
Towards a Unified Model of Spatial Computing
Jacob Beal

Raytheon BBN Technologies, USA
Email: jakebeal@bbn.com

Mirko Viroli
University of Bologna, Italy
Email: mirko.viroli@unibo.it

Ferruccio Damiani
University of Torino, Italy

Email: ferruccio.damiani@unito.it

Abstract—In spatial computing, there is a fundamental tension
between discrete and continuous models of computation: compu-
tational devices are generally discrete, yet it is often useful to
program them in terms of the continuous environment through
which they are embedded. Aggregate programming models for
spatial computers have attempted to resolve this tension in a
variety of different ways, generating a profusion of approaches
that are difficult to compare or combine. Recently, however,
two minimal models have been proposed: continuous space-time
universality and a discrete field calculus. This paper unifies these
two models by proving that field calculus is space-time universal,
and thus provides the first formal connection between continuous
and discrete approaches to spatial computing.

I. INTRODUCTION

One of the ongoing challenges in the study of spatial com-
puting is being able to understand and compare the profusion
of approaches to specifying and controlling computation on
spatial computers. For example, a recent survey [1] identified
more than 100 significant languages and programming models
for spatial computers. Partially, this is likely due to the fact that
spatial computing cuts across many disciplines with different
requirements and biases in their approach to computational
models (the survey [1] identified eight major domains, includ-
ing sensor networks, high-performance computing, and syn-
thetic biology). We believe, however, that another important
contributor to this confusion of approaches is lack of a unified
model for computations distributed over space and time.

Traditional models of distributed computation (e.g., [2], [3])
are formulated in terms of the message passing behavior of
individual devices. An important focus of spatial computing
research, however, has been to raise the abstraction level, such
that adaptive and resilient programs can be specified over
aggregates of devices [4], [5], [6], [7]. In these efforts, there
has been a major tension between discrete and continuous
models of computation. On the one hand, a spatial computer
is comprised of devices distributed through some region of
continuous space, evolving in continuous time, and spatial
computing algorithms and programming models are typically
designed to take advantage of this circumstance. At the same
time, however, in most cases the computation is actually
carried out by a discrete collection of individual computational
devices executing discrete rounds of computation.

Recently, minimal models have been proposed for both
continuous and discrete approaches. A continuous definition of
space-time universality is proposed in [8], along with a mini-
mal basis set of space-time universal operators on continuous
fields. For the discrete world, a minimal field calculus was

recently developed in [9]. It is not yet certain whether either
model can be further reduced, and there are mathematical
questions still to be resolved regarding the proposed contin-
uous model of space-time universality. Regardless, between
them these two models appear to cover the breadth of existing
aggregate programming approaches. Unifying these two mod-
els provides the first formal connection between continuous
and discrete approaches to spatial computing. It is our hope
that this will provide a critical step toward resolving the
tension between continuous and discrete models and toward
a general basis for comparison and investigation across all
aggregate programming models for spatial computers.

We now prove that field calculus is space-time universal. We
accomplish this using the Proto programming language [10],
[11] as an intermediate stage, based on the prior analysis of
Proto’s relationship to space-time universality in [8]. Follow-
ing a brief review of field calculus, space-time universality,
and Proto in Section II, we determine criteria for when a
Proto program can be finitely approximated in Section III. We
then show that field calculus covers a broad class of finitely
approximable Proto programs in Section IV and use this result
to prove space-time universality of field calculus.

II. FOUNDATIONS

In this paper, we will work with three concepts in space-time
computation: field calculus, space-time universality, and the
Proto programming language. All of these are based around
the notion of a computational field, which is defined as a func-
tion that maps every point in a space to some computational
object. Examples include temperatures measured by a sensor
network (a scalar field), routes toward a destination (a vector
field), the area near an object of interest (a Boolean indicator
field), or people allowed access to an area (a set-valued field).

We begin with a brief review of the key concepts that will
be used for field calculus, space-time universality, and Proto.
All three models are closely related, since Proto was one of the
key inspirations for both theoretical models, but with critical
differences arising from their differing goals.

A. Field Calculus

The computational field calculus, introduced in [9], is a
core calculus intended to capture the key ingredients of pro-
gramming languages that create and manipulate computational
fields. Field calculus is based around a set of five operators for
manipulating fields, which were chosen with the aim of finding

e ::= x
∣∣ l

∣∣ (b e)
∣∣ (f e) expression∣∣ (rep x w e)

∣∣ (nbr e)
∣∣ (if e e e) special constructs

w ::= x
∣∣ l variable or value

F ::= (def f(x) e) function
P ::= F e program

Fig. 1. Syntax of field calculus

a minimal set of operators capable of describing any field-
based computation. This paper’s proof that field calculus is
space-time universal confirms that this aim has been satisfied.

The syntax for field calculus is presented in Figure 1,
using the overbar notation to denote lists, e.g., e is a list of
expressions, e1 e2 . . . en. The basic element of field calculus
is an expression e that can be evaluated on a spatial computer
to produce a field. The terminal expressions of field calculus
are literal values l, which are fields mapping every device to
a local value such as a number, a Boolean, or a tuple, and
variables x, which reference a function parameter or a state
variable created by a rep construct (see below).

These terminal expressions can then be composed into more
complex programs using five constructs:
• Functional composition: Using the ordinary rules of

mathematical function composition, (b e1 e2 . . . en)
is the field obtained by composing together all the fields
e1, e2, . . . , en by a built-in operator b, where the built-
in operators are some set of instantaneous functions that
can be performed purely locally, such as addition, sine,
sensors, actuators, measuring the progress of time and the
distance to neighbors, etc.

• Function definition and call: Abstraction and recur-
sion are supported by function definition: functions
are declared Lisp-style with expressions of the form
(def f(x) e) and applied by expressions of the form
(f e1 e2 . . . en).

