
Applying Spatial Computing to Everyday
Interactive Designs

Stefan Dulman
Centrum Wiskunde & Informatica

The Netherlands
Email: dulman@cwi.nl

Chris Kievid
Chris Kievid Design

The Netherlands
Email: info@chriskievid.nl

Abstract—In this position paper, we address the applicability
of spatial computing in the field of interactive architecture. The
process of designing large-scale interactive systems is cumber-
some, due in fact to single design cycles (transforming ideas into
prototypes) taking a period of time usually measured in months,
most of it dedicated to writing the software controlling the system.
As most interactive architecture projects pass through several
design cycles interleaved with user studies, speeding up the
generation of the needed software becomes of crucial importance.
The global-to-local programming approach is in fact a perfect tool
for this task. Describing complex behaviors with simple rules
is rarely seen in the existing installations, the large majority
employing a central computer for the control of the system.
Building up on our previous experience in this area, we created
HiveKit, a proof of concept allowing bridging between the two
fields, giving non-specialists easy access to distributed algorithms.
HiveKit is a software package which allows designers to specify
the desired behavior and automatically generate and deploy the
needed code on networks of embedded devices. We introduce sev-
eral projects where HiveKit is employed and create an argument,
based on user studies, favoring the need for large-scale adoption
of such tools.

I. INTRODUCTION

The built environment in which we live is in a continuous
evolution. Smart buildings and smart infrastructure, part of
the biggest vision of smart cities [19] are already around us,
with their numbers and capabilities increasing with advances in
technologies such as internet-of-things. The shifting patterns of
human interaction within the contemporary social and spatial
reality intensifies the demand for integrating networked em-
bedded systems in the physical environment [1]. We advocate
that emergent behaviors in such distributed spatial systems is a
desirable feature for designers and should be promoted rather
than prevented. They promise creation of unprecedented spatial
qualities and experiences, and have the potential to perform as
catalysts for numerous social processes and transformations,
such as dynamic demands and values and to different patterns
of use [4] [8] [12].

However, the fact that computation has become om-
nipresent, has only shown that the real question that we
are now facing is: how can we take real advantage of its
potential? With the number of “smart” devices surrounding us
continuously growing, traditional interaction modalities based
on direct control by the user of any given device stop to work.
How can we interact with ease with an environment filled
with many interactive devices? The problems become further
complicated when we take into account numerous users that

may occupy an interactive environment. In those situations not
only interactions between a person and a cloud of devices
need to be taken into account, but also interpersonal relations
and social interactions, including potential conflicts, need to
be addressed and resolved. Furthermore, a significant research
question is that of an unknown affordance. Since interactive
environments are still uncommon, there are no cultural models
or patterns for interacting with them.

While autonomous agency has been advocated by leading
design professionals [18] [15] as the preferred path, it can be
postulated that actual architectural design and implementations
are virtually inexistent [13]. As most systems operate in
isolation or even at cross purposes, designers lack technical
knowledge required to formulate, explore and validate cre-
ative use, and additionally rapid prototyping and experimental
testing of resulting embedded networks can be challenging.
It becomes evident that a designer-friendly software tool for
exploring the interaction user-distributed systems is desirable.

A wide range of software tools and plugins exists to support
architectural design or simple interaction prototyping. Despite
that, there are virtually no software platforms that would allow
designers to easily simulate and explore complex and emergent
behaviors in systems built out of many embedded nodes,
prototype and eventually deploy those systems. The reasons
underlying this state of facts lie in a missing methodology for
programming complex systems in manner that exploits stable
emergent behaviors while providing the user with the needed
control. Designing specific distributed algorithms for a given
application is usually preferred to stacking complex behaviors
occurring from simple local rules interactions.

