Self-Timed Patterning

Micah Z. Brodsky
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA
Email: micahbro@csail.mit.edu

Abstract—Timing and convergence constitute a serious and
under-appreciated complication in developmental patterning. I
demonstrate an algorithm design methodology that eliminates
timing problems across a broad family of spatial patterning
mechanisms, with discrete gradients and growing points as
examples. Values are exchanged between modules using partially
informative representations, which monotonically increase in
precision until a definite answer is represented. As a result, the
convergence of local outputs can be detected locally. Irreversible,
disruptive operations such as cell division can then be orches-
trated using inputs known to be stable and valid. I term this
approach self-timed patterning.

I. INTRODUCTION

In centralized systems, timing is often taken for granted.
Clocks are global and consistent. Tasks block until they are
completed. Combining tasks into sequences is straightforward,
implicit in every imperative language.

In spatially distributed systems, however, time is slippery.
Time is relative, due to communication delay [1]. Clocks
are decentralized, conflicting, and often drifting. Inputs may
be available in different places at different times. Tasks,
distributed spatially, complete in some places sooner than in
others. The speed of computation may not even be consistent.

In spatial computing, and in particular developmental pat-
terning, the problem of time is ever-present. The complications
due to timing are often sidestepped through a mixture of
ad-hoc, optimistic assumptions about the timing properties
of the substrate or by pursuing problems that naturally lend
themselves to asymptotic convergence rather than particular
results at definite times.

For example, the Growing Points Language [2] assumes that
spatial gradients (e.g. Bellman-Ford distances) may be trusted
once they are locally detectable. This is potentially race-prone
if multiple sources appearing in different places must be con-
sidered, because their influences may arrive at different times,
but even in the common case of a single advancing source,
it assumes that spatial distance and propagation time are
comparable, or that propagation time is completely negligible.
Temporal irregularities such as a slow patch of cells will lead
to transient errors in magnitude and direction as the gradient
navigates around the irregularity. Even though the gradient
eventually corrects itself, because it is hard for a growing point
to correct a path already traversed, such transients may lead
to permanent irregularities.

The Origami Shape Language [3], on the other hand,
has many features that are naturally “feed-forward”, in that

transients will ripple through the calculations and eventually
be replaced by the final, steady-state values, because the
computation has no persistent memory in which to retain
transient errors. In time, the outputs will be correct. However,
the language does include some operations that require con-
vergence to be achieved beforehand, such as the repurposing
of reusable communication channels, and so at a certain point
it must stop waiting and accept the answers. The amount of
time to delay is calibrated empirically, based on propagation
time measurements during start-up using test gradients. The
wait is configured to be an overestimate based on the longest
possible propagation distance. So long as timing is uniform
and consistent, this is reasonable, albeit wasteful. However, it
will fare poorly if timing properties vary unpredictably or if
the domain size can enlarge.

When such ad-hoc assumptions are unjustified, and when
the structure of the computation does not naturally forget
transient perturbations, the problem of timing can no longer be
ignored. In particular, when irreversible or difficult to reverse
actions must be taken on the basis of the results of spatial
computations, it is imperative that the results be accurate and
stable beforehand. This sort of difficulty arises particularly
often in developmental patterning, where disruptive and de-
structive primitives such as cell division, death, and topological
rearrangement must be choreographed along complex, dy-
namically constructed spatial patterns. Moreover, development
time is often precious, and so hard-coding adequately conser-
vative convergence delays may be completely unreasonable.
This problem has been acknowledged only rarely (e.g. [4])
and investigated even less.

To illustrate the magnitude of the problem with a natural
example, consider the early development of the chick embryo.
At the beginning of incubation, it consists of a mass of largely
undifferentiated cells. Within about 24 hours, it has finished
gastrulation, begun its neural folds, and assembled its first
somite and the beginnings of a notochord [5]. Yet, given the
embryo’s size on the order of a few millimeters, the diffusion
time to establish a typical morphogen field is expected to be
on the order of an hour, and several hours more to reach a
close approximation of steady state [6, ch. 3]. With multiple,
sequential developmental steps crammed into such a tiny span,
there’s little time to waste. Furthermore, timing skew is acutely
evident, with the head of the embryo maturing far in advance
of the tail.