• Time evolution: Program state is created and tracked over
time by a “repeat” construct (rep x w e). The state
variable x is initialized with the field w (a local value
or a variable) and updated at each step in time to a new
field computed by e using the prior value of x.1

• Neighborhood values: Information moves between de-
vices by a construct (nbr e) that maps each device to a
field of its neighbors’ values of field e. This is thus a field
of fields, and implies that messages containing e must
be sent to neighbors.2 Neighborhood fields may then be
manipulated and summarized with built-in operators. For
example, (min-hood (nbr e)) maps each device to
the minimum value of e amongst its neighbors.

• Domain restriction: Distributed branching is implemented
by the construct (if e0 e1 e2), which computes e1

where e0 is true and e2 where e0 is false. This is

1Note that if rep constructs are nested, the inner rep is resolved using
the prior value of the outer, while the outer is resolved using the new value
from the inner.

2Field calculus, being a theoretical construct, finds it more elegant to send
each device’s entire evaluation state and ignore everything not needed.

done by changing the effective domain of the fields,
which prevents the unexpected spreading of a distributed
computation outside of the devices in the branch, even
within arbitrarily nested function calls. Restriction is also
necessary for termination of recursion. Domain restriction
is thus critically important for controlling the composition
of distributed programs,3 yet it is currently supported by
very few models of distributed programming.

Finally, a program is a sequence of function definitions fol-
lowed by a base expression to be evaluated. As the program
is evaluated, the field calculus semantics track “domain align-
ment” between the ongoing evaluation and the information
shared by its neighbors. This process ensures that when a field
of neighborhood values is used, it contains information only
from those neighbors that have followed the same branch in
every domain restriction, even if the information was gathered
in a less-restricted branch of the program.

As an example of field calculus, the following field calculus
program uses the common “distance gradient” coordination
pattern to compute the minimum distance to a high tempera-
ture:
(def distance-to (source)

(rep d
infinity
(mux source 0
(min-hood (+ (nbr d) (nbr-range))))))

(distance-to (> (temperature) 25))

where temperature is an assumed built-in operator for a
local temperature sensor, nbr-range is a built-in operator
that determines the distance from every device to its neighbors,
+ is a built-in addition that is also overloaded to apply to
fields, and mux is a built-in operator that is a purely functional
multiplexer that computes all three of its inputs and then uses
the first to select whether to return the second or third. For
full details of field calculus and more examples, see [9].

Note that the syntax of field calculus is not tied very tightly
to the discrete model, and that most of the constructs could
be easily adapted to continuous space-time. The operational
semantics of field calculus developed in [9], however, is
entirely discrete, depending critically on each device having
a finite set of neighbors and on computation advancing in
discrete rounds.

B. Space-Time Universality

The notion of space-time universality as proposed in [8],
considers computations in terms of arbitrary fields mapping
each point in a space-time manifold to some value. The set of
such computations includes many that can be readily defined
and computed in theory but cannot be implemented or even

3Note that while such behavior can theoretically be implemented without
restriction. The distinction is similar to the difference between preemptive
and cooperative multitasking: domain restriction, like preemptive multitasking,
imposes an implicit control framework on every computation. Without domain
restriction, we must count on every function being extended with a compatible
implementation of an intricate architecture for managing program scope,
greatly increasing the complexity of code and the fragility of any program.

!"
#
$%

&'()$%

!"

(a) Physical

!"
#
$%

&'()$%

!" #$%"
#$&"

&$'"
%$&"

#"

#$'"
&$("#$(" %$(" '$("

(b) Non-approximable

!"
#
$%

&'()$%

!"

(c) Acausal

Fig. 2. Space-time universality applies only to physically realisable compu-
tations, meaning they are both causal and finitely approximable. For example,
if an otherwise false field (blue) contains a region of true values (red)
triggered by an event e, then (a) is both causal and finitely approximable. An
example of a function that is not finitely approximable (b) measures distance
from an event and is true on rational distances with an even numerator
and false for odd numerators. An acausal example is shown in (c), which
requires devices to switch state before information from e has time to move
to them across space.

approximated by any real computing system, to the best of
our current understanding of the laws of physics. The notion
of space-time universality is therefore restricted to only those
computations that are physically realizable: causal and finitely-
approximable functions (Figure 2).

Causal computations are simply defined as those in which
the value at any point in space-time depends only on informa-
tion that can have reached it propagating across space at some
maximum velocity c. An example of an acausal computation
is one in which every device always reports the instantaneous
current value sensed by a designated device in the network,
with no delay for transmission.

Intuitively, a function is finitely approximable if increasing
the density of a discrete set of devices brings the values they
compute closer to the continuous ideal. We formalize this
notion using the following two definitions adapted from [8]
(with some small modifications):

Definition 1 (ε-approximation). Consider a finite set Aε of
points in a manifold M of finite diameter, chosen such that
no point in M is more than distance ε from a point in Aε. An
ε-approximation of a field F with regards to the set Aε is any
field Fε with the same domain as F , in which every point has
the value of F at the nearest point in Aε (choosing arbitrarily
for equidistant points).

Note that although the definition of ε-approximation spec-
ifies a finite set and a finite diameter (meaning finite space
and finite time), there is no bound on how large these sets
might be. Note also that although the set Aε is a finite set,
the ε-approximation constructed from it is not, which will be
important for the next definition.

Definition 2 (Finitely Approximable). Consider any function
f that maps fields to fields, and a countable sequence of εi-
approximations of its inputs with εi < εi−1. Let O be the
output for a given set of inputs, and Oi the output using
ith approximation of the inputs. The function f is finitely

!"
#
$%

&'()$%

!"
#
$%

&'()$%

!"
#
$%

&'()$%

!"#$%&'!"()*+&##,$&-%+&..$/0!1&2/"'+

Fig. 3. Example sequence of increasingly accurate discrete approximations of
the computation example in Figure 2(a). A function is finitely approximable
if the ε-approximations of every such sequence converge to the continuous
limit for every possible set of inputs.

approximable if for every well-defined application of f to a set
of input fields producing a well-defined output O, and for every
converging sequence of εi-approximations, it is the case that
|M∪Mi−M∩Mi| and the Lebesgue integral

∫
M∩Mi

|O−Oi|
both converge to zero, where M and Mi are the domains of
O and Oi respectively.

