_1 s _ - r '; *

time
4. 1 ,,

Fig. 3. Behaviour of an hybrid dynamical system

examples of this kind of web. Note that we do not need to introduce new operators; actual web
definitions already enable the construction of dynamically shaped webs.

2.6.1. Pascal’s triangle. The numbers in Pascal’s triangle give the binomial coefficients. The
value of the point (line, col) in the triangle is the sum of the point value (line - 1, co/) and point
value (line - 1, co1 - 1). We decide to map the rows in time, thus the web representation of Pascal’s
triangle is a stream of growing collections. This web is dynamic because the number of elements
in the collection varies in time.

We can identify that the row I (1> 0) is the sum of row (I - 1) concatenated with 0 and 0
concatenated with row (I - 1). The 81/l programme is straightforward.

t = (St # 0) + (0 # St) when Clock;
r@j 0 = 1;

The first five values of Pascal’s triangle are:

7’op:O : {l):int[l]
Top:1 : {l.l}:int[2]
Top:2 : {1,2,1):int[3]
Top:3 : (1,3,3,1):int[4]
Top:4 : (1,4,6,4,lf:int[5]

-7.6.1’. Eratosthenes’s sieve. We present a modified version of the famous Eratosthenes’s sieve
to compute prime numbers. It consists of a generator producing increasing integers and a list of
known prime numbers (starts with a single element, 2). Each time we generate a new number, we
try to divide it with all known prime numbers. A number that is not divided by a prime number
is a prime number itself and is added to the list of prime numbers.

Generator is a web that produces a new integer at each tack. Extend is the number generated
with the same size as the web of already known prime numbers. Module is the web where each
element is the modulo of the produced number and the prime number in the same column. Zero
is the web containing boolean values that are true every time that the number generated is divided
by a prime number. Finally, reduced is a reduction with an or operation, that is, the result is true
if one of the prime numbers divides the generated number. The .u:(yl operator shrinks the web Y
to the rank specified by _v. The rank of a collection is a vector where the ith element represents
the number of element of x in the ith dimension.

generator@0 = 2;
penerator = Sgenerator + 1 when Clock;

extend = generator:l$cribIe/;
module = extend O/O Scrible;

zero = (module = =(O:lmodzdoI));
reduced = or\zero;

174 Olivier Michel

crible = $crible #generator when (not reduced);
crible@O = generator;

The first five steps of the execution give for crible:

Top:0 : {2}:int[l]
Top:1 : {2,3}:int[2]
Top:2 : (2,3}:int[2]
Top:3 : {2,3,5}:int[3]
Top:4 : {2,3,5}:int[3]

3. IMPLEMENTATION OF THE 8,,2 COMPILER

The compiler described hereafter is restricted to programmes defining webs with a static
structure. A high-level block diagram of the compiler is shown in Fig. 4. The output can either
be a sequential C code or a code for a virtual SIMD machine (similar to CVL [36]).

3.1. The structure of the compiler

We describe briefly the various phases of the compiler written in a dialect of ML [37]:
Parsing: parses the input file and creates the programme graph representation used in the

remaining modules of the compiler. This is a conventional two-pass parser implemented using the
ML version of lex and yacc.

Binding: the compiler enforces static scoping of all variables. This phase is also responsible for
inline expansion of functions, removal of unused definitions and the detection of undefined
variables.