Designing the software for a complex large-scale dis-
tributed system is a daunting task. From our experience, simple
interactive installations containing a few tens of sensors and
actuators can keep a software team busy for months [5].
We would like to point out the true limitations of this long
design cycle leading to a clash in cultures. On one hand, the
software team needs to work with clear requirements towards
delivering a working product [3]. On the other hand, designers
work by engaging in design cycles involving fast creation
of a prototype, engaging in user studies and integrating the
feedback in the next prototype. For every product, a few tens
of iterations are common. From this perspective, it becomes
clear why the vision of interactive environments is so far away
from realization. The prohibitively large duration of a single
design cycle (measured in months or even years) prevents the
large majority of designers from experimenting in the field of



large-scale interactive systems, let alone exploring the usage
of local interactions in their work [17].

In this paper, we will focus on the problem of reducing
the duration of design cycles, achieved by integrating theories
and results specific to spatial computing into CAD software
tools [6]. Our efforts led to the creation of a software tool
entitled HiveKit. In the following, we will briefly introduce
HiveKit and analyze how employing it led to the development
of a number of prototypes, not feasible otherwise under the
resource and time budgets allocated to them. We will briefly
describe the technical characteristics - the focus being, on
purpose, on the benefits and the novel avenues opened by the
increased productivity of using spatial computing in interactive
architecture.

II. HIVEKIT

In this section we introduce HiveKit [11], a software tool
allowing designers and architects to design behaviors and
program distributed networks of embedded devices directly
from a CAD tool. Before going into details, we would like to
point out a few software tools already in use by the designer
community.

Architects traditionally used CAD tools such as AutoCAD
in their projects. Recent years have seen a tremendous in-
crease in popularity of the Rhino3D software package [21],
one of the reasons being the availability of the Grasshopper
plugin [10], allowing parametrization of the objects described
in the graphical user interface. Grasshopper bridged the gap
with the actual IT technology, allowing the shape of an object
and its functionality given by embedding electronics to be
described and explored in the same simulator. For example, the
Firefly plugin [7] allows automatic code generation for a single
Arduino device embedded in the designed object. In the same
line, the gHowl plugin [9] allows code generation for a smart
phone used in the design. These capabilities are very limited
when comparing to a tool such as Matlab/Simulink which
allows the generation and deployment of complex control
code on devices. Unfortunately, Matlab is highly sophisticated,
requiring a proper training in engineering and software tech-
nology - it is therefore out of reach for the designer community.

Processing [20] is another tool used to explore complex
systems. The behavior of the objects is described in a language
similar to C/C++. Despite the impressive graphical results ob-
tained by using this tool, the users need a deep understanding
of programming languages and there is no code generation for
real devices included. At the other side of the spectrum lies
MaxMSP [16], the tool of choice for controlling interactive
installations such as light and sound systems using standard
communication interfaces, e.g., DMX controllers. The output
of the behavior described in MaxMSP can be translated into
the proper electrical signals to control a predefined setup of
elements. Unfortunately, none of these tools offers a method
for controlling a network of devices as a whole, the ones
who allow interfacing with hardware elements focusing on the
control of each individual element at a time.

As shown below, HiveKit hides from the user all aspects
linked to low level virtual machine details, communication
protocols, the implementation of distributed algorithms, even
the compilation and deployment of code. The designer has

Fig. 1. HiveKit example - top part shows the behavior description; bottom
part shows the results of three consecutive executions steps.

only to focus on the behaviors she wants to showcase in the
interactive installation. HiveKit consists of two major software
components: the embedded systems interpreter and a high-level
graphical user interface (GUI), characterized briefly below.

A. Embedded software interpreter

The embedded software interpreter allows the execution of
behaviors specified in the GUI on Arduino Due devices [2].
It takes as input a desired behavior specified in a compressed
XML format. Each component in the GUI (algorithms, mathe-
matical operators, etc.) has its equivalent in a software module
which acts as an independent instruction.

HiveKit is designed around the concept of execution
rounds. Similarly to the abstract definition of execution rounds,
during each round, each node collects information produced
locally or in the neighborhood in the previous round and
performs a single computation on this data. The start of a
round is signaled by an internal clock, which keeps track
of the round number. Round sizes can be varied on the
present hardware platform from 50ms to a few seconds - the
default value being 250ms. If desired, the execution can be
synchronized in the network in a distributed manner. By using
the firefly synchronization algorithm [23] (available via the
Sync module), all the nodes in the network synchronize their
execution rounds with their neighbors.