For functions where the value at each device is a field,
such as nbr or nbr-range, we extend the definition of
finitely approximable to integrate the difference across these
“per-device” fields as well.

Note that M and Mi need not be the same, because the
function f may output fields with different domains depending
on the values of its inputs. The definition requires that the
difference in domains converge to a set of measure zero.
This definition also requires that some metric of difference
be imposed on the range of output values. The definition
then requires that the locations in which values differ by a
non-trivial value (all differences being non-trivial for non-
numerical values such as sets) must converge to a set of
measure zero.

A model of computation is then space-time universal if it
can finitely approximate any causal and finitely approximable
function. Figure 3 illustrates the concept of finite approxima-
bility, using the computation example in Figure 2(a).

In [8], a small set of operators is proposed to be space-
time universal, and the sketch of a proof by construction is
given. Although said proof has not yet been fully worked,
for purposes of this paper, we will assume that it is correct,
and use the proposed operators as our target representation for
proving space-time universality.

Note that the definition of finite approximability does not
imply that the function f is actually computable. For any
portion of the input space that f is non-computable, the output
O is not well-defined, and the finite approximability property
thus asserts no constraint on the behavior of ε-approximations.
A slightly stronger property, which we do not consider here,
would assert that the sequence of εi-approximations converge
to having equivalent regions where outputs are ill-defined.
In practice, this is often the case, but as we are primarily
interested in computations that can be executed, we leave this
property for future investigation.

�

(a) Field

�

�
�
�
�

�
�

�

�
�

(b) Operator Instance

�

��������

(c) Root Manifold

�
�

�

(d) Dependent Manifold

P1

*

������

(e) Function Definition

Fig. 4. Diagrammatic representation of elements of a Proto program.

C. Proto

We will use the Proto spatial computing language [10], [11]
as our intermediary point between field calculus and space-
time universality. The primary reason for this choice is that
analysis of Proto in [8] determined that it is nearly space-
time universal. The only capability that Proto is missing is
the ability to measure certain properties of the local structure
of a spatial manifold. This capability can be fulfilled in field
calculus through built-in operators, and thus if field calculus
can approximate the class of Proto programs that are nearly
universal, then field calculus is universal.

Proto is also useful as a bridge because it is based on an
abstraction called the amorphous medium [12], which is used
to map continuous aggregate models into a discrete approxi-
mation, which is assumed by construction to be appropriate. In
this paper, one consequence of our proofs will be to determine
that this assumption is guaranteed to hold for a broad class of
programs.

For this paper, we will use a definition of Proto programs
adapted from [13], which provides a formal representation
of Proto programs in terms of a collection of operators on
manifolds, and proves that all such continuous-space programs
are well-defined. As defined in that paper, a Proto program
may be represented as a tuple P = (M,F,O,R,D), where:
• M is a set of compact Riemannian manifolds with both

space and time dimensions. Each m ∈ M is either a
root manifold or a dependent manifold. Root manifolds
are instantiated at runtime from the invocation of the
program or by function calls. Dependent manifolds are
defined as restrictions of root manifolds by a Boolean-
valued selector field sm ∈ F (playing the same role as
if in field calculus). We also assume that no m ∈M is
infinite in time.

• F is a set of fields f : m → V mapping manifolds to
values.

• O is a set of operator instances o : fi0×fi1×· · ·×fik →
fo, each mapping from a set of zero or more input fields

to a single output field.
• R is a return value function R : M → F mapping each

root manifold m to a unique field f with m as its domain.
• D is a set of function definitions, each of which is a

tuple d = (o,m, {(i, oi)}, r), associating an operator o
for the function with the function’s root manifold m,
return value r = R(m), and a set of mappings from
the ith function input to a “parameter” operator oi that
references its values.

Figure 4 illustrates these elements diagrammatically: such
diagrams will be used in presentation of our proofs. Note
that these definitions abuse terminology for clarity: technically,
these program elements are not the mathematical objects
themselves, but descriptions of the objects that are instantiated
in any particular evaluation of a program.

Within this representation, we consider only well-defined
Proto programs, which follow the “natural” constraints of
generating a program as a composition of operator instances,
in essence simply asserting that there are no missing or
conflicting elements:

• For every operator o ∈ O, its input and output fields have
compatible types and domains (see [13] for details; we
also present these conditions as needed in our proofs).

• Every field f ∈ F is the output of precisely one operator
instance oi.4

• The set of manifolds M is precisely equal to the set of
domains of fields in F .

• All but precisely one return value in R (the “base
expression”) are associated with their corresponding root
manifolds by function definitions in D.

• For each function definition d in D, with k parameter
mappings, the indices uniquely cover 1 to k and the
operator instances are unique and have outputs with a
domain equal to the function’s root manifold.

Under this model, a Proto program is evaluated by identify-
ing the root manifold of the base expression with a space-time
region and a neighborhood function N that maps each point
to a neighborhood contained in a ball of radius r around it.

The operators in Proto fall into four classes, which are
closely matched with those in field calculus:

• Pointwise operators are a Turing-universal set of opera-
tors acting only instantaneously on the values at a device,
like the built-in operators b in field calculus.

• The restrict operator takes two inputs, reducing the
domain of the first to only those points with Boolean
value true in the second. This plays the same role as
domain-alignment in field calculus.

• The delay operator shifts values in time by some small
value ∆t, where ∆t is a continuous positive function over
the manifold. This plays the same role as the variable
annotation in rep constructs in field calculus.

4Because of their ongoing temporal extent, Proto programs are conceived
of similar to agents, obtaining external input not through their invocation but
through “sensor” operators.