Geometry inference: the geometry of a web is inferred at compile time by the “geometric type
system” (see [23]). Programmes involving dynamic webs are detected by the geometry inference and
rejected. For example, the following programme: T@O = 0; T = ($T#$T) when Clock defines a
web T with a number of elements growing exponentially in time:

~~~(~};(~,~>;(~,~,~,~}; . . .> 

every collection of the stream has twice as many elements as the previous one. This kind of 
programme implies dynamic memory allocation and dynamic load balancing and is rejected by the 
compiler (but such programmes can be interpreted). 

Scheduling inference: to solve the 81,2 equations between webs, we have to extract the sequencing 

/Y //\ 
Iota Y + C-3 

._ _-. --.- 

{ 

‘5+x-‘5+2+x+2+y-x+2 

Fig. 4. Block diagram of the compiler. Ellipses indicate source or target code, and 
processing modules. 

rectangles are 



Design and implementation of 8,~ 17s 

of the computations of the various right-hand sides from the data flow graph. Once the scheduling 
of the instructions is done, the compiler computes the memory storage required by a programme 
execution. 

Code generation: the compiler generates a standalone sequential C code running on work-stations 
or a code to be executed by the SIMD virtual machine. However, all the compiler phases assume 
a full MIMD execution model and we are working on the MIMD code generation. The sequential 
C code is stackless and does not use malloc or any other dynamic runtime features. 

3.2. The clock calculus 

The clock calculus of a web is needed to decide whether the computation of a collection has to 
take place at some tick or not (a static web is viewed as a stream of collections for the 
implementation). The clock of a web X is a boolean stream holding the value true at tick t if t 
is a tack of X. Let .Y be the value of X at a tick t, and clock(x) the value of the clock associated 
with X at the same tick. Every definition 

X = ,I’( Y) 

in the initial programme is translated into the assignment: 

.Y: = if clock(X) then,f‘(_r) (5) 

This statement is synthesized by induction on the structure of the definition of X. For example: 

clock(A when B) = b A clock(B) 

c/ock(clock(X)) = True 

This transformation produces a normal form from the original web definition. Roughly, the 
compiler will generate for any expression of the programme, a task performing the assignment 
shown in equation (5). It is still necessary to compute the dependencies between the tasks to 
determine their relative order of activation. 

3.3. The scheduling inference 

The data-flow graph associated with an 8,,* programme is directly extracted from the programme 
in normal form. Unfortunately, this graph cannot be directly used to generate the task scheduling. 
In the case of a scalar data flow programme, the data-flow graph is the same as the dependencies 
graph. It is no longer true with collections. For example, in the following programme: 

A=B 

every point of A (i.e. every element of the collection of the web A) depends on the corresponding 
point of B. On the other hand, the following programme that sums all elements of B: 

A = +\B 

produces a web A of only one point, depending on all the points of B. Nevertheless, both 
programmes give the same data flow graph where the nodes A and B are connected. 

The data flow graph can be viewed as an approximation of the real dependencies graph. This 
approximation is too rough; for example, on this basis, we cannot compile spatial recursive 
programmes. The work of the compiler is to annotate the data-flow graph to get a finer 
approximation of the dependencies graph. The true graph of the dependencies cannot be explicitly 
built because it has as many nodes as points in the web of the programme (for example, in numerical 
computation, matrices of size 1000 x 1000 are usual and would give dependency graphs of over 
1 O6 nodes). 

We call task sequencing graph the approximation of the dependencies graph annotated in the 
following way (Fig. 5): 

l An expression e depends on the web X if X appears syntactically in e. However, we 
remove the dependencies of variables appearing in the scope of a delay: those dependencies 
correspond to a past value and the compiler is scheduling the computation of the present 
iteration only. 



176 Olivier Michel 

The three basic annotations: 

T.2-L 5.2 T.2 s.2 

T.l----+ S.l T.l s.l 

T.O- S.0 T.0 s.0 

Dependency graph corresponding to the annotations 

Program with a spatial recursion: 
if101 = 0 # (1 + i:[9]) 

Program in a fatal deadlock: 
A=B 
B=A 

0 # (1 + i:[9]) 
A 

P 

P CJ 

P 

B 

I J 
Fig. 5. Representation of the three possible annotations used to build the sequencing graph. Two examples 
are given. i is a vector such that the jth element of i has value j. A and B correspond to empty streams 

which can be interpreted as a fatal deadlock. 

l The (instantaneous) dependency between an expression and a variable is labelled p if the value 
of point i of e depends only on the value of point i of X (point-to-point dependency). 

l The dependency is labelled t if a point i from e depends on the value of all points of X (total 
dependency). 

l The dependency is labelled + if the value of point i depends on the values of point j of X 
with j < i. 

In the sequencing graph, the cycle with an edge of type t or no edge of type + are dead cycles. 
The webs defined in those cycles have always undefined values. The remaining cycles (with edges 
+ and no edge t) correspond to spatial recursive expression requiring a sequential implementation. 
An expression not appearing in a cycle is a data-parallel expression. It can be computed as soon 
as its ancestors have been computed. Here, we are dealing with recursive definitions of collections 
but see [38] for a similar approach which handles recursive streams and [39] for recursive lists. 

In fact, the complete processing of the sequencing graph is a bit more complicated. We made 
the assumption that the calculus of the instantaneous value of $X does not depend on the 
instantaneous value of X, but the clock of $X depends on the clock of X (it is the same one, but 
the first tack). So, the sequencing graph might have instantaneous cycles between boolean 
expression representing clock expressions. The computation of this value is based on a finite Iixed 
point computation in the lattice of clocks. One of the benefits of this approach, besides being fully 
static, is that it allows us to detect the expression that will remain constant (we can therefore 
optimize the generated code), or that will never produce any computation and generates tasks in 
dead-lock (that might be a programming error). 

Using the sequencing graph of the tasks as an approximation of the true dependencies graph, 



Design and implementation of 8, ? 177 

we might detect as incorrect some programmes with an effective value. With some refinements of 
the method, it is possible to handle additional programmes. Anyway, the sequencing graph method 

effectively schedules any collections defined as the first n values of a primitive recursive function, 
which represents a large class of arrays. 

In fact, this corresponds to the use of a prefix-ordered domain on vectors, instead of a more 
general Scott domain. The use of a Scott order on vectors (which identifies de facto vectors with 
functions from [O,n] to some domain) allows more general recursive definition. This is at the expense 
of efficiency. For example, in the following 8, 2 programme computing the H first Fibonnaci 
numbers: 

,fih[n] = if iota = =0 

then 1 
else if iota = =2 

then 1 
else (1 #jb:[n - 11) + ({l.l}#fib:[n - 21) 

the time-complexity of the evaluation process remains linear with n because we know that we can 
compute the element value in a strict ascending order (in comparison, the time-complexity of the 
fimctional evaluation of Jib is exponential, but can be simulated in polynomial time by 

memoization). 
In the current compiler, the sequencing graph method is used to determine if the evaluation of 

the vector element can be done in parallel, in a strict ascending order, or in a strict descending 
order. 

3.4. The data-flow distribution and scheduling 

After the scheduling inference, the compiler is able to distribute the tasks on to the PEs of a 
target architecture and to choose for every PE a scheduling compatible with the sequencing graph. 
To solve this problem, we limit ourselves to c_rclic scheduling. In our case, such a scheduling is the 
repetition by the PEs of some code named pattern. The pattern corresponds to the computation 
of the values of a web for one tick. The last operation of the compiler is therefore to generate such 

a pattern from the scheduling constraints. 
To generate a pattern, the compiler associates to every task a rectangular area in a Gantt chart 

(a time x space). The width of the rectangle corresponds to the execution time of the task and its 

height to the number of PE ideally required for a fully parallel execution of the task (cf. Fig. 6). 
For example, if the task corresponds to the data-parallel addition of two arrays of 100 elements. 

the height of the associated rectangle will be 100. 
With the representation, the problem of the optimal distribution and the minimal scheduling of 

the tasks is to find a distribution of the rectangles that will minimize the makespan and that is 

Split 

4 
Forbidden 

Height : 
number of 

required 
processing 

elements 

: 

The sequency graph to fold 

Width : 
task execution 

duration 

4 
Processors 

border of 
ticks 

border of 
ticks 

Scheduling Time 

Fig. 6. Scheduling and distribution of a sequencing graph using a two-dimensional bin-packing method. 



178 Olivier Michel 

bound in height by the number of PEs in the architecture. Some very efficient heuristics exist for 
this problem known under the name “bin-packing” in two dimensions (which is NP-complete in 
the general case [40]). 

At the moment, we are testing a greedy strategy [41,42] consisting of placing as soon as possible 
the largest ready task on the critical path. A task becomes ready at the time when all the tasks 
from which it depends are done, time plus the communication time needed to transfer the data 
between PEs. If more than one task is available at the same time, an additional criterion is given 
to choose which one has to be taken first (for example, a task being on the critical path). 

If the width of the chosen task is bigger than the number of available PE, we “split” the task 
in two pieces. The first one is scheduled and the other one is put back in the pool of available 
tasks (to be scheduled and distributed later). We only admit the split in the horizontal direction 
(cf. Fig. 6). In fact, that is possible because a data-parallel task requiring n PEs corresponds to 
n independent scalar tasks. Vertical split corresponds to pre-emptive scheduling. 

A well-known result in [43] can be used to bound the worst case performance of this strategy. 
It guarantees the good quality of the heuristic used here. 

4. CONCLUSIONS 

The current compiler is written in C and in an ML dialect. It generates a code for a virtual SIMD 
machine implemented on a UNIX workstation. However, all the compiler phases assume a full 
MIMD execution model and we are working on the MIMD code generation. Evaluation of webs 
with dynamic structure is done through a sequential interpreter. 

It is interesting to evaluate the quality of the sequential C code to estimate the overhead induced 
by the high-level form of the language. This comparison was done on the example of heat diffusion 
(cf. Section 2.5.1) against a hand-coded C programme (the parameters are the size of the rod which 
varies from 10 to lo5 and the number of iterations from 100 to 10’). The ratio between the two 
programmes is less than 2 in favour of the C programme for any parameters. However, the code 
generated from the 8,,* programme is not optimized and especially the concatenation involves 
copying instead of sharing and communications are not translated into vector shifts. Optimizing 
by hand the communications lowers the ratio to 1.3 which proves the efficiency of our compilation 
scheme (more results are given in [44]). 

As a matter of fact, our concept of collection relies on nested vectors. Nested vectors differ in 
many ways from the multidimensional arrays generally used in space-time simulations. For 
example, assuming a row-column representation of a two-dimensional array by a two-nested 
vector, it is not possible to define an evaluation process propagating along the diagonal. This is 
because of the prefix or suffix ordering of vector-domains. More generally, the problem is to define 
the neighbourhood of a collection element and to enable arbitrary moves from neighbour to 
neighbour. A possible answer relies on the extension of collection on a rich structure based on 
groups [45]. 

Acknowledgemenrs-The author wishes to thank Jean-Louis Giavitto, Jean-Paul Sansonnet, Dominique De Vito, 
Abderrahmane Mahiout, Dan Truong, Laurence Cathala and the anonymous reviewers for their constructive comments. 

REFERENCES 

1. Flynn, M. J. Some computers organizations and their effectiveness. IEEE Trans. on Computers C21: 948-960; 1972. 
2. Sipelstein, J. and Blelloch, G. E. Collection-oriented languages. Proc. of the IEEE 79(4): 504-523. 
3. Banatre, J.-P., Coutant, A. and Le Metayer, D. A. Parallel machine for multiset transformation and its programming 

style. Future Generaiion Computer Systems 4: 133-144; 1988. 
4. Giavitto, J.-L. A synchronous data-flow language for massively parallel computer. In Proc. of Znt. Conf. on Parallel 

Computing (ParCo’91) (Edited by Evans, D. J., Joubert, G. R. and Liddell, H.), pp. 391-397, London 3-6 September 
1991. Amsterdam: North-Holland; 1991. 

5. Siegel, H., Siegel, L., Kemmerer, F., Mueller, P. Jr, Smalley, H. Jr and Smith, D. PASM: A partitionable SIMD/MIMD 
system for image processing and pattern recognition. IEEE Transactions on Computers C-30(12): 934-947; 1981. 

6. Cornu-Emieux, R., Mazare, G. and Objois, P. A VLSI asynchronous cellular array to accelerate logical simulations. 
In Proc. of the 30th Midwest International Symposium on Circuit and Systems; 1987. 

7. Koren, I. and Mendelson, B. A data-driven VLSI array for arbitrary algorithms. IEEE Computers, 3&43; October 
1988. 

8. Cappello, F., Bechennec, J.-L., Delaplace, F., Germain, C., Giavitto, J.-L., Neri, V. and Etiemble, D. Balanced 



Design and tmplementation of 8,: I 79 

9. 

IO. 
I I. 
12. 

13. 

14. 
15. 

16. 

17. 

18 

19 
20 
21 
22 
23 

24 

25 

26 
27 

28 

29 

30 
31 

32 

33 
34 
35 

36 

31 
38 
39 

40 

41. 

42. 

43. 

44. 

45. 

distributed memory parallel computers. In Int. Conf: on Parallel Processing. Sr Charles, Ill., pp. 72-76. Boca Raton, 
FL: CRC Press; 1993. 
Steele, G. Making asynchronous parallelism safe for the world. In Secenteenrh Annual Symposium on Principles o/ 
Programming Languages, pp. 218-231. San Francisco, January 1990. San Francisco: ACM Press; 1990. 
Davis, A. L. and Keller, R. M. Data-flow graphs. Computer, pp. 26-41; February 1982. 
Skillicorn, D. Architecture-independent parallel computation. Compufers, 38-49; December 1990. 
Gajski. D. D., Padua, D. A., Kuck, D. J. and Kuhn, R. H. A second opinion on data flow machines and languages. 
IEEE Computer, 489-500; February 1982. 
Waters, R. C. Automatic transformation of series expressions into loops. ACM Trans. on Prog. Languages and SJsrem.5 
13(l): 52-98; January 1991. 
Leiserson. C. and Saxe, J. Optimizing synchronous systems. Journal of‘ VLSI and Computer S_vstems l( 1): 41-67: 1983. 
Giavitto, J.-L.. Germain, C. and Fowler, J. OAL: an implementation of an actor language on a massively parallel 
message-passing architecture. In 2nd European Distributed Memor!, Computing Conf. (EDMCC?). volume 492 ot’ 
LNCS, Miinich. 22-24 April 1991. Berlin: Springer-Verlag; 1991. 
Michel, O., Giavitto, J.-L. and Sansonnet, J.-P. A data-parallel declarative language for the simulation of large 
dynamical systems and its compilation. In SMS-TPE’94: Software&r Multiprocessors and Supercomputers, Moscow, 
II-23 September, 1994. Moscow: Office of Naval Research USA & Russian Basic Research Foundation; 1994. 
Blelloch, G. E. and Sabot, G. W. Compiling collection-oriented languages onto massively parallel computers. Journal 
of Parallel and Distributed Computing 8: 119-134; 1990. 
Schwartz, J. T.. Dewar, R. B. K., Dubinsky, E. and Schonberg, E. Programming M.ilh Sets: and lnfroduction /o SETL 
Berlin: Springer-Verlag; 1986. 
Jayaraman, B. Implementation of subset-equational program. Journal oj Logic Programming 12: 299-324: April 1992. 
Thinking Machines Corporation, Cambridge, MA. The Essential *Lisp Manual; 1986. 
Tofooli. T. and Margolus, N. Cellular Automata Machine. Cambridge, MA: MIT Press; 1987. 
Hillis, W. D. and Steele, G. L. Data parallel algorithms. Communication of rhe ACM 29(12): 1170-l 183; December 1986. 
Giavitto, J.-L. Typing geometries of homogeneous collection. In 2nd Inf. Workshop on Array Manipulation (.4 TABLE). 
Montreal; 1992. 
Sabot. G. W. The Paralarion Model: Architecture, Independent Parallel Programming. Cambridge. MA: MIT Press: 
1988. 
Blelloch, G. E. NESL: A nested data-parallel language (version 2.6). Technical Report CMU-CS-93-129. School of 
Computer Science. Carnegie Mellon University; April 1993. 
Blelloch, G. E. Scans primitive parallel operation. IEEE Trans. on Compurers 38(1 I): 1526-1538: November 1989. 
Wadge, W. W. and Ashcroft, E. A. LUCID-a formal system for writing and proving programs. SIAM Journal on 
Computing 3: 336~ 354; September 1976. 
Denis. J. B. First version of a data flow procedure language. In Proceedings I$ the Programming Svmpo.yium. 
Aprd 9-I 1 1974. Berlin: Springer-Verlag; 1974. 
Arvind and Brock. J. D. Streams and managers. In Proceedings ofthe 14/h IBM Cornpurer Sciencr Swwposrum. Berlin: 
Springer-Verlag; 1983. 
Wadge, W. W. and Ashcroft, E. A. Lucid, the Data Flow Programming Language. London: Academic Press; 1985. 
Caspi, P., Pilaud, D., Halbwachs, N. and Plaice, J. Lustre: a declarative language for programming synchronous 
systems. In Fourteenth annual symposium on Principles qf Programming languages. Munich, Germany: ACM Press: 
January 1987. 
Le Guernic. P., Benveniste. A., Bournai, P. and Gautier, T. Signal, a dataflow oriented language for signal processing. 
IEEE-ASSSP 34(2): 362-374; 1986. 
Hudak, P. and Wadler, P. Report on the programming language haskell version I, 1. SIGPLAN Nofices 27(5); April 1992. 
Smith. D. A basis algorithm for finitely generated abelian groups. Murh. Algorithms 1( 1): 13-26; January 1966. 
Maes, P. A bottom-up mechanism for behavior selection in an artificial creature. In Proceedings of the First International 
Conference on Simulation qf Adaptke Behavior (Edited by Bradford). Cambridge, MA: MIT Press. 1991. 
Blelloch, G. E.. Chatterjee. S., Hardwick, J. C., Reid-Miller, M., Sipelstein, J. and Zagha, M. CVL: A C vector library. 
Technical Report CMU-CS-93-114, School of Computer Science, Carnegie Mellon University; February 1993. 
Leroy, X. The Caml Light S_vstem Release 0.6. INRIA; September 1993. 
Wadge, W. W. An extensional treatment of dataflow deadlock. Theoretical Computer Science 13( I ): 3- 15; 1981 
Sijtsma, B. A. On the productivity of recursive list definitions. ACM Transactions on Programming Languages and 
Svsrems ll(4): 633-649; October 1989. 
Carey, M. R., Graham. R. L. and Johnson, D. S. Performance guarantees for scheduling algorithms. Operational 
Reseurch 26( 1): 3-20: January-February 1978. 
Mahiout. A.. Giavitto, J.-L. and Sansonnet, J.-P. Distribution and scheduling data-parallel dataflow programs on 
massively parallel architectures. In SMS-TPE’94: Sqftware ,for Mulriprocessors and Supercomputers. Moscow. 
September, 1994. Office of Naval Research USA & Russian Basic Research Foundation. 
Mahiout. A. Integrating the automatic mapping and scheduling for data-parallel dataflow applications on MIMD 
parallel architectures. In Parallel Computing: Trends and Applications. 19-22 September, Gent. Belgium. 1995. 
Amsterdam: Elsevier: 1995. 
Hawang. J.-J., Chow, Y.-C., Angers, F. and Lee, C.-Y. Scheduling precedence graphs in systems with interprocessor 
communication times. SIAM J. Comp. 18(2): 244257; April 1989. 
De Vito, D. Compilation portable d’un langage dtclaratif g flat de don&es synchrones. Juin 1994. Rapport de stage 
du DEA Informatique le I’Universiti de Paris-Sud; 1994. 
Giavitto, J.-L., Michel, 0. and Sansonnet, J.-P. Group based fields. In Proceedings of the Parallel Symbolic Languages 
and Sysrems (PSLS’95) (Edited by Halstead, R. H., Takayasu, I. and Queinnec, C.), volume 1068 of LNCS. p. 204-215. 
Beaune (France), 24 October 1995. Springer-Verlag. 

About the Author-OLIVIER MICHEL, born in 1969, received his Masters degree from the University Paris VI, Pierre 
et Marie Curie in 1992. He is currently a Ph.D. student at the University Paris XI in L.R.I. Since 1992, he worked on 
the extension of 81:. a declarative data-parallel language. His research interests include the design and implementation of 
new data structures for simulations with a special interest in the representation of growing processes. 





Chapter 17

MGS: a rule-based programming
language for complex objects and
collections.

[1] Jean-Louis Giavitto and Olivier Michel. MGS: a rule-based programming language for complex objects
and collections. In Mark van den Brand and Rakesh Verma, editors, Electronic Notes in Theoretical
Computer Science, volume 59. Elsevier Science Publishers, 2001.

261





Electronic Notes in Theoretical Computer Science 59 No. 4 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume59.html 19 pages

MGS: a Rule-Based Programming Language for
Complex Objects and Collections

Jean-Louis Giavitto 1 , Olivier Michel 2

LaMI u.m.r. 8042 du CNRS
Université d’Evry Val d’Essone

91025 Evry Cedex, France.

Abstract

We present the first results in the development of a new declarative program-
ming language called MGS. This language is devoted to the simulation of biological
processes, especially those whose state space must be computed jointly with the
current state of the system. MGS proposes a unified view on several computational
mechanisms initially inspired by biological or chemical processes (Gamma and the
CHAM, Lindenmayer systems, Paun systems and cellular automata). The basic