There are two types of modules: functions and algorithms.
Functions are pieces of code which can be executed imme-
diately, with the local data available on the node (such as
an addition operation applied to a sensor data value and a
constant). Functions may maintain state information across
different execution time steps. Examples of stateless functions
are the arithmetic and logical operators. Examples of state-
based functions include the blocks in the digital logic category
(such as the Delay block which acts as a buffer for the input
data). Algorithms are blocks which require data exchanges with
the neighbors. The Gradient block is an example - it queries
the neighbors for their gradient value and has as output the
smallest found one incremented by one. The implementation of
algorithms is based on a template that handles data collection
from the neighbors, data expiration in the local buffers, error



handling and all the associated operations involving memory
management.

The modules execute in the order specified by the com-
pressed XML format. They are linked by data links, called
signals which are represented internally as float values. Signals
flow through all the modules, and each module creates a value
at each time step. Signals can be linked to either modules
or hardware components such as pins and communication
ports. HiveKit provides a few simple drivers for the control
of commonly used hardware components such as stepper
motors. From the software perspective these drivers are seen
as functions, so there is no special handling needed.

B. Graphical user interface

HiveKit functionality can be accessed as a plugin in the
Grasshopper software. Grasshopper is a front end for the
Rhino3D CAD tool. It is conceptually similar to the Simulink
interface in Matlab and uses the same concepts: functions
are hidden by blocks connected together in a configuration
specified by the user. Each block presents a parameter interface
and the user can set global parameters for the simulation
as well. Blocks in the basic set offer functionality linked to
the creation and complex manipulation of basic geometric
primitives. For example, users can rotate a box around an axis
or create and modify a mesh surface from a set of initial points.
Grasshopper can be easily extended by adding more blocks to
this basic set.

Data exchanged between modules can take a variety of
forms in Grasshopper. We limited our approach to lists of float
numbers, giving the user a global view of the network. The
lists have a number of elements equal to the size of the real
network - each value in the list corresponds to a value of the
signal on a specific network node.

HiveKit adds several blocks to the Grasshopper interface
(distributed algorithms, handling of inputs and outputs such
as sensors and actuators and various utility blocks such as
digital logic blocks). The distributed algorithms set includes
at this moment four blocks: Random (activates a specified
random fraction of nodes in a network), Sync (triggers the
firefly synchronization algorithm), Gradient (a multi-source
version of the basic flooding/diffusion gradient algorithm) and
Token (a self adaptive algorithm leading to a single token being
passed in a linear network).

The second set of blocks targets inputs and outputs. We
have added a few pass-through blocks which have no real
effect on the simulation but signal HiveKit the interfacing
with real sensors and actuators. They are mapped on the
capabilities of the hardware platform: sensors include on/off
digital sensors and analog-to-digital converters, while actuators
include on/off digital actuators, digital-to-analog converters,
pulse width modulation outputs and stepper motor outputs.
Also in this category we include blocks which allow the
user to specify programming loops. By default, Grasshopper
prevents data loops from being specified (the solver simply
stops with an error when loops are detected). We introduced
blocks that allow transport of data signals between any two
points in the simulation, bypassing the checks of the solver
(similar to the go-to instruction in low level programming
languages). The addition of these blocks opens the possibility

Fig. 2. Hive Panels - interactive installation developed by Hive Systems and
Chris Kievid Design for the Glow Festival of Light, Eindhoven 2013.

of implementation of any type of digital filter, allowing the
user to easily specify common behaviors such as fading in/out
of lights, control loops built on sensor/actuator interaction, etc.

The third group of blocks includes blocks specific to digital
logic. Grasshopper lacks a proper representation of time -
being a CAD tool, the simulations were supposed to be a one-
shot simulations, with data passing only once through each
block - in other words, the models run once, to completion. We
added a number of blocks equivalent to flip-flops and clocks.
HiveKit blocks understand the concept of clocks which can be
added and simulated at various frequencies. The user is not
limited in the number or types of clocks he would like to use.