• The nbr operator gathers the most recent available values
from the neighborhood of a device, just as it does in field
calculus. Values move across space at a fixed velocity c.
This means that the value for device i gathered by a nbr
operator at device j is lagged by time d(i, j)/c.

For a full treatment of Proto formalized as continuous field
operators, see [13].

III. FINITE APPROXIMABILITY OF PROTO

As the first stage of our proof, we focus on finite approxima-
bility of Proto, whether by field calculus or other means. Most
pointwise operators in Proto are finitely approximable. For
example, addition and subtraction are finitely approximable.
So is measuring distance to neighbors with nbr-range or
progress of time with dt. Some simple operations, however,
are not finitely approximable: for example, testing for equality
between real numbers is not in general finitely approximable.
Testing for equality between discrete values such as integers,
however, is. Thus, for example, the multiplexing mux operator,
which selects between two inputs based on whether a third is
true or false, is finitely approximable.

Critically, the three special operators of Proto, restrict,
delay, and nbr, are all finitely approximable.5 For
restrict, the values of the approximated output are iden-
tical to the input, and only the domain may be different. The
domain is set by a test for equality between discrete values,
however, so if the input differences converge to zero, then
the difference in domains must also go to zero. The nbr
operator is similar: values are copied directly from the input
approximation, and the neighborhood domains at each device
converge. The delay operator also copies values directly, but
problems could be caused by the fact that the ∆t shift can vary
over space and time. The continuity constraint for ∆t given
above, however, ensures that it too converges.

Given these facts, we can identify a large class of Proto
programs which are finitely approximable:

Theorem 1 (Finite Approximability of Proto Programs). Any
well-defined Proto program P = (M,F,O,R,D) composed
only of finitely approximable operator instances is finitely
approximable.

Proof Sketch (full proof in Appendix A): For any Proto
program without feedback or function calls, all of the operator
instances O can be ordered, so that each operator draws its
inputs (if any) only from operators before it in the order. We
then consider a sequence of “partial programs” beginning with
only the first operator instance in the order (which is finitely
approximable by definition), and adding each operator instance
in order. If the ith partial program is finitely approximable,
then all of its fields converge, which means that the output
field of the i+ 1 operator instance converges, and so does the
i + 1 partial program. Thus, by induction, such a program is
finitely approximable. This argument may then be extended to

5This is not surprising, since Proto was designed around these operators
explicitly for the purpose of creating approximate distributed algorithms.

nbr-range!"!!!

#"#
!$%
#"
#&#
$#&
#!$
#"
#

!"
#
$%

&'()$%

Fig. 5. In field calculus, information moves across space and time in
discrete steps, while in Proto it flows at a fixed velocity c. The field calculus
approximation of c is determined by the ratio between neighborhood range r
and time step ∆t. Thus, any computation that depends on both exchanging
information and neighborhood size can be approximated for only a restricted
range of time-steps ∆t.

cover function calls (using a substitution model), and feedback
loops (using a block diagram and induction over time).

IV. FIELD CALCULUS IS SPACE-TIME UNIVERSAL

We now show that field calculus implements a broad class
of Proto programs. This will be enough to prove that field
calculus is universal, a corollary of which is that it can also
implement every finitely-approximable Proto program (Proto
is strictly causal). First, we need one more restriction to the
class of Proto programs that we will attempt to approximate:

Definition 3 (Neighborhood Independence). Consider a se-
quence of neighborhood functions Ni with strictly decreasing
bounding radii ri. A Proto program P = (M,F,O,R,D) is
neighborhood independent if the values of every field f ∈ F
converge for every such sequence Ni.

We need this restriction because of communication is quan-
tized in field calculus (Figure 5). In Proto’s continuous model,
information flows across space at a velocity c. In field calculus,
assuming synchronous rounds6 of length ∆t and a communi-
cation range of r, information moves at maximum velocity
c ≤ r

∆t and minimum velocity c > r
2∆t (the subsequent step

being just outside of the communication range). Constructing
an ε-approximation using field calculus requires ∆t < ε, so
either c or r must change. It is possible to create a Proto
program that depends on both c and r, such as:
(def depends-on-speed-and-radius (x)

(* (any-hood (nbr (sense 1)))
(distance-to (sense 1))))

In this program, the any-hood expression depends on r,
while the distance-to function depends on c. Neighbor-
hood independence eliminates the dependence on r, which we
choose as these programs are less often of interest. What this

6Asynchronous evaluation is somewhat more complex, depending also on
the time lag between computing a round and state arriving at neighbors, but
yields the same asymptotic bound with different constants.

then means is that, as the density of devices in space rises, we
can also increase the density of evaluations in time, so long as
the density in space increases faster than the density in time,
so that the average number of neighbors continues to increase.

We can now define a class of Proto programs that can be
readily approximated by field calculus, and from that show
its space-time universality and coverage of all other finitely
approximable Proto programs.

Theorem 2. Any well-defined neighborhood-independent
Proto program P = (M,F,O,R,D) composed only of finitely
approximable operator instances can be approximated using
field calculus.

Proof Sketch (full proof in Appendix B): This theorem can
be proved by construction; using the same partial program
ordering as in Theorem 1, we create a function definition for
each Proto operator instance. The function for the ith partial
program has as arguments the fields computed by the prior
partial programs, uses the appropriate ones as inputs for the
ith operator instance, and then includes the result in the call to
the next partial program function. At the end of this sequence,
the proper field is returned. By providing similar constructions
for functions, restrictions, feedback loops, and neighborhood
computations, we can cover the set of all Proto programs
satisfying the preconditions of this theorem.

Theorem 3 (Space-Time Universality). Field calculus is
space-time universal.

Proof Sketch (full proof in Appendix C): A set of space-time
universal operators have been proposed in [8]. All but one of
these operators have been shown to be covered by Proto. The
last operator can be covered by the built-in operators b of field
calculus. We then show that a set of Proto programs covering
these operators satisfy the preconditions of Theorem 2; thus,
field calculus can implement a program equivalent to a Proto
program that is equivalent to to any program constructed with
the space-time universal operators proposed in [8].