computation step in MGS replaces in a collection A of elements, some subcollection
B, by another collection C. The collection C only depends on B and its adjacent
elements in A. The pasting of C into A− B depends on the shape of the involved
collections. This step is called a transformation. The specification of the collection
to be substituted can be done in many ways. We propose here a pattern language
based on the neighborhood relationship induced by the topology of the collection.
Several features to control the transformation applications are then presented.

1 Motivations

1.1 Dynamical Systems and their State Structures

A dynamical system (or DS in short) corresponds to a phenomenon that evolves
in time. The phenomenon is located on a system characterized by “observ-
ables”. The observables are called the variables of the system, and are linked
by some relations. The value of the variables evolves with the time. The set of
the values of the variables that describe the system constitutes its state. The
state of a system is its observation at a given instant. The state has often a
spatial extent (the speed of a fluid in every point of a pipe for example). The
temporal sequence of state changes is called the trajectory of the system.

1 Email: giavitto@lami.univ-evry.fr
2 Email: michel@lami.univ-evry.fr

c©2001 Published by Elsevier Science B. V.



Giavitto and Michel

Intuitively, a DS is a formal way to describe how a point (the state of the
system) moves in the phase space (the space of all possible states of the sys-
tem). It gives a rule telling us where the point should go next from its current
location (the evolution function). These notions are illustrated in Fig.1.

We are interested in the simulation of such systems. This requires the
specification of the system state and the evolution function. This specification

Trajectories x(t) and y(t)

50 100 150 200 250 300

5

10

15

20

Evolution Constraints for x and y

dx

dt
= Ax−Bxy

dy

dt
= −Cy + Dxy

Solving the constraints gives the
trajectory of x(t) and y(t) starting
from some initial state. The evolution
of a variable is periodic.

5 10 15 20

2

4

6

8

10

12

Evolution in the phase space (x, y)

The three curves correspond to the
cyclic evolution of the system starting
from three different initial conditions.
A point in this plot corresponds to a
state (x, y). A curve corresponds to
the evolution (x, y)(t). The periodicity
of the trajectories of x and y gives a
closed curve. There is a fourth curve
reduced to a fixed point. The image
by the evolution function of this point
is itself. This point is characterized by
dx/dt = dy/dt = 0 (no change).

Fig. 1. Example of the evolution of a predator-prey system (this DS has a static
structure). The system is characterized by two variables: x corresponds to the num-
ber of predators and y to the number of preys in some ecological system. The num-
ber of preys changes because of the growth of the population and because the preys
are eaten by the predators. The number of births is proportional to the number of
preys and the decrease is proportional to the number of prey-predator encounters,
which is itself proportional to the product xy. The number of predators decreases
because the competition between predators and the increase is proportional to the
chance of prey-predator encounters. The resulting differential equations specify the
evolution function. They can be integrated to plot the trajectory of x and y (top
picture) and the state evolution (bottom picture). The structure of the system is
static in the sense that the state of the system is always described as an element
of R2.

2



Giavitto and Michel

can be very difficult to achieve because of the complexity of the description
of the phase space and of the evolution function. However, the more we know
about the phase space, the more we know about the DS. For example, if the
phase space is finite, every trajectory is finally cyclic.

Very often the phase space has some structure and this structure can be
used to simplify the description of the state and its evolution and to gain some
knowledge about the system. For example, one may specify the evolution
function hi for each observable oi and recover the global evolution function h
as a product of the “local” hi.

Standard DS exhibit a static structure, that is, the exact phase space of
the DS can be known statically before the simulation. For instance, in the
example of a fluid flowing through a pipe, since the geometry of the pipe is
not subject to change, the structure of the state is not a function of time (and
the phase space corresponds to the vector fields on the static volume of the
pipe).

1.2 DS with a dynamical structure

The a priori determination of the phase space cannot always be done. This is
a common situation in biology [9,7,8]. Such DS can be found in the modeling
of plant growing, in developmental biology, integrative cell models, protein
transport and compartment simulation, etc. This accounts for the fact that
the structure of the phase space must be computed jointly with the current
state of the system. In this case, we say that the DS has a dynamical structure.
The description of DS with a dynamical structure are especially hard.

In this kind of situation, the dynamic of the system is often specified as
several local competing transformations occurring in an organized set of sim-
pler entities. The organization of this set is subject to possible drastic changes
in the course of time and is a plain part of the state of the DS.

1.3 Unifying Several Biologically Inspired Computational Models

One of our additional motivations is the ability to describe generically the
basic features of four models of computation: Γ and the CHAM, P systems, L
systems and cellular automata (CA). They have been developed with various
goals in mind, e.g. parallel programming for Γ, semantic modeling of nonde-
terministic processes for the CHAM, calculability and complexity issues for P
systems, formal language theory and biological modeling for L systems, paral-
lel distributed model of computation for CA (this list is not exhaustive). We
assume that the reader is familiar with the main features of these formalisms
but a short description of these computational models is given in section 5 for
the readers convenience.

All these computational models rely on a biological or biochemical metaphor.
It is then natural to require their integration in a uniform framework.

3



Giavitto and Michel

2 The Basic Ideas

Our goal is to provide a general support for the notions of “organized set” and
“local competing transformations” that can be used to describe uniformly the
computation mechanisms of Γ, P and L systems and CA.

We call collection a set of elements with some “organization” (to be clari-
fied later). Several kind of organizations are used in programming languages
and give raise to several data structures: sets, multisets (or bags), sequences
(or list), arrays, trees, terms, etc. The collection type underlying the compu-
tations in Γ, CHAM and P system is the multiset, L systems rely on sequences
and CA on arrays.

2.1 A Unified Description of Γ, P and L system and CA

A Γ program, a P or a L system and a CA can be themselves viewed abstractly
as a discrete dynamical system: a running program can be characterized by a
state and the evolution of this state is specified through evolution rules. From
this point of view, the following characteristics have to be stressed.

Discrete space and time. The structure of the state (the multiset in Γ, the
membranes hierarchy in a P system, the word in a L system and the array
in a CA) consists of a discrete collection of values. This discrete collection
of values evolves in a sequence of discrete time steps.

Temporally local transformation. The computation of a new value in the
new state depends only on values for a fixed number of preceding steps (and
usually just one step).

Spatially local transformation. The computation of a new collection is
done by a structural combination of the results of more elementary compu-
tations involving only a small and static subset of the initial collection.

“Structural combination”, means that the elementary results are combined
into a new collection, irrespectively of their precise value. “Small and static
subset” makes explicit that only a fixed subset of the initial elements are
used to compute a new element value (this is measured for instance by the
diameter of the evolution rule of a P systems, the local neighborhood of a CA,
the number of variables in the right hand side of a Γ reaction or the context
of a rule in a L system).

Considering these shared characteristics, the main difference between the
four formalisms appears to be the organization of the collection. The abstract
computational mechanism is always the same:

(i) a subcollection A is selected in a collection C;

(ii) a new subcollection B is computed from the collection A;

(iii) the collection B is substituted for A in C.

see Fig. 2. We call these three basic steps a transformation . In addition
to transformation specification, there is a need to account for the various

4



Giavitto and Michel

constraints in the selection of the subcollection A and the replacement B.
This abstract view makes possible the unification in the same framework of
various computational devices. The trick is just to change the organization of
the underlying collection.

BA
C T(C)

T

x y = f(x’)

Fig. 2. The basic mechanism of the transformation of a collection. Collection C is
of some kind. A rule T specifies that a subcollection A of C has to be substituted
by a collection B computed from A. The right hand side of the rule is computed
from the subcollection matched by the left hand side x and its possibles neighbors
x′ in the collection C.

Constraining the Subcollections

There is a priori no constraint in the case of Γ: one element or many
elements are replaced by zero, one or many elements. In the case of P sys-
tems, the evolution of a membrane may affect only the immediate enclosing
membrane (by expelling some tokens or by dissolution): there is a localization
of the changes. This is also the case for L systems: the new collection B is
inserted at the place of A and not spread out over C. For CA, the changes are
not only localized, but also A and B are constrained to have the same shape:
usually A is restricted to be just one cell in the array and B is also one cell
to maintain the array structure.

2.2 Collections as Spaces

Considering these constraints and their expression, it is very natural to see
a collection as a set of places or positions organized by a topology defining
the neighborhood of each element in the collection and also the possible sub-
collections. To stress the importance of the topological organization of the
collection’s elements, we call them topological collection .

For instance, one may decide that neighbors of an element in a sequence
are their two adjacent elements (except for the first and the last element in the
sequence which have only one neighbor). The neighborhood can be specified
by a relation denoted by “,”. That is to say, x, y means that x is a neighbor
of y. If S is a subset of the elements of the collection C, then we say that S is
connected if the quotient of S by the transitive closure of “,” is reduced to only
one element. A subsequence C ′ of C is a connected subset of the elements of C.
This means that the possible subsequences of a sequence ` are the intervals of
`. Additional conditions can be put to constrain the possible subcollections.

5



Giavitto and Michel

For instance, one may want to consider only the sequence prefixes or the
sequence suffixes for the subcollections. However, a subcollection is always a
connected subset of the main collection.

This topological approach formalizing the notion of collection is part of a
long term research effort [12] developed for instance in [13] where the focus is
on the substructure and in [10] where a general tool for uniform neighborhood
definition is developed. The topology needed to describe the neighborhood in
a set or a sequence, or more generally the topology of the usual data struc-
tures, are fairly poor. They are sketched in section 5. So, one may ask if
the machinery needed is worthwhile. Actually, more complex topologies are
needed for some biological modeling applications [11]. And more importantly,
the topological framework unify various situations. Our ultimate goal is to
develop a generic implementation based on these notions, see [11].

Now, we come back to our initial goal of specifying the dynamical structure
of a DS. A collection is used to represent the state of a DS. The elements
in the collection represent either entities (a subsystem or an atomic part of
the DS) or messages (signal, command, information, action, etc.) addressed
to an entity. A subcollection represents a subset of interacting entities and
messages in the system. The evolution of the system is achieved through
transformations, where the left hand side of a rule typically matches an entity
and a message addressed to it, and where the right and side specifies the
entity’s updated state, and possibly other messages addressed to other entities.
If one uses a multiset organization for the collection, the entities interact
in a rather unstructured way, in the sense that an interaction between two
objects is enabled simply by virtue of their both being present in the multiset.
More organized topological collections are used for more sophisticated spatial
organization.

2.3 The MGS Project and the Organization of the Rest of this Paper

We do not claim that topological collection are a useful theoretical framework
encompassing all the previous formalisms. We advocate that few notions and a
single syntax can be consistently used to allow the merging of these formalisms
for programming purposes. This leads to the development of an experimental
programming language called MGS. MGS is the acronym of “ (encore) un Modèle
Géneral de Simulation (de système dynamique) ” (yet another General Model
for the Simulation of dynamical systems). MGS is a vehicle used to investigate
general notions of collections and transformations and to study their adequacy
to the simulation of various biological processes.

The MGS language is presented informally in section 3 through some exam-
ples. We review first the notions of collections and then their transformations.
Simple examples of MGS programs are given in section 4. All examples are pro-
cessed using the current version of the MGS interpreter. Then, in section 5, we
sketch how the previous formalisms can be emulated in MGS.

6



Giavitto and Michel

3 An MGS Quick Tour

MGS embeds the idea of topological collections and their transformations into
the framework of a simple dynamically typed functional language. Collec-
tions are just new kinds of values and transformations are functions acting on
collections and defined by a specific syntax using rules. MGS is an applicative
programming language: operators acting on values combine values to give new
values, they do not act by side-effect.

In our context, dynamically typed means that there is no static type check-
ing and that type errors are detected at run-time during evaluation. Although
dynamically typed, the set of values has a rich type structure used in the def-
inition of pattern-matching, rule and transformations.

We give here informally the main constructs concerning collections, trans-
formations and their applications. Elements of the MGS syntax are given
through examples.

3.1 Collections

In addition to basic values like integers, floats, strings, lambda-expressions,
etc., MGS handles records and several kinds of collections. The elements in
a collection can be any kind of values: basic, records or arbitrary nesting
of collections. The values of the record’s fields are also of any kind, thus
achieving complex objects in the sense of [5]. Collections are (sub-)typed.
The tree in Fig. 3 gives the type hierarchy of collections.

recordmonoidal

seqbagset

AnotherSetMySet

array

collection

...pair

Fig. 3. The subtyping hierarchy of collection kinds. MySet and AnotherSet are
user-defined collection types, Cf. below. The types collection and monoidal do
not correspond to concrete data structures, but to predicates, Cf. below. Concep-
tually, a record is a set of pairs (field-name, field-value) but it is managed through
dedicated operators.

Monoidal Collections

Several kinds of topological collections are supported by MGS. We focus
here on sets, multisets and sequences. These kinds of collection are called
monoidal because they can be build as a monoid with operator join “,”: a
sequence corresponds to a join that has no special property (except associativ-
ity), multisets are obtained with commutative joins and sets when the operator

7



Giavitto and Michel

is both commutative and idempotent. The join operator with its properties
induces the topology of the collection and the neighborhood relationship.

There is a large amount of generic operations available for all collection
kinds, based on the function algebra developed for instance in [5]. We do not
detail these features as they are not relevant for our purpose here. The table 1
gives the main construction operations for structural recursion.

Table 1
Main constructions operations for monoidal collections. The line (*) gives an
overloaded syntax (the type of the arguments is used for desambiguation).

empty addition singleton merge

Set set : () insert single set(x) union

Bag bag : () increment single bag(x) sum

Seq set : () :: single seq(x) @

(*) , ,

User-Defined Subtypes

Often there is a need to distinguish several collections of the same kind
(e.g. several multisets nested in one other multiset). Various ways can be
used to achieve the distinction. For instance, in the P system formalism, each
multiset is labeled by a unique integer to reference them unambiguously. We
chose to distinguish between collections of the same kind by types. The type
of a collection must be thought as a label that does not change the structure of
the collection. Types are organized by a subtyping relationship. The subtyp-
ing relation organizes types into a poset. The kind of a collection constitutes
the maximal elements of this hierarchy. Collection type declarations look like:

collection MySet = set;

collection AnotherSet = set;

collection AnotherMySet = MySet ;
MySet AnotherSet

AnotherMySet

set

These three declarations specify a hierarchy of three types. Type AnotherMy-
Set is a subtype of MySet which is a subtype of set. The type set is predefined
and corresponds to a collection kind (other predefined types are seq for se-
quences and bag for multisets). The type AnotherSet is also a subtype of set
but is not comparable with MySet.

A type introduced by a type declaration can later be used in pattern-
matching (Cf. section 3.3) or as a predicate to test if a value is of a given type.
A monoidal collection type can also be used in the building of a collection by

8



Giavitto and Michel

the enumeration of its elements:

1, 1 + 1, 2 + 1, 2 ∗ 2, MySet : ()

is an expression evaluating to the set of four integers: 1, 2, 3 and 4. The
collection kind is a set, and its type is MySet. Actually, expression “Myset : ()”
denotes the empty MySet and “,” is the overloaded join operator: x,X creates
a new collection with element x merged with the elements of collection X; and
expression X, Y creates a new collection with elements of both collections X
and Y .

The type of a collection is taken into account for several collection op-
erations. For instance, the join of two collections of type A and B gives a
collection with type C corresponding to the common ancestor of A and B
(with the previous example, set is the common ancestor of MySet and An-
otherSet). Other example, MySet is the common ancestor of AnotherMySet)
and itself.

3.2 Records

An MGS record is a special kind of collection. An MGS record is a map that
associates a value to a name called field. The value can be of any type,
including records or other collections. Accessing the value of a field in a
record is achieved with the dot notation: expression {a = 1, b = "red"}.b
evaluates to the string "red".

Records can be merged with the overloaded + operator. Expression r1 +r2

computes a new record r having the fields of both r1 and r2. Then r.a has
the value of r2.a if the field a belongs to r2, else the value of r1.a (asymmetric
merge [18]).

For records, type declarations look like

state R = {a};
state S = {b, c̃}+ R;

state T = S + {a = 1, d : string};
(state is the keyword used to introduce the definition of a record type in MGS).
The first declaration specifies a record type R which consists of the records
with at least a field named a. Types can be used as predicates:

R({a = 2, x = 3}) or equivalently {a = 2, x = 3} : R

evaluates to true because the record {a = 2, x = 3}) has a field a. The second
declaration defines S which has all the fields of R plus a field b and no field
c. The + operator between record types emulates a kind of inheritance. The
definition T specializes type S by constraining the field a to the value 1 and
saying that an additional field d must be present and be a string.

9



Giavitto and Michel

3.3 Pattern, Rule and Transformations

A transformation T is a set of rules:

trans T = { ... rule; ... }
When there is only one rule in the transformation, the enclosing braces can
be dropped. A rule is a basic transformation taking the following form:

pattern => expression

where pattern in the left hand side (lhs) of the rule matches a subcollection A
of the collection C on which the transformation is applied. The subcollection
A is substituted in C by the collection B computed by the expression in the
right hand side (rhs) of the rule. There are also several kinds of rules, as
detailed below.

3.3.1 Patterns

We present the pattern expressions that have a generic meaning, that is, they
can be interpreted against any collection kind. The grammar of the patterns
expression is:

Pat ::= x | {...} | p, p′ | p + | p ∗ | p : P | p/exp | p as x | (p)

where p, p′ are patterns, x ranges over the pattern variables, P is a predicate
and exp is an expression evaluating to a boolean value. The explanations
below give an informal semantics for these patterns.

variable: a pattern variable x matches exactly one element. The variable x