Figure 1 shows an example of such a behavior (we zoomed
in on the relevant part of the simulation). Assume a network of
randomly deployed nodes, organized in a mesh topology like
the one in the image. We would like to create a wavy pattern,
starting at some nodes that get triggered via, for example,
a presence sensor which moves away from these nodes in
time. The core of the simulation is given by the interplay of
two algorithms: Gradient and Sync. In the current setup, Sync
allows each node in the network to synchronize its round with
its neighbors. The Counter output of this algorithm is the round
number, which is the same on all nodes, and ranges in this
particular case from 0 to 3. This number increases (modulo
4) each round. The output of the Gradient block is a number
reflecting the distance in hops from the current node to the



closest triggered sensor. In this simulation we take this number,
perform a modulo 4 operation on it and check if it is equal to
the round number. If equal, then an actuator (a yellow light in
this case) is triggered. With time, the pattern evolves as given
by the output of the sync algorithm, leading to the desired
behavior. Each signal in this simulation is a list of values
corresponding to the values on each node. The visualization in
the simulator is achieved by a number of blocks which will be
ignored in the embedded systems code (described in the next
section).

The selection of blocks offered by HiveKit will increase
with time. Interestingly enough, many complex behaviors can
be easily decomposed in these basic components (mapping
on the idea that almost any behavior seen in nature can be
decomposed in combinations of diffusion, timing and restric-
tion blocks). All the behaviors described in Section III were
achieved by using only the presented components.

C. Code generation and deployment

The “brains” of HiveKit are given by the Controller block.
This block performs all the needed operations, transforming
the desired behavior from the GUI into actual code running
on the nodes and also initiates the automatic deployment of
code in the network. The goal of this whole project was
to allow non-specialists to program large-scale networks by
hiding the underlying complexities. Together with the built-in
communication and error handling mechanisms, the Controller
block allows us to achieve just that. The main automation
features provided are as follows:

• Behavior synthesis - by right-clicking the Controller block,
the user triggers the analysis of the behavior in the GUI. The
Controller block creates a list of all blocks and the netlist
associated with the simulation. Then, it identifies the blocks
relevant to the real-life deployment (ignoring for example
the blocks used for visualization - the yellow and red spheres
in the previous example). It does that by identifying the
active actuators in the simulation and following back the
blocks from outputs to inputs until it reaches constant values
or sensor inputs. Specific care is taken in the case of loops,
timing blocks, blocks with parameters and the execution
order of the blocks. Once a valid configuration is created
from the GUI, a compressed XML format is generated
putting all the blocks, signals and constant values together.

• Code deployment - by default, the nodes in the network ex-
change messages with each other, once every single round.
The content of the messages is dictated by the distributed
algorithms employed in the current behavior. Each message
contains also a version number of the current behavior,
version which is incremented with each new deployment.
Receiving a message having a different version number than
the current one, triggers the node to ignore its contents
and, if more recent than its own, initializes a protocol
via which the node is requesting the new behavior from
its neighbor. Behaviors require more than one message to
be transmitted and a transport protocol is put in place to
take care of behavior reconstruction from several messages,
error handling, retransmission, loss of the source of the
message, etc. The final effect is that if a single node (the
one connected to the computer) is “infected” with a new

Fig. 3. The Seina project - developed in the “Interactive Environments”
Minor at the Delft University of Technology. Instructors: A. van der Helm,
M. Rozendaal, C. Kievid.

behavior, it will spread it in the network virally, without
any additional operation required from the user.

• Logging - a logging system is put in place and nodes
can be triggered to offer runtime execution information on
demand. Each block offers several levels of reporting, all
customizable by the user (the same holds for all major
software components of the embedded software interpreter
itself). This way, understanding what goes on inside a
node at runtime is an easy operation, starting and stopping
different levels of logging at runtime being feasible without
the need of restarting or reprogramming the network.