Corollary 4 (Approximation of Proto by Field Calculus).
Any well-defined finitely approximable Proto program can be
approximated using field calculus.

Proof. This corollary follows directly from space-time univer-
sality. Any Proto program not covered by Theorem 2, however,
might be extremely inefficient in its implementation.

We thus have the result that we were looking for: field
calculus can serve as a core calculus for both continuous and
discrete models of space-time computation.

V. CONTRIBUTIONS

This paper presents a key result towards unifying continuous
and discrete approaches to spatial computing, demonstrating
that field calculus is universal for continuous space-time
computation. One of the challenges in spatial computing has
been the difficulty of comparing the many different approaches
to programming computing systems that extend across space-
time. With the recent development of field calculus and the

addition of this result connecting space-time universality and
field calculus, it will now be possible to at least answer the
question of whether any given language is sufficiently strong.

Another important area not yet addressed is the computation
of spaces, in addition to computation on spaces. This includes,
for example, the development of manifold topologies using
MGS [14], [15] and formation control in swarm systems
(e.g., [16], [17], [18]). Necessary future work includes investi-
gation of how to formally connect the models of computation
developed so far with a notion of universality in the formation
of manifolds and discrete device distributions.

REFERENCES

[1] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll, “Organiz-
ing the aggregate: Languages for spatial computing,” in Formal and
Practical Aspects of Domain-Specific Languages: Recent Developments,
M. Mernik, Ed. IGI Global, 2013, ch. 16, pp. 436–501, a longer version
available at: http://arxiv.org/abs/1202.5509.

[2] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press and McGraw-Hill, 2009.

[4] H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight,
R. Nagpal, E. Rauch, G. Sussman, and R. Weiss, “Amorphous comput-
ing,” MIT, Tech. Rep. AIM-1665, 1999.

[5] D. Yamins, “A theory of local-to-global algorithms for one-dimensional
spatial multi-agent systems,” Ph.D. dissertation, Harvard, Cambridge,
MA, USA, December 2007.

[6] J. Beal, “Engineered self-organization approaches to adaptive design,”
in 1st International Conference on Through-life Engineering Services,
R. Roy, E. Shehab, C. Hockley, and S. Khan, Eds. Cranfield University
Press, November 2012, pp. 35–42.

[7] J. Fernandez-Marquez, G. Marzo Serugendo, S. Montagna, M. Viroli,
and J. Arcos, “Description and composition of bio-inspired design
patterns: a complete overview,” Natural Computing, vol. 12, no. 1, pp.
43–67, 2013.

[8] J. Beal, “A basis set of operators for space-time computa-
tions,” in Spatial Computing Workshop, 2010, available at:
http://www.spatial-computing.org/scw10/.

[9] M. Viroli, F. Damiani, and J. Beal, “A calculus of computational fields,”
in Advances in Service-Oriented and Cloud Computing, ser. Communi-
cations in Computer and Information Sci., C. Canal and M. Villari, Eds.
Springer Berlin Heidelberg, 2013, vol. 393, pp. 114–128.

[10] J. Beal and J. Bachrach, “Infrastructure for engineered emergence in
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, pp. 10–19,
March/April 2006.

[11] “MIT Proto,” software available at http://proto.bbn.com/, Re-
trieved January 1st, 2012.

[12] J. Beal, “Programming an amorphous computational medium,” in
Unconventional Programming Paradigms, ser. Lecture Notes in
Computer Science, J.-P. Banatre, P. Fradet, J.-L. Giavitto, and
O. Michel, Eds. Springer Berlin Heidelberg, 2005, vol. 3566, pp.
121–136. [Online]. Available: http://dx.doi.org/10.1007/11527800 10

[13] J. Beal, K. Usbeck, and B. Benyo, “On the evaluation of space-time
functions,” The Computer Journal, 2012, doi: 10.1093/comjnl/bxs099.

[14] J.-L. Giavitto, C. Godin, O. Michel, and P. Prusinkiewicz, “Compu-
tational models for integrative and developmental biology,” Univerite
d’Evry, LaMI, Tech. Rep. 72-2002, 2002.

[15] J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher, “Computation in
space and space in computation,” Univerite d’Evry, LaMI, Tech. Rep.
103-2004, 2004.

[16] J. Bachrach, J. Beal, and J. McLurkin, “Composable continuous space
programs for robotic swarms,” Neural Computing and Applications,
vol. 19, no. 6, pp. 825–847, 2010.

[17] P. Ogren, E. Fiorelli, and N. Leonard, “Formations with a mission: Stable
coordination of vehicle group maneuvers,” Proc. 15th Int’l Symposium
on Mathematical Theory of Networks and Systems, vol. 170, 2002.

[18] M. Ji and M. Egerstedt, “Distributed coordination control of multiagent
systems while preserving connectedness,” Robotics, IEEE Transactions
on, vol. 23, no. 4, pp. 693–703, aug. 2007.

APPENDIX A
FINITE APPROXIMABILITY OF PROTO PROGRAMS

Restatement of Theorem 1 (Finite Approximability
of Proto Programs). Any well-defined Proto program
P = (M,F,O,R,D) composed only of finitely approximable
operator instances is finitely approximable.

Proof. We first consider programs without feedback or func-
tion calls. For such a program, well-definedness means that
it is always possible to construct a total order of operator
instances such that the input fields of oi are outputs only of
operators oj with j < i. We can then consider a sequence
of partial programs Pi restricted to contain only the first i
operator instances and their associated fields, manifolds, and
returns.

Assume that partial program Pi is finitely approximable.
This means that for operator instance oi+1, all of its in-
put fields will converge for any converging sequence of εj-
approximations. Since oi+1 is finitely approximable as well,
this means that both |M∪Mj−M∩Mj | and

∫
M∩Mj

|Oi−Oi,j |
converge to zero, and thus Pi+1 is also finitely approximable.
Since we assume that every operator instance in P is finitely
approximable, P1, which contains only a single operator with
no inputs, is finitely approximable. Thus, by induction any
Proto program with finitely-approximable operators and no
feedback or function calls is also finitely approximable.