can then occur elsewhere in the rest of the rule.

state pattern: {...} are used to match one element which is a record. The
content of the braces can be used to match records with or without a spe-
cific field (eventually constrained to a given field type or field value). For
instance, {a, b : string, c = 3, d̃} is a pattern that matches a record with
fields a, b of type string and c with value 3, but no field d.

neighbor: p, p′ is a pattern that matches two connected collections p and
p′. For example, x, y matches two connected elements (i.e., x must be a
neighbor of y). The connection relationship depends of the collection kind.

repetition: pattern p+ (resp. p∗) matches a non empty subcollection of
elements matched by p (resp. a possibly empty subcollection).

binding: a binding p as x gives the name x to the collection matched by p.
This name can be used anywhere in the rest of the rule. E.g., the pattern
x, x matches two connected elements with the same value (each occurrence
of x in a rule denotes the same value).

guard: p/exp matches the collections matched by p verifying exp. Pattern
p : P is a syntactic suggar for ((p as x)/P (x)) where x is a fresh variable.

10



Giavitto and Michel

For instance, x : MySet filters an element of type MySet. Another example:
y / y > 3 matches an element y provided that y > 3 holds.

Here is a contrived example. Pattern

(x : int/x < 3)+ as S / (card(S) < 5) & (fold[+](S) > 10)

selects a subcollection S of integers less than 3, such that the cardinality of S is
less than 5 and the sum of the elements in S is greater than 10. If this pattern
is used against a sequence (resp. a set, a multiset), S denotes a subsequence
(resp. a subset, a sub-multiset).

Some pattern constructs are specific to a collection kind. For example, the
construct “̂ , x” is used to select an element which has no left neighbor in a
sequence. Such pattern has no meaning when the transformation is applied
for instance to a set, and an error is raised. Another example of a specific
construct are the operators left and right. They can be used in the guard of a
pattern (or in the rhs of a rule) to refer to the element to the right or to the
left of a matched subsequence. These constructions depend on the topology
of the collection and we plan to develop a generic and systematic specification
of these operators using the notion of boundary.

3.3.2 Rules

A transformation is a set of rules. When a transformation is applied to a
collection, the strategy is to apply as many rules as possible in parallel. A
rule can be applied if its pattern matches a subcollection. Several features
are used to have a finer control over the choice of the rules applied within a
transformation.

Exclusive and inclusive rules

Exclusive rules consume their argument: that is, a subcollection matched
by an exclusive rule cannot intersect a subcollection matched by any other
rule. Inclusive rules don’t have this kind of constraint. They are mainly
used to transform independent parts of a complex object. Currently, only a
rhs matching a record is allowed in an inclusive rule, but the idea must be
extended to nested collections. The concept of inclusive rule may appear very
specific; however, it is a very effective way to cut down the combinatorial
explosion of the behavior specifications. Inclusive rules are better explained
by an example. Suppose we have to manipulate records having at least a field
x and y. Then,

{x as v} +=> {x = v + 1} and {y as v} +=> {y = 2 ∗ v}

are two inclusive rules (because the arrow is +=>) matching respectively a
record with at least a field x and a record with at least a field y. So they
can both apply to the record {x = 2, y = 3}. An inclusive rule of form

11



Giavitto and Michel

r+=> r′ where r is a record pattern and r′ an expression evaluating to a
record, replaces the matched record R by R + r′. So, the result of applying
the two previous rules to {x = 2, y = 3, z = 0} is {x = 3, y = 6, z = 0}.
This result is computed as

(
{x = 2, y = 3, z = 0}+ {x = 2 + 1}

)
+ {y = 2 ∗ 3}

or
(
{x = 2, y = 3, z = 0}+ {y = 2 ∗ 3}

)
+ {x = 2 + 1}

and is independent of the order of application of the two rules. Indeed, the
rules work on independent parts of the record, both for accessing or updating
the value of a field.

Priority

Exclusive rules are applied before any inclusive rules. A priority can be
associated to each rule, to specify a precedence order within each class (the
priority of inclusive rules may be used to specify the relative order of their
applications).

Local variables and conditional rules

MGS is a functional language with some imperative features. Imperative
local variables can be attached to a transformation and updated by side effects
in the rhs of the rules. These variables can be used in a rule guard allowing
the conditional use of a rule. For instance, the transformation

trans T [a = 0] = {. . . ; R = x ={ on a < 5 }=> (a := a + 1; 2 ∗ x); . . . }

specifies a rule R which is applied at most 5 times (within the evaluations trig-
gered by one application of T ). The semicolon in the rhs of the rule denotes
the sequencing of two evaluations. As a consequence, the local imperative
variable a, initialized to 0 when T is applied, counts the number of rule ap-
plications. The initial value of a variable local to a transformation can be
overridden when the transformation is applied; for instance the evaluation of
T [a = 3](...) triggers at most 2 uses of rule R.

3.4 Managing the Applications of a Transformation

A transformation T is a function like any other function and a first-class
value. For instance, a transformation can be passed as an argument to an-
other function or returned as a result. It allows to sequence and compose
transformations very easily.

The expression T (c) denotes the application of one transformation step of
the transformation T to the collection c. As said above, a transformation step
consists in the parallel application of the rules (modulo the rule application’s
features). A transformation step can be easily iterated:

12



Giavitto and Michel

T [n] (c) denotes the application of n transformation steps to c

T [fixpoint] (c) application of T until a fixpoint is reached

T [fixrule] (c) idem but the fixpoint is detected when no rule applies

In addition to the standard transformation step strategy, two other appli-
cation modes exist. In the stochastic mode, the choice of the exclusive rule
to apply is made randomly. The priorities of the exclusive rules are then
considered as the relative probability of their effective application (when they
can apply). In asynchronous mode, only one exclusive rule is applied in one
transformation step.

4 Examples of MGS Programs

The following example are freely inspired by examples given for Γ, P systems
and L systems.

Sorting a Sequence

A kind of bubble-sort is immediate:

trans Sort = (x, y / y < x) => y, x;

(This is not really a bubble-sort because swapping of elements can take at
arbitrary places; hence an out-of-order element does not necessarily bubble to
the top in the characteristic way.)

Eratosthene’s Sieve on a Set

The idea is to generate a set with integers from 2 to N (with rules Generate
and Succed) and to replace an x and an y such that x divides y by x (rule
Eliminate). The result is the set of the prime integers less than N .

trans Generate = {x, true} => x, {x + 1, true};
trans Succed = {x, true} => x;

trans Eliminate = (x, y / y modx = 0) => x;

With these definition, the expression

Eliminate[fixrule]
(

Succed
(
Generate[N ]({2, true}, set : ())

))

computes the primes up to N .

Eratosthene’s Sieve on a Sequence

The idea is to refine the previous algorithm using a sequence. Each element
i in the sequence corresponds to the previously computed ith prime Pi and is
represented by a record {prime = Pi}. This element can receive a candidate
number n, which is represented by a record {prime = Pi, candidate = n}. If
the candidate satisfies the test, then the element transforms itself to a record

13



Giavitto and Michel

r = {prime = Pi, ok = n}. If the right neighbor of r is of form {prime = Pi+1},
then the candidate n skips from r to the right neighbor. When there is no
right neighbor to r, then n is prime and a new element is added at the end of
the sequence. The first element of the sequence is distinguished and generates
the candidates.

trans Eratos = {
Genere1 = n : integer / r̃ight n

=> n, {prime = n};
Genere2 = n : integer, {prime as x, c̃andidate, õk}

=> n + 1, {prime = x, candidate = n};
Test1 = {prime as x, candidate as y, õk} / y modx = 0

=> {prime = x};
Test2 = {prime as x, candidate as y, õk} / y modx <> 0

=> {prime = x, ok = y};
Next = {prime as x1, ok as y}, {prime as x2, õk , c̃andidate}

=> {prime = x1}, {prime = x2, candidate = y};
NextCreate = {prime as x, ok as y} as s / r̃ight s

=> {prime = x}, {prime = y};
}

We have given an explicit name to each rule. The expression

Erasto[N ]((2, seq : ()))

executes N steps of the Erastothene’s sieve. For instance Erasto[100]((2, seq :
())) computes the sequence: 42, {candidate = 42, prime = 2}, {ok = 41, prime =
3}, {prime = 5}, {prime = 7}, {prime = 11}, {prime = 13}, {ok = 37, prime =
17}, {prime = 19}, {prime = 23}, {prime = 29}, {prime = 31}, seq : ().

5 Comparison with Other Approaches

We want to show that Γ and the CHAM, P systems, L systems and cellular
automata (CA) can been handled in MGS. Because they fit harmoniously, we
gain confidence that the underlying concepts of topological collection may
reveal unifying and covering a broad class of biological DS with a dynamical
structure.

5.1 Sets and Multisets: The programming language Γ and the CHAM

The computational model underlying Γ [2,1] is based on the chemical reaction
metaphor; the data are considered as a multiset M of molecules and the
computation is a succession of chemical reactions according to a particular
rules. A rule (R, A) indicates which kind of molecules can react together (a
subset m of M that satisfies predicates R) and the product of the reaction

14



Giavitto and Michel

(the result of applying function A to m). Several reactions happen at the same
time. No assumption is made on the order on which the reactions occurs. The
only constraint is that if the reaction condition R holds for at least one subset
of elements, at least one reaction occurs (the computation does not stop until
the reaction condition does not hold for any subset of the multiset).

The CHemical Abstract Machine (CHAM) extends these ideas with a focus
on the expression of semantic of non deterministic processes [3].

The Topology of Sets

A set V is organized such that each element is neighbor of any other
elements in the set (with this definition, an element of V is connected with
any other element).

A multiset M of elements e ∈ E can be represented by a set M̂ ⊆ N× E.
If e ∈ M with multiplicity n, then the n elements (1, e), (2, e), ..., (n, e) belong
to M̂ . The multiset M is represented as the set associated to M̂ and any
element in the multiset is neighbor of any other element.

With this representation, the application of one Γ rule on a multiset M is
also the application of an MGS rule. The connection between any two multiset
elements accounts the fact that any sub-multiset can be matched and replaced
in a Γ rule.

5.2 Nesting of Multisets: P systems

P systems [17,16] are a new distributed parallel computing model based on
the notion of a membrane structure. A membrane structure is a nesting of
cells represented, e.g, by a Venn diagram without intersection and with a
unique superset: the skin. Objects are placed in the regions defined by the
membranes and evolve following various transformations: an object can evolve
into another object, can pass trough a membrane or dissolve its enclosing
membrane. As for Γ, the computation is finished when no object can further
evolve.

The P Systems Topology

The case of P systems is more interesting, because the topology can be used
to take into account the nesting of multisets and the locality of a computation
step. In this approach, the region associated to a membrane would be a
2 dimensional object (surfaces) and the membranes would be 1 dimensional
(curves).

A cruder and simpler approach just associates a multiset M to the region
associated with the skin of a P system. The difference with Γ is that the
elements of M can be multiset themselves, associated to the inner membranes.
In this approach, P systems are viewed as a theory of nested (opposed to flat)
multiset rewriting. We can handle also this approach, because MGS values can
be arbitrary combinations of other values.

15



Giavitto and Michel

5.3 Sequences: L systems

L systems are a formalism introduced by A. Lindenmayer in 1968 for simulat-
ing the development of multicellular organism. Related to abstract automata
and formal language, this formalism has been widely used for the modeling
of plants. A L system can be roughly described as a grammar with an axiom
and a set of derivation rules. The productions are applied in parallel in a non
deterministic manner. 0L systems are context-free grammars. D0L systems
are deterministic context-free grammars: given a letter A there is at most one
production rule that can be applied. Parametric L systems deal with modules
instead of letters: a module is a letter associated with a list of parameters.
The production rules are extended with side-conditions on the parameters.
For example,

A(x, y) : x ≤ 3 −→ A(2x, x + y)

is a rule that can be applied to the module A(2, 5) to gives the module A(4, 7).
This rule cannot be applied on A(7, 1) because the first parameter x does not
match the condition.

The Topology of Sequences

The topology of a sequence has been sketched in paragraph 2.2. It is the
intuitive view of the sequence has a sequence of contiguous cells.

The application of only one production a → b of a D0L system is similar
to the application of a simple MGS rule (x/x == a) => b on a sequence.

5.4 Cellular Automata

Cellular automata (CA) have been invented many times under different names:
tessalation automata, cell spaces, iterative arrays, etc. However, a fair fraction
of the computer research on two-dimensional cellular automata has its ultimate
origins in the work of J. Von Neumann to provide a more realistic model for
the behavior of complex systems in biology [19].

In a simple case, a 2D cellular automaton consists in a grid of cells or
sites, each with a value taken in a finite set V . The values are updated in a
sequence of discrete time steps, according to a definite, fixed, rule. Denoting
the value of a site at position (i, j) by ai,j, a simple rule gives its new value
as a′i,j = ϕ(ai,j; ak1 , ..., akp), where ϕ is a function from Vp+1 to V and where
the akj

are the values of the p neighbors of site (i, j). For example, the Von
Neumann neighbors of a cell (i, j) are the four cells (i−1, j), (i+1, j), (i, j−1)
and (i, j + 1).

Many variations are possible: organization of the cells in a regular lattice
of any dimensions or even in a general graph, variable neighborhood, various
finite set V . However the main characteristics of CA are largely unaffected by
such additional complications.

16



Giavitto and Michel

The Topology of Arrays

The organization of the cells of an array is the natural one (Von Neuman
or Moore neighborhood). A rule of a cellular automata is an MGS rule applying
on only one cell. The conditions on the neighbor cells can be expressed using
guards and the specific neighbors accessors.

6 Conclusion and Future Work

The technical report [11] gives more details on the topological formalization of
collections and transformations and outlines several examples of MGS programs
(the tokenization of a sequence of letters, the computation of the convex hull
of a set of points in R3, the computation of the maximal segment sum, a
Turing diffusion-reaction process, etc.).

Currently, it exists two versions of an MGS interpreter: one written in OCAML

(a dialect of ML and one written in C++. There is some slight differences be-
tween the two versions. For instance, the OCAML version is more complete
with respect to the functionnal part of the language. These interpreters are
freely available 3 . In this current MGS implementations, only sets, multisets
and sequences of elements are supported. Elements are of any types, allowing
arbitrary nesting. Implementation of arrays is in progress and group-based
data fields (GBF which generalizes functional arrays, Cf. [12,10]) are planed
in a short term. We also begin the study of a generic implementation of topo-
logical chain complex, a suitable formalization of our topological collection,
using G-maps [14] to represent arbitrary join/neighborhood structure.

At the language level, the study of the topological collections concepts must
continue with a finer study of transformation kinds. Several kinds of restriction
can be put on the transformations, leading to various kind of pattern languages
and rules. The complexity of matching such patterns has to be investigated.
We also want to develop a type system that can handle nested collections,
along the lines developed in [4]. At last but not least, we want to known if
the topological spaces built by transformations, can be characterized through
a non standard type system. The efficient compilation of a MGS program is a
long-term research effort.

The applications opened by this preliminary work are numerous. From the
applications point of view, we are targeted by the simulation of the topological
changes at the early development of the embryo. This is an actual example
of tissues formation and fusion requiring complex topology beyond what is
accessible using simple data-structures. Another motivating application is
the case of a spatially distributed biochemical interaction networks, for which
some extension of rewriting have been advocated, see [6,15].

3 see www.lami.univ-evry.fr/mgs.

17



Giavitto and Michel

Acknowledgments

The comments of the anonymous referees have greatly improved this paper.
The authors would like to thanks the members of the “Simulation and Epigenesis”
group at Genopole for stimulating discussions and biological motivations. They
are also grateful to F. Delaplace and J. Cohen for many questions and encourage-
ments. This research is supported in part by the CNRS, the GDR ALP, IMPG and
Genopole/Evry.

References

[1] Banatre, J. P., A. Coutant and and D. Le Metayer, Parallel machines for
multiset transformation and their programming style, Technical Report RR-
0759, Inria, 1987.

[2] Banatre, J. P. and D. Le Metayer, A new computational model and its discipline
of programming, Technical Report RR-0566, Inria, 1986.

[3] Berry, G., and Gérard Boudol, The chemical abstract machine, Theoretical
Computer Science, 96:217–248, 1992.

[4] Blelloch, G., NESL: A nested data-parallel language (version 2.6), Technical
Report CMU-CS-93-129, School of Computer Science, Carnegie Mellon
University, April 1993.

[5] Buneman, P., S. Naqvi, Val Tannen, and L. Wong, Principles of programming
with complex objects and collection types, Theoretical Computer Science,
149(1):3–48, 18 September 1995.

[6] Fisher, M., G. Malcolm, and R. Paton, Spatio-logical processes in intracellular
signalling, BioSystems, 55:83–92, 2000.

[7] Fontana, W., and L. Buss, The Arrival of the Fittest”: Toward a theory of
biological organization, Bulletin of Mathematical Biology, 1994.

[8] Fontana, W., and L. Buss, “Boundaries and Barriers”, Casti, J. and Karlqvist,
A. edts. Chapter The barrier of Objects: from dynamical systems to bounded
organizations, pages 56–116. Addison-Wesley, 1996.

[9] Fontana, W., Algorithmic chemistry. In Christopher G. Langton, Charles
Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, “Proceedings of the
Workshop on Artificial Life (ALIFE ’90)”, volume 5 of Santa Fe Institute
Studies in the Sciences of Complexity, pages 159–210, Redwood City, CA, USA,
February 1992. Addison-Wesley.

[10] Giavitto, J.-L., and O. Michel, Declarative definition of group indexed data
structures and approximation of their domains, In “Proceedings of the
3nd International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP-01)”. ACM Press, September 2001.

18



Giavitto and Michel

[11] Giavitto, J.-L., and O. Michel, MGS: a programming language for the
transformations of topological collections, Technical Report 61-2001, LaMI –
Université d’Évry Val d’Essonne, May 2001. 85p.

[12] Giavitto, J.-L., O. Michel, and J. Sansonnet, Group-based fields, In “Parallel
Symbolic Languages and Systems (International Workshop PSLS’95)”, volume
1068, pages 209–215, 1996.

[13] Giavitto, J.-L., A framework for the recursive definition of data structures, In
“Proceedings of the 2nd International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP-00)”, pages 45–55. ACM
Press, September 20–23 2000.

[14] Lienhardt, P., Topological models for boundary representation : a comparison
with n-dimensional generalized maps, Computer-Aided Design, 23(1):59–82,
1991.

[15] Manca, V., Logical string rewriting, Theoretical Computer Science, 264:25–51,
2001.

[16] Paun, G., From cells to computers: Computing with membranes (P systems).
In “Workshop on Grammar Systems”, Bad Ischl, austria, July 2000.

[17] Paun, G., Computing with membranes, Technical Report TUCS-TR-208,
TUCS - Turku Centre for Computer Science, November 11 1998.

[18] Rémy, R., Syntactic theories and the algebra of record terms, Technical Report
1869, INRIA-Rocquencourt, BP 105, F-78 153 Le Chesnay Cedex, 1992.

[19] Von Neumann, J., “Theory of Self-Reproducing Automata”, Univ. of Illinois
Press, 1966.

19





Chapter 18

Pattern-matching and rewriting rules
for group indexed data structures.

[1] Jean-Louis Giavitto, Olivier Michel, and Julien Cohen. Pattern-matching and rewriting rules for group
indexed data structures. ACM SIGPLAN Notices, 37(12):76–87, December 2002.

283





Pattern-matching and Rewriting Rules
for Group Indexed Data Structures

Jean-Louis Giavitto

giavitto@lami.univ-evry.fr

Olivier Michel

michel@lami.univ-evry.fr

Julien Cohen

jcohen@lami.univ-evry.fr

LaMI umr 8042 du CNRS, Université d’Évry Val d’Essone, GENOPOLE
Tour Évry-2, 523 Place des Terrasses de l’Agora, 91000 Évry, France

Abstract

In this paper, we present a new framework for the defi-
nition of various data structures (including trees and ar-
rays) together with a generic language of filters enabling
a rule-based programming style for functions. This
framework is implemented in an experimental language