D. Brief technical details

The embedded system interpreter is developed mainly in
the C language as a single thread software component, easy to
integrate with other pieces of embedded systems code such
as specific systems software. The current prototype targets
Arduino Due boards, powered by an Atmel SAM3X8E ARM
Cortex-M3 CPU. The flash image (with the full logging
capabilities turned on and all the algorithmic blocks enabled)
is around 60kBytes of compiled code. The amount of RAM
used by the interpreter depends on the size of the programmed
behavior, with typical values less than 10kBytes. Memory
management is simplified to the maximum - the only memory
allocation/deallocation operations are performed when a new
behavior is downloaded into a node, apart from that memory
management is not in use.

We are making use of all five serial interfaces of the
Arduino Due boards (1 UART and 4 USARTs) for creating
networks. Each device in the network can be connected thus
to maximum five neighbors via wired links. The embedded
systems interpreter is agnostic to the communication means



- as long as data is supplied to it in the proper format.
This allows easy extension of the communication to the other
communication interfaces present on the hardware platform
and extensions to radio communication interfaces such as
XBee.

The GUI is based on the .NET framework (the large
majority of our custom components being coded in VB.Net).
Our code makes use of the APIs provided by Grasshopper and
Rhino3D. We built most of the custom components around
a component template adding clock information and specific
parameter handling to the software blocks. As described above,
HiveKit allows easy integration of a large range of hardware
devices - enabling the use of many sensors/actuators shields
already developed for the Arduino platform.

III. DEPLOYMENT EXAMPLES

In this section we introduce three example of deployments,
showcasing the possibilities of HiveKit as a design platform.
Although quite different in their aims and accomplishments,
these projects employ a distributed systems approach with
meaningful interaction use-cases and user generated content.
All projects display meaningful interaction use-cases where
the aggregate spatial properties become translated to their
corresponding local actions. The behaviors include sensing,
actuation and dissemination of information within localized
neighborhoods.

The first application that demonstrates the potential to
create a precedent for an entirely new class of architectural
and related design interventions was protoDECK [14]. The
purpose of this prototype is exploring the conceptualization
and implementation of ubiquitous deployment of an intelligent
visual surface in a spatial environment and enabling a variety
of novel applications. This floor, comprised of 168 interrelated
tiles, each equipped with multicolor light and the ability to
detect presence of persons, allowed invited artists to investigate
the various spatial behaviors that such a system is capable of. It
served as a first prototype, allowing us to explore and converge
the features of HiveKit. It also facilitated the interaction with
a large number of students in industrial design and interactive
architecture, shaping the interface and functionality of the final
prototype.

Bringing digitally-enhanced social interactions to the pub-
lic domain and creating new forms of interactions wherein
architectural components play a leading role is further explored
in a second project. The objective of this prototype is to assess
the effectiveness of the individual involvement and validate
the public awareness, understanding and appreciation on how
distributed technologies can serve as platforms encouraging
creative public behavior. The Hive Panels installation (Fig-
ure 2) consists of eight autonomously operating elements,
which can be magnetically attached to any metal surface, in
any configuration. Each element is equipped with a powerful
multi-color LED array, which can dynamically change its
orientation. All elements are capable of sensing presence
and motion of persons or objects in front of them using
infrared sensors. The Hive Panels can be synchronized to
perform complex global-scale tasks in unison, while being
triggered only by local stimuli - for example, an elaborate
light and motion show that dynamically reacts to passers-by.

Fig. 4. Comparison between parallel ongoing student projects in the
“Interactive Environments” Minor at Delft University of Technology. The
horizontal timeline spans between September 2013 and February 2014.

Furthermore, the installation can also exhibit a higher-order
behavior and offer practical functionality such as directing light
to areas where people are present and adjusting its colors and
intensities to fit those people current activity.

The interactive light installation Seina [22] (Figure 3),
designed by undergraduate design students, features the ability
to extend the developed systems functionalities beyond the
initial set of requirements. Due to its flexible system architec-
ture non-experts are be able to design and integrate distinct
functionalities after the deployment has taken place. These
functionalities include both sensing and actuation modalities
but also additional, more immersive and meaningful interactive
behaviors. In the current state of development, this prototype
consists of 24 autonomously operating lamps suspending from
the ceiling. Participants engaging with the installation trigger
dynamically altering light patterns on the floor. Demonstrated
behaviors include light trails behind moving users, light paths
that guide them to other participants or locations, and a variety
of shared interactive games and experiences for bringing
together and socially engaging various user groups.