For a Proto program with function calls, but no recursion,
the number of function calls that can be made is bounded and
can be determined statically from the program definition. It
is thus possible to construct an equivalent program in which
every function call is made precisely once: for any function
that is called more than once, create a unique function name,
but with the same definition, for each body. Proto does not
currently support iteration or higher order function calls, so
without recursion this process is guaranteed to be bounded.
Once all function calls are unique, operators can once again be
given a total order following a substitution model of function
evaluation7.

Adding in recursion, we now have two possibilities: either a
program halts for a certain set of inputs or it does not (where
halting means its computation requires only a finite number
of recursions). Obviously, the sets of inputs which fall into
each category is not generally computable, but it will suffice
to prove finite approximability holds for both sets. For the set
of non-halting inputs, finite approximability is trivially true:
since the output is not well-defined, finite approximability
makes no assertion about the behavior of ε-approximations.
For any input that does halt, we can use a substitution model
of evaluation to find an equivalent recursion-free program, for
which the prior proof of finite approximability holds.

We now extend to include programs with feedback. A Proto
program with feedback cannot be totally ordered, since there

7This follows the usual intuitive definition; formal details of the mapping
may be found in [13].

���

�����	

�
���

�������
������	

�������
������	

��������	
�

�	����

�������	��
�������

Fig. 6. Proto feedback loops are based on a delay operator that time-shifts
values by some small duration ∆t. Initial values are given by a subprogram
run in the submanifold where the domain has changed (identified by operator
dchange, and are updated by computing using the delayed value.

are delay operators that form feedback loops. These are
not arbitrary, however, but in order to ensure well-formedness
(per [13]) are always generated following the template shown
in Figure 6 (or a similar parallel template, which is equivalent
to applying the template shown to a tuple). Initial values are
given by a subprogram run in the submanifold where the
domain has changed, and are updated by computing using the
output value time-shifted by ∆t by the delay operator. If we
consider the complex of delay, the partial program for update,
and the multiplexer mux as a single composite function, we
can still totally order the remainder of the program with
regards to this function. We need then only check that this
looping partial program is finitely-approximable.

The mux and delay operators are both finitely approx-
imable, and so, by assumption are all of the operators in the
update partial program. Letting m be the output of the mux,
if this partial program does not converge, then there must
be some measurable set X ⊂ m where the values do not
converge. Since all of the operators are finitely approximable,
then it must be the case that there is an input to the delay
(or a delay within the update partial program) where the
approximated values do not converge. By the definition of
delay, if X does not converge, then the input space that does
not converge must be some X ′ that is X shifted backward in
time by the appropriate set of ∆t values. Since the input to
a delay is the output of its corresponding mux, this means
that X = X ′. Since ∆t is greater than zero at every point,
however, this cannot be the case for any finite X . Thus, we
have by contradiction that all Proto programs composed of
finitely approximable operator instances are finitely approx-
imable.8

8Note that this does not mean the Proto program will necessarily converge
as ∆t goes to zero—that is an entirely different problem. For example, (rep
x 1 (- 1 x)) does not converge as ∆t→ 0 but for any given choice of
∆t it is finitely approximable.

APPENDIX B
PROOF FIELD CALCULUS APPROXIMATES PROTO

We approach proof of the approximation of Proto programs
by construction, beginning with simple pointwise programs
and adding in classes of operators one at a time.

Lemma 5. Any well-defined Proto program (M,F,O,R,D)
composed only of finitely approximable pointwise operator
instances and no dependent manifolds or function definitions
can be approximated using field calculus.

Proof. Field calculus has a free choice of a set of built-in local
operators b and local values l. We can thus choose this set to
contain the set of finitely approximable pointwise operators in
Proto, using l for all literals and b for all other operators.
Since we also assume there are no functions and thus no
function calls, it is therefore the case that for any operator
instance o ∈ O, we can choose an equivalent built-in operator
b ∪ l.

We now show by construction that it is possible to choose
a field calculus expression that generates an equivalent set of
fields and operator instances. The main challenge here is that
the same Proto field can be consumed by multiple operator in-
stances, while field calculus uses each subexpression precisely
once. The solution is to use functions to bind each output
value to a function variable, where it can be freely referenced
as many times as needed (similar to how a “let” expression is
constructed in lambda calculus).

As in Theorem 1, given only pointwise operator instance
it is always possible to construct a total order over operators,
such that the input fields of oi are outputs only of operators oj
with j < i. For the ith operator instance in such a sequence,
let pk be the sorted index of the operator instance producing
the kth input field (e.g., if the third input is the field output
by o5, then p3 = 5).

In the case where oi maps to a built-in operator in b, we
define the following function:

(def f_i (v_1 v_2 ... v_{i− 1})
(f_{i+ 1} v_1 v_2 ... v_{i− 1}

(b_i v_p1 v_p2 ...)))

where bi is the built-in operator corresponding to oi. Other-
wise, it must be the case that oi maps to a literal li in l, in
which case we define f_i as:

(def f_i (v_1 v_2 ... v_{i− 1})
(f_{i+ 1} v_1 v_2 ... v_{i− 1} li))

In other words, we construct a function that “wraps” each
operator instance with the set of values created by all prior
operator instances, and passes these along with the output it
generates to the next operator instance in sequence.