calledMGS. The underlying notions funding our frame-
work have a topological nature and enable to extend
the case-based definition of functions found in modern
functional languages beyond algebraic data structures.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Con-
structs and Features; E.1 [Data Structures]; F.1.1
[Theory of Computation]: Models of Computa-
tions; F.4.2 [Formal Languages]: Grammar and Other
Rewriting Systems

Keywords

group-based data fields, group indexed data structure,
path pattern, combinatorial matching, array pattern
matching, Cayley graphs, rule based array function.

1 Introduction

One of the achievements and successes of the current
functional languages is the ability to define functions by
cases using filters and pattern-matching. However, this
possibility is restricted to pattern-matching of algebraic
data types, which is now well understood. An example
of data structure beyond the current capability is for ex-
ample thearray data type: it is not possible to define a
function by cases on arrays.

In this paper, we present a new framework for the def-
inition of various data structures, including trees and
arrays, together with a generic language of filters en-
abling a rule-based programming style for functions.
This framework is implemented in an experimental lan-
guage calledMGS.

The underlying notions funding our framework have
a topological nature and unify several programming
paradigm like Gamma [BM86] and the CHAM [BB92],
Lindenmayer systems [RS92], Paun systems [Pau99]

and cellular automata [VN66]. Gamma, CHAM and
Paun systems are based on multiset rewriting and Lin-
denmayer systems on string rewriting. These kind
of data structures are qualified asmonoidal [Man01,
GM01b] and their rewriting theories are now mastered.
In this paper, we focus on non-monoidal data structures
and especially array-like data structures for which there
is no clear agreement on a rule-based rewriting mecha-
nism.

The rest of this paper is organized as follows. The next
section introduces a motivating example. Section 3 de-
tails the notion of group indexed data structure or GBF
(for group-based data fields). Such structures generalize
the notion of array. We give a geometric interpretation
of GBF in section 4. This interpretation underlies the
design of a generic pattern language described in sec-
tion 5. Some examples are worked out in section 6.
The corresponding pattern-matching algorithm is devel-
oped section 7, before reviewing some related and future
works.

2 A Motivating Example

This example is loosely inspired from lattice gas au-
tomata. In these kinds of cellular automata, rules of the
form β ⇒ f (β) are used to specify the local evolution
of a set of particles distributed on a regular subdivision
of the plan. The expressionβ is a pattern that matches
a configuration (typically two particles in two neighbor
cells that would collide at the next time step) andf (β)
is used to specify the evolution of the particles.

In our arbitrary example, we want to specify the90◦-
rotation of a cross in a square lattice (see the two dia-
grams on the left side of figure 1). An array-like data
structure can be used to record the lattice state and the
rule β⇒ f (β) is used to specify the rotation of a single
cross. Notice that in this case, the patternβ does not fil-
ter a sub-array but an arbitrary subset (a cross). This rule
must be applied to each occurrence of a cross in the data
structure. The result is an array function, called here a
transformation. We write:

trans Turn = { β ⇒ f (β); }
The transformationTurn is defined by cases (here there
is only one case corresponding to the single rule in the
transformationTurn). The caseβ specifies a sub-domain

 
ACM SIGPLAN Notices                               76                      Vol. 37 No. 12 December 2002ACM SIGPLAN Notices                               76                      Vol. 37 No. 12 December 2002



a

0
3

2
1
4

e
d

c
b

04 1
23

5 6

a b
cd

e
f g

Y
X

Z
0
12

3
4 5

6

a
bc

d
e f

g

east

a b
c

d
e

0 1
2

3
4

north

Figure 1. Application of the transformation Turn to an array on the left or to an hexagonal subdivision on the
right. In contrast with cellular automata, the evolution concerns a multi-cell domain.

which is replaced byf (β). However, unlike case-based
function definitions acting on algebraic data types, the
cases do not correspond to constructors nor exhaust the
data structure.

A transformation is a function taking acollection as
argument. A collection is an organized set of ele-
ments. TheMGSlanguage handles several kinds of col-
lections including sets, bags, sequences and array-like
data structures called GBF. A square lattice, as pictured
on the left of figure 1 is a special case of GBF.

It is usual for physicists to work with an hexagonal lat-
tice, because such a tiling of the plane respect more
symmetries in the expression of fundamental physical
laws than a square lattice. We can transpose our trans-
formation in such a tiling, cf. the two diagrams on the
right of figure 1. In this case, the patternβ involves a 7
cells sub-domain.

To turn the description of the transformationTurn into a
real program, one must dispose of some new constructs
in a language in order to

1. define the type of a data structure representing a
2D array (or better, some generalization like an
hexagonal tiling),

2. define a patternβ that matches an arbitrary sub-
domain in an array,

3. specify a function using rules likeβ ⇒ f (β) that
specify the substitution of non-intersecting occur-
rences of subdomains matched byβ by a replace-
ment computed byf (β).

Such devices are available inMGS, an experimental
declarative language. One of the objectives of theMGS
project is to investigate the use of a rule-based approach
for the simulation of dynamical systems (this explains
the choice of our examples). In [GM01c] we have
shown howMGSunifies multiset and string based rewrit-
ing paradigms. In this paper, we extend further this uni-
fication towards array-like data structure. In section 3
we show how to describe such data structures. The prob-
lem of specifying a patternβ in this kind of data struc-
ture is examined in section 4 and 5.

3 Group Indexed Data Structures

In this section, we introduce the concept of GBF which
generalizes the concept of array. These data structures

admit a geometrical interpretation which is the basis of
the language of filters presented in section 5. As a mat-
ter of fact, a collection type always admit a topological
interpretation in terms of neighborhood (cf. [GM02a,
GM02b]) and the notions introduced in section 5 are
uniformly applicable to all collection types.

An n×m arrayA associates a well defined value to an
index (i, j) for 1≤ i ≤ n and1≤ j ≤ m. Thus, an ar-
ray can be seen abstractly as atotal functionfrom the
set of indexesI = [1,n]× [1,m] to some set of values.
Thedata field approachextends this notion by consider-
ing the arrayA as apartial function with a finite support
from a larger set of indexesI = Z×Z (the supportof
a partial function is the subset of its domain for which
the function takes a well defined value). This enables
the representation of “arrays with holes”, “triangular ar-
rays”, etc. The notion of data field appears in the devel-
opment of recurrence equations and goes back at least to
[KMW67]. The term itself seems to appear for the first
time in [YC92, CiCL91] and its investigation in a func-
tional and data parallel context has been mainly made
by Lisper [Lis96] (see also [GDVS98]).

Our starting point to extend further the notion of data
field, is the remark that the set of indexesI is pro-
vided with some operations. The standard example of
index algebra is integer tuples with linear mappings.
For instance, more than99% of array references are
affine functions of array indexes in scientific programs
[GG95]. As a consequence, we have proposed to pro-
vide the set of indexes with agroup structure[GMS96].
Such a data structure, a partial function with a finite sup-
port from a group to a set of values, is called aGBF
for group-based data field. The basic example is the
data fields themselves, where the group of indexes is
the group(Zn,+). The advantage of providing the set
of indexes with a group structure and several examples
of GBF are detailed in [GM01a].

GBF are introduced in theMGSlanguage using a type
declaration specifying the underlying group of indexes.
The definition of the group is given using a finite pre-
sentation listing a set of generatorsgi for the group and
a set of equationsek = e′k where theek are formal sums
of thegi :

gbf G = < g1, ..., gn;
e1 = e′1, ..., ep = e′p >

A formal sum of the generators is simply a linear com-

 
ACM SIGPLAN Notices                               77                      Vol. 37 No. 12 December 2002



b+b+a−a−b−b

w=a+b+a

a−b−a+b

P

Q
w+a+a

b
a

bb0

a

a

0

Figure 2. Graphical representation of the relationships between Cayley graphs and group theory. A vertex is
a group element. An edge labeleda is a generatora of the group. A word (a formal sum of generators and of
inverses of generators) is a path. Path composition corresponds to group addition. A closed path (a cycle) is a
word equal to 0 (the identity of the group operation). An equation v = w can be rewritten v−w = 0 and then
corresponds to a cycle in the graph. There are two kinds of cycles in the graph: the cycles that are present in all
Cayley graphs and corresponding to group laws (intuitively: a backtracking path likeb+a−a−b) and closed
paths specific to the own group equations (e.g.:a−b−a+ b for Abelian groups). The graph connectivity, i.e.
there is always a path going fromP to Q, is equivalent to say that there is always a solution to the equation
P+x = Q.

bination as for example:

3g1 + 2g3 - (5 g4 + g5)

We use the following typographical conventions: ifG is
a GBF, we writeG (a finite group presentation) for its
type andG (the group of indexes ofG) for its domain.
Beware that a group admits various presentations, so a
GBF type contains more information than just the group
structure. The set of values of a GBFG is not mentioned
in the type declaration forG becauseMGSis a dynami-
cally typed language and heterogeneous values can be
recorded in a GBF.

In this paper we deal only with Abelian groups and we
use an additive notation for the group operation. By
convention a finite presentation starting with “<” and
ending with “>” introduces an Abelian group, that is:
the set of equations is completed implicitly with the
equations specifying the commutation of the generators
gi +g j = g j +gi .

Examples of GBF Types

The two examples of figure 1 correspond to the two GBF
types:

gbf G2 = < north, east >
gbf H2 = < X, Y, Z; X+Z = Y >

The typeH2 defines an hexagonal lattice that tiles the
plane. This geometrical interpretation of the presenta-
tion relies on the notion ofCayley graph.

4 Group of Indexes and Topological
Representation

A Cayley graph is a graph representation of the presen-
tationG of a groupG : each vertex in the Cayley graph is
an element of the groupG and vertexx andy are linked
if there is a generatoru in the presentationG such that
x+u = y. See figure 2. This representation supports the
following topological interpretationof a GBF:

• The group of indexesG of a GBF typeG is the set
of positionsof a discrete space.

• A GBF G associates a value to some positions. As
a partial function with finite support,G can be seen
as a finite set of pairs (position, value). An element
a of G, writtena∈G, is such a pair and we use the
sentences “position ofa” and “value ofa” to speak
about the first and the second elements of this pair.

• A generatorg of the group presentationG is also
anelementary translation(we use equivalently the
wordsmove, shift or direction) from a positionp
to a positionp+g.

• More generally, an elementx∈G can be seen both
as a position and as a translation (technically, we
consider the left-action ofG on itself).

• The set of elementary translations provide aneigh-
borhood relationshipto the set of positions:y is
g-neighbor ofx iff x+g = y. Two elementsu and
v are said neighbors, and we write “u,v” if there is
a generatorg such thatu is ag-neighbor ofv or v
is ag-neighbor ofu.

• A pathis a sequence of positionsui . It starts at the
positionu0 and ends at the positionun. Usuallyui

 
ACM SIGPLAN Notices                               78                      Vol. 37 No. 12 December 2002



andui+1 are neighbors, but we do not enforce this
constraint. Paths can be translated by a translation
t simply by addingt to eachui .

• A relative pathis a sequencer i of positions. A rel-
ative path is a path but it is intended to be applied
to a base position. The application of a relative
pathr i to a positionp0 gives an actual pathpi de-
fined aspi+1 = pi + r i .

The graphical representations ofG2 andH2 in figure 1
can be enlightened from this topological point of view.
In these diagrams, a vertex of the Cayley graph is pic-
tured as a polygonal cell and two neighbors share an
edge in this representation. ForG2, each position (i.e.
cell) has 4 neighbors corresponding to thenorth and
east directions and their inverses. InH2, each cell
has six neighbors (following the three generators and
their inverses). The equationX + Z = Y specifies that
a move followingY is the same has a move following
the X direction followed by a move following theZ di-
rection (or equivalently, the translations corresponding
to the relative pathsY andX,Z are the same).

The spaces that can be described by a finite presentation
areuniform in the sense that each position has the same
number of neighbors reachable by the set of elementary
moves. Spaces that can be described as GBF include:

• n-ary treesas the Cayley graph of a presentation
of a free groupwith n generators [Ser77];

• n-dimensional gridsas the Cayley graph of a pre-
sentation of afree Abelian groupwith n genera-
tors;

• grids with circular dimensionand screwed grids
corresponding toAbelian groups;

• archimedian partitions of the plane[Cha95].

5 A Generic Filter Language for Path
Patterns

In a ruleβ ⇒ f (β), the expressionβ is a pattern used
to select a “part of a GBF”. We call the part that can
be matched and replaced asub-collection. Our idea is
to specify this pattern as apath patternthat matchesin
some orderthe elements of the sub-collection. A path
is a sequence of elements and thus, a path patternPat
is a sequence or a repetitionRepof basic filters Bfilt. A
basic filter matches one element in a GBF. The grammar
of path patterns reflects this decomposition:

Pat ::= Rep| Rep Dir Pat| Patas id | ( Pat)

Rep ::= Bfilt | id/ exp | Bfilt Dir + | Bfilt Dir *

Bfilt ::= cte | id | | <undef>

Dir ::= , | |u 1, ..., u n>

wherecte is a literal value,id ranges over the pattern
variables,expis a boolean expression, andui is a com-
bination of generators. The following explanations give
a systematic interpretation for these patterns.

literal: a literal valuecte matches an element with the
same value. For example,123matches an element
in a GBF with value123.

empty element: the symbol<undef> matches an ele-
ment with an undefined value, that is, an element
whose position does not belong to the support of
the GBF. The use of this basic filter is subject to
some restriction: it can occur only as the neighbor
of a defined element.

variable: a pattern variablea matches exactly one el-
ement with a well defined value. The variablea
can then occur elsewhere in the rest of the rule and
denotes the value of the matched element.

If the pattern variablea is not used in the rest of
the rule, one can spare the effort of giving a fresh
name using the anonymous filterthat matches
any element with a defined value. The position
of a is accessible through the expressionpos(a).

neighbor: b dir p is a pattern that matches a path with
its first element matched byb and continuing as a
path matched byp whitch first elementp0 is such
thatp0 is neighbor ofb following thedir direction.
The specificationdir of a direction is interpreted as
follows:

— the comma “, ” means thatp0 andb must be
neighbors;

— |u> means thatp0 must be au-neighbor of
b;

— the direction|u 1, ..., u n> means thatp0
must be au0-neighboror au1-neighboror ...
or a un-neighbor ofb.

For example,x,y matches two connected elements
(i.e.,x must be a neighbor ofy). The pattern

1 |east> |north ,east> 2

matches three elements. The first must have the
value1 and the third the value2. The second is at
the east of the first and the last is at the northor at
the east of the second.

guard: p/expmatches a path matched byp if boolean
expressionexpevaluates to true. For instance,x,
y / y> x matches two neighbor elementsx and y
such thaty is greater thanx.

repetition: patternb dir∗ matches a possibly empty
path b dir b dir...dir b. If the basic filterb is a
variable, then its value refers to the sequence of
matched elements and not to one of the individ-
ual values. The repetitionb dir+ is similar but
enforces a non-empty path. The patternx+ is an
abbreviation for “x ,+ ”.

naming: a sub-pattern can be named using theas con-
struct. For example, in the expression(1, x
|north>+ , 3) as P , the variableP is binded to
the path matched by1, x |north>+, 3 .

Elements matched by basic filters in a rule are distinct.
So a matched path is without self-intersection. The iden-
tifier of a pattern variable can be used only once in the
position of a filter. That is, the path patternx, x is forbid-
den. However, this pattern can be rewritten for instance
as:x, y/ y = x.

Suppose that the patternPat as P is used to match a
path in a GBFG. The value of a pattern variablex

 
ACM SIGPLAN Notices                               79                      Vol. 37 No. 12 December 2002



used as a basic filter inPat denotes a value found inG.
The position of the matched value is denoted bypos(x)
which is an ad-hoc syntactic construct and not the call
of a function pos. The value of the pattern variable
P denotes the entire path matched byPat. The value
of P is a GBF of the same type ofG containing only
the matched elements. Thus, the constructpos(P) de-
notes a GBF with the same domain asP and such that
if (p,v) ∈ P, then(p, p) ∈ pos(P). The elements inP
have been matched following some order induced by
the pattern expressionPat. The constructseq(P) can
be used to access to the sequence of the matched values
andseqpos(P) to the sequence of the positions of the
matched elements.

6 Examples

We give immediately some examples of path patterns
and completeMGSprograms. The syntax and some spe-
cific features ofMGSare sketched and explained through
these examples.

Sequences

The sequence is a predefined collection type inMGScor-
responding to thelist algebraic data type inML. How-
ever, we can specify as an exercise a similar collection
type using the following GBF declaration:

gbf L = < right >

This example shows also the difference between the
term rewriting approach of the algebraic data types and
the path rewriting approach developed inMGS. A value
of typeL can be built using an enumeration: expression

L = 1 |right> 2 |right> 3 |right> 4

creates a new GBF of typeL (the type is inferred from
the generators used in the enumeration) with value1,
2, 3 and 4. The value1 is at the position0|right> .
The value2 is at the right of the value1 and then is
at the position1|right> . The value4 is at position
3|right> . We can picture this GBF by:

1 2 3 4 |right> −→
(the right direction extents to the horizontal right of the
page; there is an infinite number of undefined elements
that are not represented to the left of the element1 and

to the right of the element4 ).

The main difference between anL and a value of the al-
gebraic data typelist is that anL is a partial data struc-
ture. One can then define a list “with holes”:

L′ = 1 |right> 2 |right> <undef> |right> 4

is pictured as:

1 2 4

The<undef> keyword is used to specify that the corre-
sponding position must be left empty and an empty box

is used in the picture (the empty boxes correspond-

ing to the infinite number of undefined elements at the
right and at the left are not represented).

Transformations can be used to program the usual func-
tions on lists. For the head functionhd that takes the
head of a list inML, we can write:

trans hd = {
<undef> |right> x ⇒ return( x);

}
The statementreturn indicates that if the left hand side
(l.h.s) matches, then the argument ofreturn must be
evaluated and returned as the global result of the entire
transformation (instead of inserting the result in the col-
lection and looking for others applications of the rule).
The pattern<undef> |right> x matches an elementx
with an undefined neighbor at its left. Applied to a se-
quence without holes, there is only one such elementx
that can be matched. However, if the data structure has
holes, likeL′, then every element at the right of an un-
defined element can match the rule. The result of the
application ofhdon such a structure is then one of these
elements chosen in a non-deterministic manner. That is,
hd( L′) returns either1 or 4.

The code of thelast function is very simple to specify
because the last element in a sequence is “the element
without a right neighbor”:

trans last = {
x |right> <undef> ⇒ return( x);

}
The definition of themap function is also very simple
because it is enough to replace each valuex in the GBF
by f (x):

trans mapf = { x ⇒ f ( x); }
In this example, there is noreturn statement in the right
hand side (r.h.s.) of the unique rule of the transforma-
tion. Then, the strategy for the transformation applica-
tion is to apply in parallel as many occurrences of the
rule as possible to the collection, provided that the sub-
collection matched by an occurrence does not intersect
a sub-collection matched by another occurrence. In this
case, it means that every elementx in the collection is
replaced byf (x).

We need a way to parameterize the transformation with
the function f to be applied. This is easily done using
an additional argument:

trans map( f ) = { x ⇒ f ( x); }
This transformation takes an additional argumentf in
addition to the collection. The resultmapis a curryfied
function and

map (\x. x+1) L′

computes the GBF2 3 5 .

Thefold operator is written in the same way:

 
ACM SIGPLAN Notices                               80                      Vol. 37 No. 12 December 2002



y

x
x y

x

y
y x

x |north> y x |east> y x |-north> y x |-east> y

y

x
x y

x

y