IV. DISCUSSION AND CONCLUSIONS

It is difficult to precisely evaluate the shortening of design
cycles due to the usage of HiveKit. Nevertheless, we make
use of data collected in the Interactive Environments Minor
program at Delft University of Technology. Three projects
were developed in parallel by three groups of students, similar
in complexity and making use of similar hardware. Seina was
one of the projects, and the only one in which the students used
HiveKit. Figure 4 plots the design cycles along a timeline.
It is worth noticing that the usage of HiveKit allowed the
students to build roughly double the number of prototypes
when compared to the other two projects. The easiness in
changing behaviors and deploying them on the fly led also to
a significantly increased number of usability tests and design
iterations. The final results also reflected this, Seina being
significantly more mature than the other designs. The results
of surveys, expert panels and direct observations during the
various project, let us draw a few conclusions and guidelines
for similar systems:

• An intuitive graphical user interface allows designers to
visualize faster the emergent properties of their designs with
respect to human interaction and the technology they are
immersed into. Due to the almost instant viral deployment
of new behaviors in the network, the user studies can cover
a lot more alternatives.



• The prototyping and deployment activities are significantly
shortened by the abstraction from technical concepts such
as: real-time event handling sensor information dissemina-
tion, precise actuation control, communication protocols,
error handling mechanisms, etc.

• The user interface allows full customization of the sensor
and actuator capabilities, removing the need for manual
implementation of the embedded systems software. Espe-
cially for non-specialists this is a very important step giving
them access to an otherwise non-usable technology (for
example, none of the students in the Seina project had a
background in computer science, embedded systems or any
related discipline).

• HiveKit leads to a tremendous acceleration for the ex-
ploratory phase of the design process as there is no need
to involve specialists in embedded systems, distributed
algorithms or sensor technology.

• Designers rapidly explore a large number of interaction
patterns and focus more on the ergonomic aspects rather
than technical ones. Designers perform more early stage
user evaluation of proposed interaction scenarios using
experiential prototypes.

The approach taken by HiveKit opens quite a number of
interesting possibilities of cooperation between the specialists
in the fields of distributed systems and large-scale interactive
systems design. By hiding functionality in simple blocks and
taking the effort of adding automatic reconfiguration options,
one enables designers to use complicated mathematical tools
in a very intuitive way. Think for example, of the “simple”
problem of changing the intensity of lights emitted by light
poles on a street such that the amount of street lighting is
always constant, despite atmospheric conditions, broken lamps,
etc. A specialist would recognize this problem belonging to the
class of distributed constraint optimization problems (DCOP)
and might be able to suggest a few proper algorithms. Needless
to say, the non-specialist has little idea that such mathematical
tools exist, let aside experiment with their use in real scenarios.
This motivates us to add a block for DCOP in HiveKit in the
near future.

Another interesting direction for development is the inte-
gration of smart phones with the design tools. People interact-
ing with the installations might do so via their smart phones
- generating automatically the code for an app and testing its
effects directly in a CAD tool would reduce tremendously the
development cycle. An initial step has been taken in the form
of the gHowl plugin [9], which shows how to integrate a single
smartphone. Future work with respect to HiveKit will address
also an extension from this perspective.

The Seina and Hive Panels interactive projects demonstrate
that a fusion between the material, the electronic and the digital
domains is now within reach of non-specialists. Compared
to existing approaches, our proposed solution of automating
code generation for the network of embedded systems allows
vast new possibilities for creation of new forms of interac-
tions. At the same time, it reduces the needed infrastructure
and increases scalability, robustness, availability and easy
deployment and ultimately reduces the cost of interactive
installations. In the words of Mike Kuniavsky: “Right now
is the time to create a practice of ubiquitous computing user
experience design. The technology is ready. Consumers are

ready. Manufacturers are ready. The world is ready. Now it’s
up to designers to define what that practice will mean.” [15]

ACKNOWLEDGMENTS

The authors would like to thank Tomasz Jaskiewicz and
Andrei Pruteanu who were part of the Hive Systems initiative
and took active roles in the development of HiveKit.