Now let us consider the base cases: the first and last
functions in this sequence. The first function is in essence
no different from the ith function, but for the fact that its
set of pre-existing variables happens to be empty, and it is
guaranteed to be a literal or a function with no input:

(def f_1 () (f_2 (bi)))
(def f_1 () (f_2 li))

The last function, on the other hand, will be used to establish
the return value. Since we assume no function calls, there is
precisely one return value pair r = (m, fj). For a program
with n operator instances, we thus define f_{n+ 1} as:

(def f_{n+ 1} (v_1 v_2 ... v_n) v_j)

thereby returning the jth field.
Finally, we complete our field calculus program with an

expression that invokes the first function in the chain, making
the complete field calculus program:

(def f_1 () ...
(def f_2 (v_1) ...
...
(def f_{n+ 1} (v_1 v_2 ...
(f_1)

We thus have a field calculus program that invokes a set
of operators equivalent to O producing fields equivalent to F
and returning a value equivalent to the single pair in R. Since
we assume no dependent manifolds or function calls, there is
precisely one manifold in M , and since we have used only
literals and pointwise operators in our field calculus there are
guaranteed to be no domain changes, thus giving the same
manifold there as well. Likewise, with no function definitions
D is empty.

Thus, we have shown it is possible to construct a field
calculus expression that has an equivalence mapping to every
element of a well-defined Proto program (M,F,O,R,D)
composed only of pointwise operator instances and no depen-
dent manifolds or function calls. By Theorem 1, we know that
the entire program is finitely approximable if each operator
instance is finitely approximable. Thus, this Proto program is
finitely approximated by the field calculus expression.

Lemma 6. Any well-defined Proto program (M,F,O,R,D)
composed only of finitely approximable pointwise operator
instances and no restrict operator instances or dependent
manifolds can be approximated using field calculus.

Proof. To the construction in Lemma 5, we now introduce
function definitions and calls. This changes Proto programs by
adding a set of function definitions D, operator instances that
invoke these functions, and one additional root manifold in M
and return value in R for each function. Note that since we are
still not yet considering restrict operator instances, this
proof only covers functions with no references to externally
defined variables.

Let us start with the function definitions. Where previously
we sorted all operator instances together, we will now partition
them into sets, one for the base expression as before, plus one
set for the operator instances associated with each function
(i.e., those whose outputs are contained within its root man-
ifold). We then impose an arbitrary total order on the set of
function definitions in D.

We may then apply the same construction of “wrapping”
functions for operator instances to each of these sets, with the
following modifications:

• We name the function associated with the ith definition as
function_i. Operator instances for this function will
be constructed just as for built-in operators, except that
function_i will be used instead of a built-in operator
from b.

• The jth operator instance for the ith function will be
wrapped with a function named function_i_j, and
invoke a function function_i_{j + 1}.

• The variable sets for operator instances wrapper functions
will start with the parameters p_1, p_2, etc. The first
wrapper will not be directly invoked, but will be called
by a definition of the function:
(def function_i (p_1 p_2 ... p_n)

(function_i_1 p_1 p_2 ... p_n))

Just as the construction in Lemma 5 created a finite approxi-
mation of a Proto program “base expression,” this construction
adds an finite approximation for each function definition and
appropriate calls to said functions. The field calculus entry
point and final return call for each function correspond to its
equivalent entries in M and R, and the parameter associations
in its definition are equivalent to the parameters passed in the
entry point definition of function_i.

Note that not all function definitions are necessarily in-
voked; in such cases, the equivalent field calculus construction
will still create the same functions and invoke or not invoke
them in the same pattern. Note also that the equivalence does
not necessarily mean that the program can be successfully
evaluated. For example, it is possible to create a Proto program
containing an infinite recursion. In most (perhaps all) such
cases, the field calculus construction will also fail to evaluate,
though details may vary because of the total order imposed
in constructing the field calculus program. Regardless, finite
approximability holds because it is trivially satisfied for any
condition where the Proto program cannot be evaluated.

Lemma 7. Any well-defined Proto program (M,F,O,R,D)
composed only of finitely approximable pointwise and
restrict operator instances can be approximated using
field calculus.

Proof. To the construction in Lemma 6, we now introduce
restrict operator instances and dependent manifolds.

In Proto, restrict operator instances and dependent
manifolds are generated in only three ways:

• When a function references an externally defined vari-
able, this reference passes through a restrict operator
instance.

• As part of a two-way branch template equivalent to
the field calculus if construct, shown in Figure 7.
This template creates two dependent manifolds selected
complementarily from a test field, and inserts restrict
operators for all references to externally defined fields.

• For the initialization of a feedback loop, following the
template in Figure 6; this will be addressed in the next
proof, when feedback is introduced.

mux

�������
������	

��������	
�

�	����

�������	��
�������

�������
������	

��������	
�

not
�
�����

�

Fig. 7. Proto dependent manifold constructs are based on either the delay
template in Figure 6 or the two-way branch template shown above.

We will deal with each of the first two by extending our field
calculus construction, as before, while deferring the third to
our next proof.

With regards to external references: in Proto, these are
generated by lexical nesting of function declarations, which
then compiles into the observed restriction relations. Field
calculus supports no such notion, since the only variable
declarations are in “top level” functions. To implement such
references in field calculus, we will transform lexical scope
into additional function parameters. For any function_i
containing a restrict operator implementing an external
reference, that value will be transformed into an additional pa-
rameter of the function. Any operator invoking function_i
either is in the function that is the source of the external
variable, in which case that field is immediately available
to supply to the function call, or else it must also have the
new parameter added to its definition. Any such chain of
definitions and invocations must ultimately reach the function
where the external variable is defined, because the original
reference was lexically scoped and Proto does not allow first-
class functions that might be invoked outside of the scope of
their definition. The functionality of the restrict operator
itself is then implemented in field calculus by its domain
alignment semantics when the new parameter is referenced.

To implement the branching template, we segregate the set
of operator instances in the partial programs for each branch,
and treat each as through it were an additional function. The
remainder of the construct is then treated as a single operator
instance for the purposes of ordering and implemented with
the following field calculus function:

(def f_i (v_1 v_2 ... v_{i− 1})
(f_{i+ 1} v_1 v_2 ... v_{i− 1}

(if v_ test
(function_ true v_pt1 v_pt2 ...)