y x . . .

x, y |east>+

y y y y
. . .

y

z

y

z

y

z

y

z

. . .

( |east>+) |north> y z |north> ( |east>+) |north> y

Figure 3. Several patterns and the corresponding path shapes in G2. For example, filterx, y matches four
possible configurations as indicated.

trans fold( op) = {
x |right> y |right> <undef>
⇒ op( x,y),<undef>,<undef>;

}
The transformationfold just replaces the last two ele-
mentsx andy of the sequence byop(x,y). Indeed, in
a rulep⇒ sexp, where the expressionsexpcomputes a
built-in sequencesof elements, the sequences is used to
replacepoint-wise1 the elements matched byp. In addi-
tion, the comma operator in an expression corresponds
to the built-in sequence constructor. Thus, the comma
denotes ambiguously the neighborhood relationships in
the l.h.s. of a rule and the building of a sequence in the
r.h.s. (The two interpretations agree because two ele-
ments in a built-in sequence are neighbors if they are
arguments of the comma constructor).

Thus fold ( \x,y. x+y) L′ evaluates to3 4 (the
element4 cannot be matched by the rule because it is
an isolated element). The expressionfold ( \x,y. x* y) L
evaluates to1 2 12 . To obtain the full reduction, the
transformation must be iterated until a fixed point is
reached. This is provided in theMGSlanguage using a
special syntax for the iteration:

fold[iter=fixpoint] ( \x,y. x* y) L

1If the r.h.s. computes a GBFg, then the GBF is
inserted in place of the sub-collection matched byp if
the “borders” ofp andg agree, else it is an error. The
notion of “border” is induced by the neighborhood re-
lationship of the collection. This strategy agrees with
the standard behavior of a rule in term rewriting where
a term is replaced by another term.

The substitution behavior sketched in the text coexists
gracefully with the standard one. Both are meaningful
because a pattern specifies both a path, i.e. a sequence
of elements, and a sub-collection. In this paper, we use
only the substitution strategy presented in the text where
the r.h.s. evaluates to a sequence of elements.

the optional named parameters in the brackets are used
to tune the application strategy of a transformation. The
iter parameter controls the iteration of a transforma-
tion [GM01c]: fixpoint indicates the iteration of the
transformation until a fixed point is reached;fixrule
specifies the same behavior but the fixed point is de-
tected when no rule applies; an integern stands forn
iterations; etc. The result of the previous expression is
24 (a GBF of typeL with only one element).

Theconsfunction used to add an elementa in front of a
sequencel can be defined as the transformation:

trans cons( a) = {
<undef> |right> x ⇒ a, x;

}
This transformation works as follow: all the elements
without a left neighbor gain a new elementa located at
their left. So, cons 9 L evaluates to 9 1 2 9 4 .

Path Patterns in a NEWS Grid

We assume working inG2. Then, the pattern

x |north> y

matches two elementsx andy with y at the north of the
elementx. Using the convention used in the left diagram
in figure 1, this filter can be represented as a vertical
domino. Figure 3 depicts several other filters inG2. In
this figure, a box indicates a matched element in a
GBF which is not binded to a pattern variable.

Finding One’s Way in a Labyrinth

Consider a labyrinth represented as a GBF where the
value1 denotes the entry doors, the value2 codes the
corridors and the value3 the exit doors. Then finding
a path between the entry and the exit doors is simply

 
ACM SIGPLAN Notices                               81                      Vol. 37 No. 12 December 2002



specified as:

(1, (2 ,*), 3)

this pattern matches a path beginning with1 and ending
with 3 after a sequence of2. This path can be used in a
transformation

trans FindPath = {
(1,(2 ,*),3) as P ⇒ return(seqpos( P));

}
The statementreturn indicates that the transformation
must stop and return the argument value as soon as this
rule matches. The returned value is the sequence of the
positions of the pathP matched by the l.h.s.

Rotation of the Cross

The transformationTurnon the square latticeG2 in sec-
tion 2 can be specified as:

trans Turn = {
a |east> b

|north - east> c
|-east - north> d
|east - north> e

⇒ a, e, b, c, d ;
}

The sequencescomputed in the r.h.s. of the rule is used
to replacepoint-wisethe elements matched by the l.h.s.
Then, the first elementa of the sequences replace the
element nameda in the pattern. The second element,
which is e, replace the element namedb, etc. The net
result is a90◦-rotation of the cross matched in the l.h.s.
of the rule, leaving the centera unmodified.

The specification of the rotation is also straightforward
in H2:

trans Turn h = {
a |X> b

|Z> c
|-X> d
|-Y> e
|-Z> f
|X> g

⇒ a, g, b, c, d, e, f ; }

Eden Growing Process

We consider a simple model of growth sometimes called
the Eden model (a type B Eden model [YPQ58] to be
more precise). The model has been used since the 60’s
as a model for things such as tumor growth and growth
of cities. In this model, a 2D space is partitioned into
empty and occupied cells (we use the valuetrue for an
occupied cell and left undefined the unoccupied cells).
We start with only one occupied cell. At each step, occu-
pied cells with an empty neighbor are selected, and the
corresponding empty cell is made occupied. The Eden’s
aggregation process is simply described as the following
MGSglobal transformation:

trans Eden = { x,<undef> ⇒ x, true ; }

We assume that the boolean valuetrue is used to rep-
resent an occupied cell, other cells are simply left un-
defined. The special symbol<undef> is used to match
an undefined value. Then the previous rule can be read:
an occupied elementx and an undefined neighbor are
transformed into two occupied elements. The transfor-
mationEdendefines a function that can then be applied
to compute the evolution of some initial state. See the
first evolution steps in figure 4.

One of the advantages of theMGSapproach, is that this
transformation can be applied indifferently on grid or
hexagonal lattices, oranyother collection kind (this also
holds for the transformationFindPath).

C C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C
C

C
C

C

C
C

C
C

C

C C
C

C

C

C
C C

C

C

C

CC
C

C

C

C

C

C
C C

C
C

C

C
C

C
C

CC

C

C

Figure 4. Eden’s model on a grid and on an hexago-
nal mesh (initial state, and states after 2 and 6 time
steps). Exactly the sameMGStransformation is used
for both cases. An empty cell has an undefined value
and only a part of the infinite domain is figured.

7 A Generic Pattern-Matching Algo-
rithm

We present in this section a simplified pattern-matching
algorithm for GBF path patterns. This algorithm is in-
spired from the approach taken by J. A. Brzozowski for
the computation of thederivatives of regular expres-
sions[Brz64]. We recall in the next paragraph the notion
of derivative of a regular expression. Then we restrict
the language of pattern expression to its fundamental
core and we introduce the notations used before defin-
ing the derivative of a path pattern. This section ends by
a very simple but complete example of path computa-
tions.

The Derivatives of a regular Expression

Let R be a regular expression andLR the language rec-
ognized byR. For any lettera ∈ A the derivative ofR
with respect toa is denoted by∂R/∂a and is

∂R
∂a

= {m such thatam∈ LR}

The idea of derivative with respect to a letter can be de-
fined generally for a setL but it turns out that the deriva-
tive of a regular expression can be defined by a regular

 
ACM SIGPLAN Notices                               82                      Vol. 37 No. 12 December 2002



expression. For example,

∂a.(a+b)∗

∂a
= ε+(a+b)∗

In words: if am is a word recognized bya.(a+b)∗ then
m is either empty or recognized by(a+b)∗. The deriva-
tive of a regular expressionR is another regular expres-
sion that can be derived using simple rule on the struc-
ture ofR. These symbolic rules formally mimic the clas-
sical rules of the derivation of real functions, hence the
name.

The notion of derivative has been used in word recog-
nition because ifm = m1m2 . . .mn, then m ∈ LR iff
m2 . . .mn ∈ ∂R/∂m1. By iteration, the membership
problem is then reduced to the membership of the empty
word ε to the language recognized by a regular expres-
sion.

The annulator[R] of a regular expression is defined by:

[R] =
{ /0 if ε 6∈ LR

{ε}if ε ∈ LR

and can also be computed by symbolic rules on the
structure ofR. This gives a canonical decomposition
of the words ofLR:

LR = [R] ∪
[
a∈A

a⊗ ∂R
∂a

wherea⊗L = {a.m wherem∈ L}. Remark thata⊗ /0 =
/0 and thata⊗{ε}= {a}.

We want to adapt these ideas to our case: a path pat-
tern will play a role similar to a regular expression and
the GBF will correspond to the vocabularyA. Several
differences have to be taken into account:

• The notion of derivative of a regular expression is
traditionally used to check if a word belongs to a
language defined by a regular expression. In our
case, we want to enumerate the paths matched by
a path pattern in a GBF.

• A path and a path pattern exhibit both a canoni-
cal order over their elements. However, there is
no such canonical order between the elements of a
GBF.

• There is only one possible letter following another
letter in a word. There are several possible neigh-
bor of a given element in a GBF.

• Path patterns include logical expressions involv-
ing the value of the matched elements through the
binding of some variables.

The Pattern Expressions

For the sake of the simplicity, we restrict the grammar
of path patterns to the following abstract syntax:

Pattern ::= Atom | Atom Dir Pattern

Atom ::= id/ exp | Dir ∗
Dir ::= |u 1, ..., u n>

Notice that a literal patternctecan be rewrittena / a =
cte wherea is a fresh variable. A variable is system-
atically guarded but one can use the patterna/true if
there is no check to do. The neighborhood relation, can
be recovered as the direction|g 1,..., g n, -g 1,...,
-g n> where thegi are the generators of the GBF type.
There is no naming in a repetition pattern to simplify
the handling of the variable bindings. The unnamed fil-
ter “ ” in the previous syntax can be coded asa/true
wherea is a fresh variable and “ |u 1,...,u n>* ” in the
old syntax is coded as|u 1,...,u n>* in the new syn-
tax.The non-empty repetition+ can be recovered using
* , e.g.p dir + can be rewritten as

p dir dir *

using fresh variables where needed. The handling of the
naming of a sub-pattern presents no special difficulties
but would burden a lot the presentation. For the same
reason, we drop the handling of the<undef> basic fil-
ter2.

For example, the path pattern

x, ( |north>+) |east> y

in G2 can be rewritten in the new syntax:

( x/true)
|north,east,-north,-east>
( u/true)
|north>
(|north>*)
|east>
( y/true)

Notations

We use brackets to enumerate the elements in a set and
for set comprehension. The symbol/0 is for the empty
set. The expressionS−e denotes the setS without the
elemente. [ ] is the empty list;̀ @`′ is the concatenation
of lists ` and `′. The distribution e⊗S of an expres-
sion e over the elements of a setS of lists is defined
by {[e]@l , l ∈ S}. An environmentis a partial func-
tion defined for a set of identifiersi1, ..., in with values
v1, ...,vn, and elsewhere undefined;E ranges over the
environments; theaugmentationof an environmentE
with identifierin+1 and valuevn+1 is a new environment
E′ = E +[in+1 → vn+1], such thatE′(in+1) = vn+1 and
∀k, ik 6= in+1,E′(ik) = E(ik).

2The handling of<undef> is complicated and would
burden a lot our exposition. We sketch two examples to
show the difficulties. A rule like<undef> ⇒ 1 is for-
bidden inMGSbecause it implies the replacement of all
undefined elements by a1 and there is possibly an in-
finite number of such elements. Other example: in the
processing of a rule like<undef>, x⇒ 1, x we cannot
start by looking for an undefined element (because there
could be an infinite number of such elements) but rather
we have to look for a defined elementx that has an un-
defined neighbor.

 
ACM SIGPLAN Notices                               83                      Vol. 37 No. 12 December 2002



∂dir∗
∂ p

(G,E, /0) =
{
[ ]
}

(1)

∂P
∂ p

(G,E, /0) = /0 provided thatP 6= dir∗ (2)

∂ id/ expr
∂ p

(G,E,Π) = if eval(E +[id→ p],G,expr) then
{
[p]

}
else /0 (3)

∂dir∗
∂ p

(G,E,Π) =
{
[ ]
} ∪ ∂(id/true dir dir∗)

∂ p
(G,E,Π) whereid is a fresh variable(4)

∂ id/ expr dir P
∂ p

(G,E,Π) = let E′ = E +[id→ p] and Π′ = Π− p

in if eval(E′,G,expr)

then p⊗
( [

p′∈neighbor(Π′,dir, p)

∂P
∂ p′

(G,E′,Π′)

)

else /0

(5)

∂dir∗ dir′ P
∂ p

(G,E,Π) =
[

p′∈neighbor(Π,dir′, p)

( ∂P
∂ p′

(G,E,Π)
)

∪ ∂(id/true dir dir∗ dir′ P)
∂ p

(G,E,Π)

whereid is a fresh variable(6)

Figure 5. Specification of the derivatives of a path pattern. We suppose thatΠ 6= /0 in the equations.

Derivativesof a Path Pattern

A pattern-matching expression is an element ofPattern.
Thederivativeof a pattern-matching expressionP with
respect to a positionp, given a setG of pairs(position,
value)(i.e., a GBF), an environmentE and a set of avail-
able positionsΠ is written

∂P
∂ p

(G,E,Π)

and representsthe set of paths in a GBFG starting at
positionp and matched by the path patternP. The envi-
ronmentE is an additional argument used to record the
variable bindings used in the evaluation of guards in a
pattern. The result of∂P/∂ p(G,E,Π) is a set of lists̀
of positions. Such a list̀ records the sequence of the
elements of the GBF that match the path patternP.

Let ε be the empty environment, anddom(G) the set of
positions which have a value inG then all the occur-
rences of a path patternP in a GBFG are computed by:[

p∈dom(G)

∂P
∂ p

(G,ε,dom(G)) (7)

The derivatives of a path pattern is a 5-ary function
∂ ·/∂ ·(·, ·, ·) defined by induction on the path patternP
and the GBFG. The specification is given in figure 5
and use two additional functions:eval(E,C,expr) is a

predicate that holds when the expressionexprevaluates
to the boolean true value in the environmentE with re-
spect toG; neighbor(Π,dir, p) is a function that com-
putes, given a set of positionsΠ and a list of directions
, the neighbor positions of a positionp in Π:

neighbor(Π, |u 1, ..., u n>, p)

=
{

p+ui | 1≤ i ≤ n andp+ui ∈Π
}

The equations in figure 5 can be intuitively explained as
follow:

1. There is only one empty path in an empty GBF.

2. There is no non-empty path in an empty GBF.

3. A path reduced to only one element matches an
element at positionp if the conditionexpr is met.
In this case, there is only one possible path with
only one element at positionp. If the condition is
not met, there is no singleton path starting atp.

4. A path specified bydir∗ starting at positionp is
either empty or begins with the value at positionp
and continues following the directiondir as a path
specified bydir∗.

5. The paths starting at positionp and beginning with
an elementid satisfying conditionexp and then
following directiondir to continue as a pathP can
exist only if the condition is satisfied. This con-
dition is checked byeval(E′,G,expr) using the

 
ACM SIGPLAN Notices                               84                      Vol. 37 No. 12 December 2002



augmented environmentE′: E′ contains the previ-
ous bindings together with the binding ofid with
the positionp.

If the condition is satisfied, then such a path can
be obtained by computing the paths starting from
a dir-neighborp′ of p and matchingP and then
adding the positionp in front of these paths thanks
to the⊗ operator.

6. The last rule decomposes into two sets the paths
starting at positionp beginning with a repetition
dir∗ and continuing following directiondir′ by a
path matched byP.

The first set corresponds to an empty repetition.
So, we want to match the paths specified byP
starting from adir′-neighbor ofP.

The second set corresponds to a non empty-
repetition and we just unfold the repetition one
time.

Example of Derivative Computation

To make these definitions more concrete, we compute
the path matching the pattern “, 1 |north> x”. This
pattern is first transformed into

P = u/true
|north,east,-north,-east>
Q

Q = v/ v=1
|north>
x/true

(for convenience, we introduce a meta-variableQ to
name a sub-pattern). We look for some paths in the GBF
G of typeG2

· · · · · · · · · · · · · · · · · ·
· · · · · ·
· · · 2 · · ·
· · · 1 0 · · ·
· · · · · ·
· · · · · · · · · · · · · · · · · ·

which is represented as the set of pairs (position, value).
To spare the notation, we write a couple(n,e) for a po-
sition “n|north> + e|east> ”.

G =
{

((0,0),1), ((0,1),0), ((1,0),2)
}

We have arbitrarily fixed the value1 at position
(0,0). There is only one path matchingP in G:
[(0,1);(0,0);(1,0)]. Indeed(0,0) is a neighbor of(0,1)
and its value is1. Moreover, at north of(0,0), i.e. at
position(1,0), there is a value.

The domain ofG is calledΠ :

Π = dom(G) = {(0,0), (0,1), (1,0)}

All the paths matched byP are computed using the def-
inition (7):

∂P
∂(0,0)

(G,ε,Π) ∪ ∂P
∂(0,1)

(G,ε,Π) ∪ ∂P
∂(1,0)

(G,ε,Π) (8)

Then we have:

∂P
∂(0,0)

(G,ε,Π)= (0,0)⊗
[

p′∈{(1,0),(0,1)}

∂Q
∂ p′

(G, [u→ (0,0)],Π′)

whereΠ′ = {(0,1),(1,0)}. The union is composed of
two terms. The first one evaluates to/0:

∂Q
∂(1,0)

(G, [u→ (0,0)],Π′) = (1,0)⊗
[
p′∈ /0

∂x/true

∂ p′
(...)

where the union is made on an empty set of indexes, so:

∂Q
∂(1,0)

(G, [u→ (0,0)],Π′) = (1,0)⊗ /0 = /0

The second term
∂Q

∂(0,1)
(G, [u → (0,0)],Π′) gives a

similar result and then:

∂P
∂(0,0)

(G,ε,Π) = (0,0)⊗ /0 = /0

This result is also true for
∂P

∂(1,0)
(G,ε,Π).

There is a difference in the computation of:

∂P
∂(0,1)

(G,ε,Π) =

(0,1)⊗
[

p′∈{(0,0)}

∂Q
∂ p′

(G, [u→ (0,1)],Π′′)

whereΠ′′ = {(0,0),(1,0)}. The union term does not
reduce to the empty set:

∂Q
∂(0,0)

(G, [u→ (0,1)],Π′′) =

(0,0)⊗ ∂x/true

∂(1,0)
(G, [u→ (0,1),v→ (0,0)],Π′′′)

whereΠ′′′ = Π′′− (0,0) = {(1,0)}. Because

∂x/true

∂(1,0)
(G, ...,Π′′′) = {[(1,0)]}

we have then that

(8) = (0,1)⊗
(
(0,0)⊗{

[(1,0)]
})

=
{
[(0,1);(0,0);(1,0)]

}

which is what was expected.

8 Conclusions

The array data structure is not smoothly handled in func-
tional languages because it cannot be described convinc-
ingly as instances of an algebraic data type. Therefore,
there are no means to specify by cases a function on an
array. This annoying situation is summarized by Wadge:
“We spent a great deal of efforts trying to find a simple
algebra of arrays (...) with little success” [WA85].

In this work, we have presented a framework, the group-
based data fields, that allows a uniform description of

 
ACM SIGPLAN Notices                               85                      Vol. 37 No. 12 December 2002



trees and arrays in the same framework [GM01a]. The
GBF approach puts the emphasis on the logical neigh-
borhood of the data structure elements [GM02a]. This
topological point of view allows the definition of path
patterns used to match a sub-collection in an array or
a tree. A first algorithm to enumerate all the paths
matched by a pattern is given, inspired by the notion of
derivative developed for the recognition of regular ex-
pressions on sequences. This algorithm has been ex-
tended to handle a more complete pattern language and
is used in the current version of theMGSinterpreter (see
the web home pagehttp://mgs.lami.univ-evry ).
This interpreter handles the examples proposed in sec-
tion 6 as well as more intricate ones like:

x, ( y+ / x > Sum(y))

that looks for a path beginning with anx that is greater
than the sum of the rest of the matched elements (the
functionSum is an auxiliary function that computes the
sum of all elements in an collection of numbers). A re-
markable feature is that the same algorithm sketched
here is used to find the occurrences of a pattern in a
set, a multiset, a sequence or a GBF. We think that this
demonstrates the usefulness and the unifying nature of
our topological framework.

Several other examples of the programming style al-
lowed byMGSrules on GBF are developed in [GGMP02]
in the context of biological simulations. Many mathe-
matical models of objects and processes are based on
a notion of state that specifies the object or the process
by assigning some data to each point of a physical or
abstract space. The goal ofMGSis to support this ap-
proach by offering several mechanisms to build complex
and evolving spaces and handling the mappings between
these spaces and the data in a functional framework. In
this context, GBF are used to model the uniform and
regular discretization of spaces.

Pattern matching in arrays has been considered in the
functional languages community from [Bir77, Bak78]
and more recently in [Jeu92] but the problem is then
restricted to determine an occurrence of a rectangular
sub-array. For example, ifP is a p×q rectangular two-
dimensional array (a pattern of literals), andG is an×m
array, the problem handled is to find a pair(i, j) such
that for allk andl such that1≤ k≤ p and1≤ l ≤ q, we
haveG[i− p+k, j−q+ l ] = P[k, l ].

Compared to these previous works, our algorithm is
more general in two directions: it handles group-
indexed data structures and it allows a more expressive
pattern language. Obviously, there is a large room for
optimizations. For instance, we do not compute all paths
before applying a rule but we stop the search as soon as
one matching path has been found. By specifying an
order over the unions appearing in the definition of the
derivative Fig. 5, we can parameterize a strategy for the
enumeration of paths. We are currently developing a
pattern compiler forMGSbased on pattern transforma-
tions.

Acknowledgments

The authors would like to thanks the members of
the “Simulation and Epigenesis” group at Genopole
for stimulating discussions and biological motivations.
They are also grateful to P. Prusinkiewicz and F. De-
laplace for numerous questions, encouragements and
thoughtful remarks. This research is supported in part
by the CNRS, the GDR ALP and IMPG, the University
of Evry and GENOPOLE-Evry.

9 References

[Bak78] Theodore P. Baker. A technique for extend-
ing rapid exact-match string matching to
arrays of more than one dimension.SIAM
J. Comput., 7(4):533–541, 1978.

[BB92] Gérard Berry and Ǵerard Boudol. The
chemical abstract machine.Theoretical
Computer Science, 96:217–248, 1992.

[Bir77] R. S. Bird. Two dimensional pattern
matching.Information Processing Letters,
6(5):168–170, October 1977.

[BM86] J. P. Ban̂atre and Daniel Le Ḿetayer. A new
computational model and its discipline of