REFERENCES

[1] Alive2013: International Symposium on Adaptive Architecture.
[Online]. Available: http://alive2013.wordpress.com/

[2] Arduino Due. [Online]. Available:
http://arduino.cc/en/Guide/ArduinoDue

[3] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments.
IGI Global, 2012, ch. Organizing the Aggregate: Languages for Spatial
Computing, pp. 436–501.

[4] Building Dynamics: International Symposium on Exploring Architec-
ture of Change. [Online]. Available: http://buildingdynamics.org/

[5] S. Dulman, “Data-centric architecture for wireless sensor networks,”
Ph.D. dissertation, University of Twente, The Netherlands, 2005.

[6] S. Dulman, “Practical programming of large-scale adaptive systems,”
in IA5, Robotics in Architecture, K. Ooosterhuis and H. Bier, Eds. Jap
Sam Books, 2012.

[7] Firefly. [Online]. Available: http://fireflyexperiments.com/
[8] M. Fox and M. Kemp, Interactive Architecture, 1st ed. New York:

Princeton Architectural Press, 2009.
[9] gHowl. [Online]. Available:

http://www.grasshopper3d.com/group/ghowl
[10] Grasshopper. [Online]. Available: http://www.grasshopper3d.com/
[11] HiveKit. [Online]. Available: http://hive-systems.net/hivekit, developed

by Stefan Dulman, Andrei Pruteanu and Tomasz Jaskiewicz
[12] M. Hosale and C. Kievid, “Modulating territories, penetrating bound-

aries,” Footprint: Delft School of Design journal, vol. 6, pp. 55–67,
March 2010.

[13] T. J. Jaskiewicz, “Towards a methodology for complex adaptive inter-
active architecture,” Ph.D. dissertation, Delft University of Technology,
2013. [Online]. Available: http://dx.doi.org/10.4233/uuid:a81827c5-
7d65-4cc7-9fab-20fab3a14c30

[14] S. Karger, A. Di Figlia, M. Bos, A. Pruteanu, and S. Dulman, “Spatial
computing for non-it specialists,” in Spatial Computing Workshop
(SCW2012), AAMAS2012, Valencia, Spain, 2012.

[15] M. Kuniavsky, Smart Things: Ubiquitous Computing Experience De-
sign, 1st ed. New York: Morgan Kaufmann, 2010.

[16] MaxMSP. [Online]. Available: http://cycling74.com/products/max/
[17] A. Nereim, “Emergent Behavior in Networked Architecture,” in ACSA

Teachers Conference Proceedings, 2008.
[18] K. Oosterhuis, “Swarm Architecture II,” in The architecture Co-

Laboratory: GameSetandMatch II, K. Oosterhuis and L. Feireiss, Eds.
Delft, The Netherlands: Episode Publisher, 2006, pp. 14–28.

[19] K. Oosterhuis, Hyperbody: First Decade of Interactive Architecture,
1st ed. Ram Publications, 2012.

[20] Processing. [Online]. Available: http://processing.org/
[21] Rhino3D. [Online]. Available: http://www.rhino3d.com/
[22] Seina, http://seina.nl/ - developed in the ”Interactive Environments”

Minor program at the Delft University of Technology. Instructors:
Aadjan van der Helm, Marco Rozendaal, Chris Kievid. Students: Tom
Hemmes, Assmae El Coudi Amrani, Tomas Giele, Jules Dudok, Teresa
Maria Martin de la Sierra Baena, Dima Politin, Thijs Langbroek, Jesse
Beem, Donna Stam.

[23] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal,
“Firefly-inspired sensor network synchronicity with realistic radio
effects,” in Proceedings of the 3rd International Conference on
Embedded Networked Sensor Systems, ser. SenSys ’05. New
York, NY, USA: ACM, 2005, pp. 142–153. [Online]. Available:
http://doi.acm.org/10.1145/1098918.1098934