(function_ false v_pf1 v_pf2 ...))))

where v_test is the test field, and the two functions invoked
are the newly separated branch functions, with parameters for
all of their references to additional variables. The alignment
semantics of the field calculus if construct are equivalent
to the construction of the two dependent manifolds, and
evaluation of the branch functions is equivalent to evaluation
within the submanifolds.

Restatement of Theorem 2. Any well-defined neighborhood-
independent Proto program P = (M,F,O,R,D) composed
only of finitely approximable operator instances can be
approximated using field calculus.

Proof. To the constructions in Lemma 7, we now add the
final two special Proto operators: delay and nbr. This is
a relatively simple extension, given that field calculus rep
and nbr operators are modeled off of their Proto equivalents.

As noted previously in Theorem 1, the delay operator is
only introduced in Proto feedback loop constructs following
the template shown in Figure 6. For single feedback variables,
an equivalent construct can be implemented in field calculus
using the rep construct, segmenting the initialization and
update partial programs into new programs as with if in the
prior Lemma:

(def f_i (v_1 v_2 ... v_{i− 1})
(f_{i+ 1} v_1 v_2 ... v_{i− 1}

(rep var
(function_ init v_pt1 v_pt2 ...)
(function_ update

var v_pf1 v_pf2 ...))))

In the case of parallel constructions in Proto, this construct is
exactly the same, except that var will be a tuple constructed
from the fields of the parallel constructs, and use of those fields
will be implemented with built-in operators b referencing
elements of the tuple.

As for the nbr operator: because the nbr operator is
used equivalently in both Proto and field calculus, it may
be implemented just though it were a pointwise operator in
Lemma 5.

With these additional constructions, every possible arrange-
ment of fields and operator instances in a well-defined Proto
program is covered by an equivalent construction in field
calculus. By the nature of these constructions, they also create
equivalent manifolds, function definitions, and return values.

Finally, we can choose along with the decreasing series of
εi-approximations a decreasing series of neighborhood radii ri
and decreasing time steps ∆ti, such that the value of ri/∆ti
is always greater than any finite positive rate of information
propagation c used for evaluating the Proto program. We
cannot ensure that it is equal to c, because of the loose bounds
of average rate of information movement in a discrete network:
biased distributions of devices can always cause different
portions of the network to have different effective rates of

information flow. However, if we shrink ri more slowly than
we shrink εi, then we can reduce the possible variation by
reducing the possible shortest step that information can take
in a single round: rather than being bounded below by ri

2∆ti
,

the effective rate of information movement will be bounded
below by ri(1−εi)

∆ti
, which converges with the upper bound to

give a converging rate of information flow.
Because we assume the Proto program is neighborhood

independent, the choice of ri and ∆ti will not affect conver-
gence of the series of εi-approximations, and thus, because
every operator is assumed to be finitely-approximable, we
have by Theorem 1 that our extended field calculus construc-
tion can finitely approximate any well-defined neighborhood-
independent Proto program composed of finitely approximable
operator instances.

APPENDIX C
PROOF OF SPACE-TIME UNIVERSALITY

Restatement of Theorem 3 (Space-Time Universality).
Field calculus is space-time universal.

Proof. A definition of space-time universality has been pro-
posed in [8], along with a small set of operators for achieving
it. In particular, [8] proposes the following set of operators
and sketches a proof that they can composed functionally to
implement any finitely-approximable causal computation:
• nd returns a field mapping each device to a field of

vectors giving its displacement in space and time from
each neighbor.

• g returns a field giving the metric tensor of space at each
device.

• nv collects state from neighbors, equivalent to the nbr
operator in field calculus and Proto.

• nr takes a Boolean field and a field whose value at each
device is a field over neighbors and restricts the domain
of the neighbor fields to only those devices marked where
the Boolean field is true.9

• nm takes a field whose value at each device is a field
over neighbors and computes for each device the infimum
(generalized minimum) of the neighbor values.

• P is a Turing-universal set of pointwise operators
Also in [8], Proto is shown to be able to implement all

of these operators except for g (although it turns out that
implementing nr is somewhat difficult).10 To prove that field-
calculus is space-time universal, we thus need to show the
following two things: 1) field calculus can implement g, 2) the
subset of Proto that we proved is finitely approximated by field
calculus in Theorem 2 covers the remainder of the operators.
If both of these hold, then any space-time computation that is

9This is similar, but not identical to a restrict operator, which also acts
on the domain of the field of neighborhood fields.

10Note that there is no reason in principle that Proto could not be extended
to include measurement of the metric tensor, although to date this has not
been done. It is also possible that the metric tensor might be computable
from the other operators, but this has not been proven one way or another.

implemented by this set of space-time universal operators can
be finitely approximated by a field calculus implementation of
the Proto implementation of said computation, extended with
implementation of g in field calculus.

The first is trivial: measurement of the metric tensor g is
an operation that can potentially be implemented via local
observation from a device, so it can be included in the set of
built-in operators b in field calculus, just like nbr-range.

For the second, let us consider the Proto implementation
of each of the other operators. The nv , operator is equivalent
to Proto’s nbr operator, which is already explicitly covered
in Theorem 2. The nd, and nm operators are equivalent to
Proto’s nbr-vec and min-hood operators, respectively:
these are finitely-approximable operations, and implemented
by built-in operators in field calculus. The nr operation is
implemented using a construct based on discrete-value equality
tests, and is also finitely approximable. Finally, we can choose
the operations of a Turing machine as a finitely approximable
Turing-universal set of operators (though of course in practice
one would generally use much more compact implementations
based on the rich set of operators allowed in b).

This leaves only the question of neighborhood indepen-
dence. With regards to the operators, P and g are neighbor-
hood independent because they are specified pointwise. The
remainder (nd, nv , nr, and nm) interact with an unspecified
neighborhood. Thus, given the universality of the operators, for
any choice of discretization there is an equivalent computation
that can be implemented using these operators. Thus we satisfy
all of the criteria of Theorem 2, which, combined with the
implementation of g as a built-in operator in field calculus,
implies that field calculus is space-time universal.