programming. Technical Report RR-0566,
Inria, 1986.

[Brz64] Janusz A. Brzozowski. Derivatives of reg-
ular expressions.JACM, 11(4):481–494,
1964.

[Cha95] Thomas Chaboud. About planar cayley
graphs. InFundamentals of Computation
Theory (FCT ’95), volume 965 ofLNCS,
pages 137–142, 1995.

[CiCL91] Marina Chen, Young il Choo, and Jingke
Li. Crystal: Theory and Pragmatics of
Generating Efficient Parallel Code. In
Boleslaw K. Szymanski, editor,Paral-
lel Functional Languages and Compilers,
Frontier Series, chapter 7, pages 255–308.
ACM Press, New York, 1991.

[GDVS98] J.-L. Giavitto, D. De Vito, and J.-P. San-
sonnet. A data parallel Java client-server
architecture for data field computations
overZZn. In EuroPar’98 Parallel Process-
ing, volume 1470 ofLNCS, pages 742–??,
September 1998.

[GG95] D. Gautier and C. Germain. A static ap-
proach for compiling communications in
parallel scientific programs.Scientific Pro-
gramming, 4:291–305, 1995.

[GGMP02] J.-L. Giavitto, C. Godin, O. Michel, and
P. Prusinkiewicz. Biological Modeling in
the Genomic Context, chapter “Computa-
tional Models for Integrative and Develop-
mental Biology”. Hermes, July 2002. (to
appear).

[GM01a] J.-L. Giavitto and O. Michel. Declara-
tive definition of group indexed data struc-

 
ACM SIGPLAN Notices                               86                      Vol. 37 No. 12 December 2002



tures and approximation of their domains.
In Proceedings of the 3nd Imternational
ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming
(PPDP-01). ACM Press, September 2001.

[GM01b] J.-L. Giavitto and O. Michel.MGS: a pro-
gramming language for the transformations
of topological collections. Technical Re-
port 61-2001, LaMI – Université d’Évry
Val d’Essonne, May 2001.

[GM01c] J.-L. Giavitto and O. Michel. MGS: a rule-
based programming language for complex
objects and collections. In Mark van den
Brand and Rakesh Verma, editors,Elec-
tronic Notes in Theoretical Computer Sci-
ence, volume 59. Elsevier Science Publish-
ers, 2001.

[GM02a] J.-L. Giavitto and O. Michel. The topo-
logical structures of membrane comput-
ing. Fundamenta Informaticae, 49:107–
129, 2002.

[GM02b] J.-L. Giavitto and O. Michel. Data
Structure as Topological Spaces. In
3th Int. Conf. on Unconventional Mod-
els of ComputationFundamenta Informat-
icae, Himeji, Japan. To be published in the
LNCS serie. Spinger, 2002.

[GMS96] J.-L. Giavitto, O. Michel, and J. Sanson-
net. Group-based fields. InParallel Sym-
bolic Languages and Systems (Int. Work-
shop PSLS’95), volume LNCS 1068, pages
209–215. Springer, 1996.

[Jeu92] J. Jeuring. The derivation of a hierarchy of
algorithms for pattern matching on arrays.
In G. Hains and L. M. R. Mullin, editors,
Proceedings ATABLE-92, Second interna-
tional workshop on array structures, 1992.

[KMW67] Richard M. Karp, Raymond E. Miller, and
Shmuel Winograd. The organization of
computations for uniform recurrence equa-
tions. Journal of the ACM, 14(3):563–590,
July 1967.

[Lis96] B. Lisper. Data parallelism and functional
programming. InProc. ParaDigme Spring
School on Data Parallelism. Springer-
Verlag, March 1996. Les Ḿenuires,
France.

[Man01] Vincenzo Manca. Logical string rewriting.
Theoretical Computer Science, 264(1):25–
51, August 2001.

[Pau99] G. Paun. Computing with membranes:
An introduction. Bulletin of the European
Association for Theoretical Computer Sci-
ence, 67:139–152, February 1999.

[RS92] G. Rozenberg and A. Salomaa.Linden-
mayer Systems. Springer, Berlin, 1992.

[Ser77] J.-P. Serre. Arbres, Amalgames,SL2.
Number 46 in Ast́erisque. Sociét́e
Mathématique de France, 1977.

[VN66] J. Von Neumann. Theory of Self-
Reproducing Automata. Univ. of Illinois
Press, 1966.

[WA85] W. W. Wadge and E. A. Ashcroft. Lu-
cid, the Data flow programming language.
Academic Press U. K., 1985.

[YC92] J. Allan Yang and Young-il Choo. Data
fields as parallel programs. InProceed-
ings of the Second International Workshop
on Array Structure, Montreal, Canada,
June/July 1992.

[YPQ58] Hubert P. Yockey, Robert P. Platzman, and
Henry Quastler, editors.Symposium on In-
formation Theory in Biology. Pergamon
Press, New York, London, 1958.

 
ACM SIGPLAN Notices                               87                      Vol. 37 No. 12 December 2002



Chapter 19

Incremental Extension of a Domain
Specific Language Interpreter

297





Incremental Extension of a Domain Specific
Language Interpreter

Olivier Michel1 and Jean-Louis Giavitto1

IBISC - FRE 2873 CNRS & Université d’Évry, Genopole
Tour Évry 2, 523 place des terrasses de l’Agora, 91000 Évry, France

Abstract. We have developed an interpreter for the domain-specific
language MGS using OCAML as the implementation language. In this third
implementation of MGS, we wanted to provide the end-user with easy in-
cremental addition of new data structures and their associated functions
to the language. We detail in this paper our solution, in a functional
setting, which is based on techniques similar to those found in aspect-
oriented programming.

1 Introduction

This work takes place in the MGS [11, 16] project1 which develops new data and
control structures for the modelization and simulation of dynamical systems with
a dynamical structure [14]. These features are embedded in a simple functional
language, called also MGS, which is used to model various physical and biological
processes [30, 31, 13].

The adequacy of MGS to its application domain is achieved through the fol-
lowing three features:

1. it embeds a very rich family of data structures used for the representation
of the states of dynamical systems;

2. it provides a very large set of functions operating on these data structures;
3. it offers a new way of specifying uniformly functions defined by case on

arbitrary data structures, using topological rewriting [12].

An interpreter for the MGS language has been implemented in the OCAML [21,
28] language. The decisive advantages of OCAML for us were that (1) it provides
both functional and object-oriented features in the same environment and (2) it
produces very effective code [1, 2].

One of the main problems raised by the MGS project is the wish to offer easy
incremental addition of new data structures and their associated functions to
answer the needs expressed by the end-users. As a matter of fact, the initial
release of the interpreter did only include the collection data types sequences,
sets and multisets.
The current interpreter includes arbitrary graphs, Voronöı tessalation, group

1 The MGS project is available at: http://mgs.ibisc.univ-evry.fr



type expr =
Constant of value

| Apply of expr * expr

and value =
Int of int

| Fun of (value -> value)

let print_val = function
| Int i -> Printf.printf "%d\n" i
| Fun x -> Printf.printf "<fun>\n"

let inc_val =
Fun(function (Int i) -> Int (i + 1)

| _ -> failwith "bad arg")

let rec eval = function
| Constant x -> x
| Apply (e1, e2) ->

(match (eval e1) with
| Fun x -> x (eval e2)
| _ -> failwith "apply: type error")

let inc_expr = Constant inc_val
let inc = Apply(inc_expr,

Apply(inc_expr, Constant (Int 1)))

print_val (eval(inc))

Fig. 1. A simple and basic interpreter expressed in a higher-order syntax style
in ML.

based fields [11] which generalize various kind of arrays, gmaps [22], extensible
records and maps, trees defined by automata, and many other data types [29]. All
the additional data structures (together with their operators) have been added
incrementally using the techniques described in this paper.

Usually, the values handled in the target language (that is, the language to
be implemented, here, MGS), are represented through a unified data structure in
the implementation language (that is the language used to implement the target
language, here, OCAML). We call this data structure the value data structure.
Using OCAML as the implementation language, there are two choices for the value
data structure:

1. it can be represented using a sum type, following a functional style,
2. or, it can be represented using a class following an object-oriented style.

Both approaches have some shortcomings, with respect to the requirement of
incremental development. To summarize

1. in the functional approach, it is easy to add new functions but difficult to
add new target data structures;

2. on the contrary, in the object-oriented approach, it is easy to add new target
data structures but difficult to add new functions.

To overcome these drawbacks, we have developed an original technique, in-
spired from aspect programming techniques, that consists in weaving both the
value data structure and their associated functions. This technique has the ad-
vantages of:

– allowing new target data structures to be added without modifying the al-
ready written implementation files of the interpreter,

– facilitating the addition of new target data structures and functions to the
point that even end-users are able to increment the MGS interpreter.



The rest of the paper is organized as follows. We briefly describe the MGS
language in the next section to give the reader an idea of the complexity raised
by the implementation of the rich data types in the interpreter. Section 3 de-
scribes the functional and the object-oriented approach used to implement the
value data structure and details the problem raised by its incremental evolution.
The implementation of heavily overloaded target functions are presented in the
next section. The software architecture of the final implementation code of the
interpreter is sketched in section 5. Section 6 presents how the informations gath-
ered along all implementation files are collected to generate the value data type
and to implement the multiple dispatch of the target functions. The conclusion
summarizes our approach and shortly reviews related works.

2 Functions and Values in the MGS Programming
Language

We briefly discuss in this section the values manipulated in the MGS language and
their associated functions. Our aim is to show that the technique presented in
this paper is required to deal with its complexity and to allow an easy incremental
addition of new data structures and their associated functions.

2.1 The Type Hierarchy of the MGS Programming Language

We briefly give in this section an incomplete description of the type hierarchy of
the MGS programming language.

any

scalar collection

int float symbol ... rec leibniz newton

monoidal del ... gbf graph achain qmf ...

seq set bag

Fig. 2. The type hierarchy of the MGS language.

A graphical representation of the type hierarchy of MGS is given in figure 2.
In MGS two main types of values are distinguished: the scalar values which are
elementary constants and collections which allow to organize the values. Example
of scalar values are integers, floats, symbols... Example of collection types are



sets, bag, Delaunay graphs, group-based fields [15], quasi-manifolds [22, 23]...
Collection values can be any combination of collections and scalar values such
as a bag containing symbols and sequences of integers.

In the following example, we define three values equal to collections: v_seq
which consists in the sequence (like a C one-dimensional array) composed of a
string value ("str"), a floating-point value (3.5), two integers values (4, 4),
a boolean value (true) and the identity function (expressed as an anonymous
lambda-calculus expression: \x.x) and the same elements organized as a set
(v_set) and a bag (bag).

1 mgs> v_seq := "str", 3.5, 4, 4, true, (\x.x), seq:();;

2 ("str", 3.500000, 4, 4, true, [funct]):’seq

3
4 mgs> v_set := "str", 3.5, 4, 4, true, (\x.x), set:();;

5 (4, true, 3.500000, "str", [funct]):’set

6
7 mgs> v_bag := "str", 3.5, 4, 4, true, (\x.x), bag:();;

8 (4, 4, true, 3.500000, "str", [funct]):’bag

The comma operator is overloaded and used, following the context, to add an
element to a collection, to merge two collections of the same type or to cre-
ate a sequence composed of its elements. For most of the collection types, the
empty collection type xxx is written xxx:() (for the example above, the empty
collection for the sequence type is namely seq:()).

2.2 Functions For the Manipulation of Values

In MGS, most of the functions are overloaded to allow an easy handling of complex
values. A collection value c has a type τ(µ) where τ is the collection type (like
set, seq, bag, ...) and µ is the type of the elements of the collection. To allow
an easy handling of complex values, most built-in functions are overloaded so
that user-defined functions can handle collections of any type τ(µ) regardless of
τ and µ. That property can be seen as a kind of polytypism [5, 19].

For example, the size functions, that returns the number of elements in the
collection, can be applied to any collection:

1 mgs> size(v_seq);;

2 6

3
4 mgs> size(v_set);;

5 5

6
7 mgs> size(v_bag);;

8 6

Among all the polytypic functions, we have the classics map, iter, fold, one_off,
rest, member... The interested reader should refer to http://mgs.ibisc.univ-evry.
fr/Online Manual/Collections.html for the detail of available functions de-
fined on collection types.



2.3 A Short Example

MGS unifies the collection types together with the polytypic functions in a general
rewriting scheme. Programs are written as a composition of transformations, a
very expressive form of rewriting process [12, 13, 17, 30, 32] based on the neigh-
borhood relationship exhibited by each collection type together with a general
form of pattern matching.

The following MGS expression returns (if it exists) the Hamiltonian path in a
graph G

1 trans Hamiltonian =

2 (s* as whole / (size(whole) == size(‘self)) => whole)

Pattern s* matches any path p (that is, a sequence of neighboring values) in G
such that each element in p appears only once; the additional requirement that p
is of the same size as G ensures that such paths are Hamiltonian. Of course, the
complexity of the search remains, but the complexity of its expression is highly
reduced.

3 The Implementation of the value Data Structure

3.1 The value Data Structure in a Functional Setting

In a functional setting, an evaluator consists in a function eval that, given an
expression of type expr, returns a value of type value. A toy example of such
an interpreter is given in figure 1.

In this example, the type value is restricted to integers and functions. The
precise application area of MGS does not matter in this paper and detailing the
handling of integers and integers operators should be enough to explain our
approach.

Functions in the target language rely on the use of functions of the implemen-
tation language (see the example of the inc_val function at line 16 in figure 1).
This mechanism of representing a target function by an implementation func-
tion lies at the heart of the higher-order abstract syntax [26, 7] approach. For
the sake of simplicity, we do not detail here on how to implement user-defined
functions. In the current MGS interpreter, this is achieved by using combinators
to translate on-the-fly a user-defined lambda expression into a Fun value [6].
The same mechanism can be used in the OO approach presented below. With
the higher-order syntax approach it is immediate to integrate existing libraries
of functions as a predefined kernel of functions: predefined library functions are
embedded using the Fun constructor. Note that the functions of the kernel have
exactly the same status and implementation as the user-defined functions and
so they can be arbitrarily mixed “for free” (e.g. using higher-order operators).
In the rest of this paper we focus only on the handling of a set of predefined
functional constants like inc val.

If one wants to extend the interpreter with a new primitive, like the addition
of integers, it only requires to define the corresponding constant



#include <iostream>
using namespace std;

struct value;

struct expr { virtual value& eval() =0; };

struct value : public expr {
value& eval() { return *this; }
virtual ostream& print(ostream& o) =0;

};

struct Number : public value {
virtual Number& inc() =0;

};

struct Int : public Number {
int val;
Int(int n) : val(n) {}
Number& inc() { return *(new Int(val + 1));}
ostream& print(ostream& o) {return o << val

<< "\n";}
};

struct Fun : public value {
virtual value& operator() (value&) =0;
ostream& print(ostream& o)

{return o << "<fun>\n";}
};

struct Error : public value {
char* msg;
Error(char* s) : msg(s) {}

ostream& print(ostream& o) {return o << msg
<< "\n";}
};

struct Apply : public expr {
expr& fct;
expr& arg;
Apply (expr& f, expr& a) : fct(f), arg(a) {}

value& eval() {
if (Fun* f = dynamic_cast<Fun*>(&(fct.eval())))

return (*f)(arg.eval());
else

return *new Error("apply: type error");
}

};

struct Inc : public Fun {
value& operator() (value& arg) {

if (Number* a = dynamic_cast<Number*>(&arg))
return a->inc();

else
return *new Error("bad arg");
}

};

main()
{

Int v(1);
Inc incr;
Apply tmp(incr, v);
Apply(incr, tmp).eval().print(cout);

}

Fig. 3. A simple and basic interpreter expressed in an OO programming style.

1 let add_val =

2 Fun(function (Int v1) ->

3 Fun (function (Int v2) -> Int (v1 + v2)))

in a new file and to rely on separate compilation and linking to produce the new
interpreter. The new function can be made available to the MGS programmer by
registering the previous expression in the global environment under an adequate
name.

So, it is straightforward to extend the library of available functions. On
the contrary, if we want to extend the available value type, for example with
floating-points values, we face several problems:

1. the type value must be extended accordingly, which implies to edit an ex-
isting file,

2. all functions defined by case on type value have to be updated to take into
account the new case.

The second point requires to edit all existing files related to the value type. For
instance, in the context of the MGS project, which represents 50k lines of OCAML
code, spread in about 75 files, it would require a huge amount of work.



3.2 The value Data Structure in an Object-Oriented Framework

In a object-oriented (OO) framework, the sum type used in the functional ap-
proach is replaced by an abstract class whose derived classes represent all the
cases. Methods are used to implement predefined target functions. The corre-
sponding interpreter, in C++, is given in figure 3.

The dynamic cast<...>(...) is used for downward casting a class to one
of its derived classes in a safe way. Failure to downcast corresponds to type
errors during evaluation of MGS expressions. value are defined as a subtype of
expression. A class Number gathers all classes that admit numerical operations
like incrementation. Initially, the only descendant of Number is Int which repre-
sents integers. Despite the syntactic differences, the OO C++ code mimics closely
the functional approach. The eval methods applies to any expression and is
defined, case by case, on each derived subclasses. The real difference is that the
cases are not gathered in one place but scattered in each derived classes. The
evaluation of a value is always the identity and so it is defined at the level of the
value class.

If one wants to extend the interpreter with a new data type, like floating-
points values, it only requires to define the corresponding derived class

1 struct Float : public Number {

2 float val;

3 Float(float f) : val(f) {}

4
5 value& inc() { return *(new Float(val + 1.0)); }

6
7 ostream& print(ostream& o)

8 { return o << val << "\n"; }

9 };

in a new file and to rely on separate compilation and linking to produce the new
interpreter.

So, it is straightforward to add new target data structures. On the contrary,
if we want to extend the library of available functions, we have to add a virtual
function to the mother-class value or one of its derived classes. This implies to
edit the class value but also all the derived classes for which an implementation
of the new method is relevant.

arity number min cases average cases max cases

1 100 1 3.43 24
2 93 1 5.77 40
3 22 1 2.4 14
4 4 1 1 1
5 0
6 4 1 6 21
7 2 1 12 23

Fig. 4. Statistics summary of overloaded functions in MGS.



4 Implementing Overloading

The implementation of an incremental interpreter has also to face an additional
problem if we provide to the end-user overloaded target functions. In the previous
example, the function inc has a meaning for both integer and floating-points
values. It would be very convenient to offer to the end-user an overloaded function
acting on both types. This means that from an MGS identifier inc and the type
of the arguments in an application, some dispatch mechanism must be used
to call the correct implementation method or function. This problem is not
negligible. In the MGS context, there are many overloaded functions: figure 4
gives the number, and distribution with respect to their arity, of overloaded
target functions available to the end-user.

In the functional framework, the dispatch is easily provided for unary func-
tions, using definition by cases through the pattern matching on the constructors
of the value data type. In the OO framework, this is also easily achieved using
virtual methods.

Things get more complex when we consider functions with multiple argu-
ments. For example, consider the addition of two values. Pattern matching can
still be used, but at the price of explicitly writing the Cartesian product of the
value constructors. For example, in the current MGS interpreter, there are 24
available data types. So, overloading the addition comes at the cost of writing
576 cases. Obviously, most of the cases correspond to errors and are handled
similarly. Even if this can be done using wild-cards in patterns, there is still a
huge number of cases to be written.

In the OO framework, the extension of the overloading of a target function
to multiple arguments requires multiple dispatch [18]. Multiple dispatch can be
implemented (in languages with only single dispatch, like C++ or OCAML) using
auxiliary methods [25, item 31]. The number of these functions also grows ex-
ponentially with the number of arguments meaningful for the dispatch.

5 An “Incremental” Software Architecture for the MGS

Interpreter

Our first design decision in MGS was to rely on the functional approach. As
a matter of fact multiple dispatch is easier to implement in this framework.
However, the problems raised in section 3.1 have still to be addressed. Our
idea is to split the various cases of an overloaded function into multiple OCAML
functions spread through the whole set of files. A pre-processing phase gathers
all the defined functions and merges them into the actual implementation. A
similar process is done for the various constructors of the value data type.

Splitting the definition into several files raises the problem of functional de-
pendency. It is hopeless to force the developer to have a correct sequencing of the
files when we want to enable at the same time the unconstrained addition of new
data types and pieces of code. To solve this problem, we use a well-known tech-
nique of forward pointers that are correctly set at run-time (see for example [21,
page 150]).



generates includes the corresponding .mli

dispatch.ml

def2.ml

def1.ml code.ml

generation time compile  time

type.ml

sig.ml

S3S1 S2

Fig. 5. Organisation of the code: the three phases S1, S2 and S3 are given together
with the exact date when each file is produced and the functions are made available.

We detail in the rest of this section the overall software organization through
the description of a small example. We assume that the value data type is
completely defined once and for all. Section 6.1 sketches how this data type can
also be generated from informations gathered through all the code. The reader
is supposed to be familiar with the OCAML language and its compilation tools.

5.1 Organization of the Code

The project consists in three set of files, S1, S2 and S3. A dispatch will be com-
puted from the definitions occurring in S1 and S2. After S1, the signature of
the dispatched functions are available (for the functions defined in S2 and S3).
That is, the functions are called through a diversion mechanism. After S2, the
functions can be directly called since all dispatched functions are known and
initialized after S2. Then, the dispatch is effective and the direct call to the dis-
patched functions is possible. Figure 5 shows the clear timing of the operations
occurring in the three phases and what files are used.

5.2 S1: Basic Definitions

The files in S1 are definitions, usually types and functions, that do not rely on
other previous definitions and that will be used everywhere in the project.

It includes a file types.ml that defines the type of the values (the value type)
that are going to be handled. All the functions that will handle values in the
code will require to have access to this file. From the .ml, a .mli include file is
produced by the OCAML compiler. Using this include file through the open Types
directive all other files are able to define functions on value.

1 type value =

2 Int of int

3 | Float of float

5.3 The Diversion Mechanism: Generation of Forward and
Signatures

At this point, it is necessary to give access to the overloaded functions, which
raises two problems:



1. since the functions are defined incrementally, there is no global repertory of
them;

2. these functions must be made available for code in S2 and S3 independently
of their actual implementation localization.

These two problems are solved by scanning all implementation files to collect
the various function names to generate a unique file sig.ml providing the im-
plementation of the forwarding mechanism. The scanning is made possible by
enforcing a specific syntax for the function names (see below).

For our example, the generated sig.ml file is

1 open Types;;

2
3 (* Signature declaration *)

4 let (add_forward : (value -> value -> value) ref) =

5 ref (function _ -> failwith "unitialized add")

6
7 let (print_forward : (value -> unit) ref) =

8 ref (function _ -> failwith "unitialized print")

9
10 Printf.printf "Setting the forward pointers\n"

11
12 let add x y = !add_forward x y

13 let print x = !print_forward x

The forward mechanism works as follows: an overloaded function add is a
wrapper that applies the value of the imperative variable add_forward. This
imperative variable is initialized with a dummy function raising an error. This
variable will be set later with the correct function (see lines 20 and 21 of the file
dispatch.ml in section 5.5).

5.4 S2: Writing of Code

The files in the second set S2 contains the implementation of the various cases
of an overloaded function. Suppose that a unary function XX is overloaded on
two types p and q. This suppose that the value data type has two constructors
P and Q defined like

1 type value = ...

2 | P of type_p

3 ...

4 | Q of type_q

5 ...

Then the MGS implementers have only to provide two functions called _XX_p and
_XX_q both of arity one. The argument of _XX_p is of type type_p. The naming
convention is simple: the name of the constructor (which is constrained to always
begin with a capital letter in OCAML) is used in small letter in the name of the
function case.

The naming convention is straightforwardly extended to handle multiple ar-
guments. A function definition:



XX p1 ... pn

represents the handling of the arguments of type type p1, . . . , type pn for the
overloaded function XX. The types type pi are arguments of constructors of the
sum type value. Each constructor corresponds to a different MGS value type and
we assume that the type pi are all different, even if the implementation type are
the same by using alias type declaration. This naming convention enables the
scanning described in the previous section and the generation of the diversion
functions XX and XX forward as well as the dispatch function XX described in
the next section.

An example of two overloaded functions, add and print is given in the
def1.ml file below:

1 open Types;;

2 open Sig;;

3
4 let _add_int_int i1 i2 = Int (i1 + i2)

5
6 let _print_int i1 = Printf.printf "%d" i1

7 let _print_float f1 = Printf.printf "%f" f1

Note that the definition of add is, at this point, not complete. Other cases
are specified or will be specified in other files.

All functions are allowed to recursively call any overloaded function. For
example, in another file def2.ml, the definition of _add_float_int uses the
overloaded function add:

1 open Types;;

2 open Sig;;

3
4 let _add_int_float i1 f1 = Float

5 (f1 +. (float_of_int i1))

6 let _add_float_float f1 f2 = Float (f1 +. f2)

7 let _add_float_int f1 i1 = add (Int i1) (Float f1)

Note however that add can only be effectively used once the wrapper has cor-
rectly been set at run-time. This means that, at this point, only function defini-
tions, implying overloaded functions, can occur and no actual function calls to
overloaded functions.

5.5 Generation of the Overloaded Functions

An overloaded function is implemented using pattern matching to dispatch to the
several function cases. The implementation function corresponding to the over-
loaded function XX is called __XX. For our example, the generated dispatch.ml
file is:

1 open Types;;

2 open Sig;;

3 open Def1;;



4 open Def2;;

5
6 let __add x y = match x, y with

7 | (Int x0), (Int x1) -> _add_int_int x0 x1

8 | (Float x0), (Float x1) -> _add_float_float x0 x1

9 | (Int x0), (Float x1) -> _add_int_float x0 x1

10 | (Float x0), (Int x1) -> _add_float_int x0 x1

11
12 and __print x = match x with

13 | Int x0 -> _print_int x0

14 | Float x0 -> _print_float x0

15
16 Printf.printf "Setting the correct link\n"

17 flush Pervasives.stdout

18
19 Sig.add_forward := __add

20 Sig.print_forward := __print

At the end of the file, the imperative variables used in the wrapper functions are
set to their correct value, using the just defined __XX functions.

5.6 S3: Using Dispatched Functions

At this point, all function cases have been gathered, the overloaded functions
have been generated and can be used even in the initialization phase, on the
contrary to the code in the S2 set of files. In the MGS project, the files in S3

corresponds to the implementation of transformations, the parsing, the top-level,
etc.

To finalize our running example, the file code.ml below describes some pos-
sible use of the overloaded functions, add and print:

1 open Types;;

2 open Sig;;

3
4 print (add (Float 2.0) (Float 3.0))

5 print_newline()

6 print (add (Float 2.0) (Int 1))

7 print_newline()

8 print (add (Int 2) (Float 1.0))

9 print_newline()

10 print (add (Int 2) (Int 1))

11 print_newline()

5.7 Compilation and Execution of the Code

The compilation follows five phases to respect the code organization:

1. in a first phase, all the files in S1 are compiled;



2. in a second phase, all the files of the project are scanned to automatically
generate and compile the sig.ml file;

3. in a third phase, all files from S2 are compiled (which additionally produces
the include files required for dispatch.ml);

4. in a fourth phase, dispatch.ml is generated and compiled;
5. finally, files in S3 are compiled and the final linking is done.

This process is fully automated by a Makefile. The compilation and the execu-
tion of our example gives:

ibisc 12 > make

ocamlc -c types.ml

ocamlc -c sig.ml

ocamlc -c def1.ml

ocamlc -c def2.ml

ocamlc -c dispatch.ml

ocamlc -c code.ml

ocamlc -o dsal types.cmo sig.cmo def1.cmo def2.cmo\

dispatch.cmo code.cmo

ibisc 13 > dsal

Setting the forward pointer

Setting the correct link

5.000000

3.000000

3.000000

3

6 Weaving the Implementation Code

In this section, we sketch the automatic generation of the type.ml, sig.ml and
dispatch.ml files.

6.1 Weaving the value Data Structure

In the same way that the function cases are split through several files, the vari-
ous constructor of the value data type are split in several files. This enables to
add a new data structure to MGS simply by providing a new file introducing the
corresponding constructor. The precise syntax used for the constructor declara-
tion does not matter. The first weaving tool scans all the source files to gather
all the constructors related to the value type and generates the types.ml file.

6.2 Weaving the Dispatch on value Type

The second weaving tool gathers all the function cases spread among the source
files to generate the overloaded functions. The dispatch mechanism presents some



subtleties. In the previous example, all the types used as the arguments of the
constructors of the value type where incomparable. However, the situation is
more complex in the implementation of MGS:

– wild-cards are required to handle within the same case function various ar-
gument types;

– there is a hierarchy of data types in the MGS language that is available to the
developer of the MGS language.

A simple example of the last kind is the following: MGS values are split into
atomic and compound values. Sometimes, cases functions are dispatched on this
distinction, and not on the implementation type of the data structure. For ex-
ample, the primitive function size returns -1 on all atomic values and returns
the number of elements in its argument in case of a compound value. Interior
nodes of the MGS hierarchy type corresponds to several constructor in the value
type. The type of the argument passed to the dispatched function is then value
and not the argument type of a constructor.

Having family of types produces a hierarchy that has to be taken into account
while generating the pattern matching of the overloaded functions. For example,
a case on _XX_int_int has to appear before the case _XX_int_atomic. The
partial order relationships between the MGS types is used to sort lexicographically
the collected cases of an overloaded function.

A “catch-all” case is produced to handle “bad argument types” error. To
avoid spurious warnings by the OCAML compiler, this case is produced only if
required.

7 Conclusion

The software organization and the weaving tools described in this paper have
been successfully used in the development of the MGS interpreter. This represents
over 50k lines of OCAML code (there is also over 100k lines of C++ libraries to
provide basic support for sophisticated data structures like Voronöı tessalation,
G-Maps, Cayley graphs, ...). The 50k lines of OCAML files are scattered over 75
files. The scanning of these files is almost immediate and does not slow down the
compilation process. It generates 225 overloaded functions. These results show
that our approach is well suited to the development, in a functional setting, of
large incremental projects.

One of the originality of this work is the application of aspect weaving tech-
niques in the context of a functional language (OCAML). As far as we know, this
is the first attempt to merge these two worlds to ease the implementation of a
domain-specific language. Our approach relies only on a tailored software archi-
tecture, a dedicated makefile, some naming conventions and two external tools
to parse and collect informations on the various data types entering in the value
type and on the overloaded functions. It does not involves any changes on the
OCAML compiler nor sophisticated typing techniques. It is therefore a lightweight
solution to the problem of incrementally building an interpreter.



Related Works.

The various techniques implied have already been used in other contexts (for
example, wrapper functions are used to overcome the impossibility to have re-
cursively defined modules spun across multiple files) and the problem that we
have tried to solve has been coined the expression problem in [34] (with an en-
lightening discussion in [35]). We briefly review, because of space limitation,
some similar approaches.

Language Extensions. In [20] is proposed a specific design pattern called
the Extensible Visitor which is a combination of functional and object-oriented
programming methods while our approach is purely functional.

An aspect-oriented programming extension to OCAML, very similar to As-
pectJ [3], is proposed in [24]. It is a highly technical approach that uses the
usual features of join points, pointcuts and advices declarations that leads to the
definition of the Aspectual Caml language while our work do not change the
language itself but consists in two additional tools to collect information and
produce the dispatch files.

Extensible Interpreters. The conception of extensible interpreters has been
considered for example in [33]. However, it requires sophisticated type inference
techniques to be implemented that goes beyond standard ML type inference.

Multiple dispatch has been considered for overloaded functions in a functional
language [4]. As for the previous work, it requires sophisticated types techniques.

Extensible sum data types[8, 9] (which is further extended in [10] by adding
private row types to functors) have been proposed and are implemented in OCAML.
They enable the incremental definition of the value data type and of the func-
tions but at the cost of requiring a lot of wrap/unwrap functions that are done
for free in our approach. Moreover, since with polymorphic variants a matching
case can easily be forgotten in a function definition, we believe that this approach
would be too error-prone on a large-scale development like the MGS language

Once again, a very technical solution is found in [27] by relying on modules
and (higher-order) functors.

Acknowledgements.

The authors thank Julien Cohen of LINA – CNRS FRE 2729 for his comments
on the paper.

References

1. Computer language shootout scorecard, June 2003. http://dada.perl.it/

shootout/craps.html.
2. Gentoo : Intel R© pentium R© 4 computer language shootout, July 2006. http:

//shootout.alioth.debian.org/gp4/index.php.



3. AspectJ project. Available at http://www.eclipse.org/aspectj/.
4. Bourdoncle, F., and Merz, S. Type checking higher-order polymorphic multi-

methods. In Conference Record of POPL’97: The 24TH ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (1997), ACM SIGACT and
SIGPLAN, ACM Press, pp. 302–315.

5. Cohen, J. Intgration des collections topologiques et des transformations dans un
langage fonctionnel. PhD thesis, Université d’Évry, Dec. 2004.

6. Cohen, J. Interprétation par SK-traduction et syntaxe abstraite d’ordre
supérieur. In Journées Francophones des Langages Applicatifs (JFLA 2005) (2005),
O. Michel, Ed., INRIA, pp. 17–34.

7. Cohen, J. Interprétation par syntaxe abstraite d’ordre supérieur et traduction en
combinateurs. Technique et science informatiques (2007). To appear.

8. Garrigue, J. Programming with polymorphic variants. In Proc. of 1998 ACM
SIGPLAN Wksh. on ML, Baltimore, MD, USA, 26 Sept. 1998. Oct. 1998.

9. Garrigue, J. Code reuse through polymorphic variants. In Workshop on Foun-
dations of Software Engineering (FOSE) (Nov. 2000).

10. Garrigue, J. Private row types: Abstracting the unnamed. In APLAS (2006),
N. Kobayashi, Ed., vol. 4279 of Lecture Notes in Computer Science, Springer,
pp. 44–60.

11. Giavitto, J.-L. A framework for the recursive definition of data structures. In
ACM-Sigplan 2nd International Conference on Principles and Practice of Declar-
ative Programming (PPDP’00) (Montréal, Sept. 2000), ACM-press, pp. 45–55.

12. Giavitto, J.-L. Topological collections, transformations and their application to
the modeling and the simulation of dynamical systems. In Rewriting Technics and
Applications (RTA’03) (Valencia, June 2003), vol. LNCS 2706 of LNCS, Springer,
pp. 208 – 233.

13. Giavitto, J.-L., Malcolm, G., and Michel, O. Rewriting systems and the
modelling of biological systems. Comparative and Functional Genomics 5 (Feb.
2004), 95–99.

14. Giavitto, J.-L., and Michel, O. Modeling the topological organization of cel-
lular processes. BioSystems 70, 2 (2003), 149–163.

15. Giavitto, J.-L., Michel, O., and Cohen, J. Pattern-matching and rewriting
rules for group indexed data structures. ACM SIGPLAN Notices 37, 12 (Dec.
2002), 76–87.

16. Giavitto, J.-L., Michel, O., Cohen, J., and Spicher, A. Computation in
space and space in computation. Tech. Rep. 103-2004, May 2004. 22 p.

17. Giavitto, J.-L., and Spicher, A. Systems Self-Assembly: multidisciplinary snap-
shots. Elsevier, 2006, ch. Simulation of self-assembly processes using abstract re-
duction systems.

18. Ingalls, D. H. H. A simple technique for handling multiple polymorphism. In
OOPSLA (1986), pp. 347–349.

19. Jeuring, J., and Jansson, P. Polytypic programming. In Tutorial Text from 2nd
Int. School on Advanced Functional Programming, Olympia, WA, USA, 26–30 Aug
1996, J. Launchbury, E. Meijer, and T. Sheard, Eds., vol. 1129 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1996, pp. 68–114.

20. Krishnamurthi, S., Felleisen, M., and Friedman, D. P. Synthesizing object-
oriented and functional design to promote re-use. In ECOOP (1998), E. Jul, Ed.,
vol. 1445 of Lecture Notes in Computer Science, Springer, pp. 91–113.

21. Leroy, X., Doligez, D., Garrigue, J., Rémy, D., and Vouillon, J. The
Objective Caml system, release 3.09. INRIA, October 2005. available at http:

//caml.inria.fr/distrib/ocaml-3.09/.



22. Lienhardt, P. Topological models for boundary representation : a comparison
with n-dimensional generalized maps. Computer-Aided Design 23, 1 (1991), 59–82.

23. Lienhardt, P. N-dimensional generalized combinatorial maps and cellular quasi-
manifolds. International Journal on Computational Geometry and Applications 4,
3 (1994), 275–324.

24. Masuhara, H., Tatsuzawa, H., and Yonezawa, A. Aspectual caml: an aspect-
oriented functional language. In ICFP (2005), O. Danvy and B. C. Pierce, Eds.,
ACM, pp. 320–330.

25. Meyers, S. More Effective C++. Addison Wesley, 1996.
26. Pfenning, F., and Elliot, C. Higher-order abstract syntax. In Proceedings of the

SIGPLAN ’88 Conference on Programming Language Design and Implementation
(1988), pp. 199–208.

27. Ramsey, N. ML module mania: A type-safe, separately compiled, extensible in-
terpreter. Electr. Notes Theor. Comput. Sci 148, 2 (2006), 181–209.

28. Remy, D., and Vouillon, J. Objective ML: An effective object-oriented exten-
sion to ML. Theory and Practice of Object Systems 4, 1 (1998), 27–50.

29. Spicher, A. Transformation de collections topologiques de dimension arbitraire.
Application la modélisation de systèmes dynamiques. PhD thesis, Université
d’Évry, 2006.

30. Spicher, A., and Michel, O. Using rewriting techniques in the simulation of
dynamical systems: Application to the modeling of sperm crawling. In Fifth Inter-
national Conference on Computational Science (ICCS’05) (2005), vol. I, pp. 820–
827.

31. Spicher, A., Michel, O., and Giavitto, J.-L. A topological framework for
the specification and the simulation of discrete dynamical systems. In Sixth Inter-
national conference on Cellular Automata for Research and Industry (ACRI’04)
(Amsterdam, October 2004), vol. 3305 of LNCS, Springer.

32. Spicher, A., Michel, O., and Giavitto, J.-L. Rewriting and Simulation -
Application to the Modeling of the Lambda Phage Switch, vol. Modélisation de
systèmes biologiques complexes dans le contexte de la génomique. Genopole, 2006,
ch. Modeling of the Lambda Phage Switch.

33. Steele Jr, G. L. Building interpreters by composing monads. In POPL (1994),
pp. 472–492.

34. Wadler, P. The expression problem. Email to the Java Genericity mailing list,
Dec. 1998.

35. Zenger, M., and Odersky, M. Independently extensible solutions to the ex-
pression problem. In The 12th International Workshop on Foundations of Object-
Oriented Languages (FOOL 12) (Long Beach, California, 2005), ACM.


	I Declarative Unconventional Languages
	IJUC: Challenging questions for the rationales of non-classical programming languages
	W21: Introducing dynamicity in the data-parallel language 84-31/24+3
	Semantics and compilation of recursive sequential streams in 84-31/24+3.
	Data structure as topological spaces
	Group based fields
	Declarative definition of group indexed data structures and approximation of their domains
	The topological structures of membrane computing.

	II Modelling and Simulation of Dynamical Systems -- Applications
	84-31/24+3 and Simulation of Genetic Networks
	Computation in Space and Space in Computation
	Rewriting Systems and the Modelling of Biological Systems
	Modelling the Topological Organization of Cellular Processes
	Using Rewriting Techniques in the Simulation of Dynamical Systems
	Stochastic P Systems and the Simulation of Biochemical Processes with Dynamic Compartments
	An Analysis of a Public-Key Protocol with Membranes
	Algorithmic Self-Assembly by Accretion and by Carving in MGS

	III Elements of Implementation
	Design and implementation of 84-31/24+3, a declarative data-parallel language
	MGS: a rule-based programming language for complex objects and collections.
	Pattern-matching and rewriting rules for group indexed data structures.
	Incremental Extension of a Domain Specific Language Interpreter