One can imagine two general approaches to the problem of



timing in spatial patterning. One might design the distributed
computations such that correct convergence can be detected
by inspecting the output provided. This can be nontrivial,
because the verification process must be significantly simpler
and more temporally tractable than the original problem being
solved or no progress has been made. Once correct values have
been identified, they may be checkpointed and passed onto
disruptive and irreversible actuation processes. This might be
compared loosely with the manner in which common bilaterian
animal body plans such as in drosophila develop, with succes-
sive cascades of gradients and compartment patterns preceding
large-scale morphogenesis. Alternatively, one could design
the overall algorithm such that even though individual steps
are effectively irreversible, the large-scale dynamics follow
a self-stabilizing trajectory, and so excursions due to acting
on erroneous transient values will eventually die out like any
other perturbation. This is perhaps reminiscent of the way such
exemplary regenerating animals as the hydra are thought to
maintain their body structure.

In this paper I demonstrate a simple methodology for de-
signing spatial patterning algorithms whose local completion
status is implicitly indicated by the output values themselves.
Inspired by the self-timing methodology in clockless digital
circuit design, I term this technique self-timed patterning. The
key insight is the use of partially informative data representa-
tions, which monotonically increase in precision until the true
answer is indicated. I show how they can be used to pattern
disruptive, irreversible transformations both quickly and safely,
completely robust to timing pathologies.

II. SELF-TIMING

When a system is decomposed into multiple, simultaneously
executing modules, the modules must communicate in order to
coordinate their behaviors, and their communication protocols
must confront the problem of timing. A self-timed system,
loosely speaking, is a system whose modules communicate
through a type of asynchronous protocol such that no as-
sumptions need to be made are made about the latencies of
the modules themselves [7]. Self-timing naturally lends itself
to race-free designs, and additional steps are often necessary
to allow data races. The key insight is that that data signals
must indicate, explicitly or implicitly, when they are ready
for use, and once they have done so must remain fixed until
acknowledged. General self-timed circuits must also treat the
acknowledgement signals with similar care in order that circuit
elements may be reused for multiple waves of data, but for
our purposes, focusing on single-use developmental cascades,
we can usually omit the acknowledgement pathways entirely.

The simplest approach to self-timed signaling is to bundle
the data signals with a boolean completion signal that is
asserted once the data outputs can be trusted. This is known
as “bundled data” and it is used successfully, although care
must be taken to avoid timing skew between the arrival
of the data and completion signals. However, an alternative
scheme, known as “dual rail”, turns out to be more natural
and insightful for our purposes. In classic dual rail signaling,

two separate signals are provided for each bit, one indicating
whether it is true and one indicating whether it is false.
This scheme can articulate four possible status values per bit:
true, false, unknown, and contradiction (generally unused). For
multi-bit data values, the individual bits may become valid at
different times, but once a bit becomes valid it will not become
invalid (at least until the next acknowledgement cycle).

Many variations on dual-rail-style self-timed signaling are
possible, but they share a common insight: glitch-free partial
information about the answer accumulates monotonically over
time, beginning with complete uncertainty and ending with
an unambiguously specified value. This is the concept of
monotonic partial information championed by Propagators [8],
[9], and single-use self-timed systems can be represented most
clearly as propagator networks.

When data values are not limited to raw digital signals
but can include analog values or compound data structures,
more complex partial information structures may be used,
such as interval arithmetic. Modules need not wait until
their inputs have reached complete convergence, either; they
may compute partially informative answers based on partial
input information. When an actuator determines its inputs
are sufficiently precise, it may act on them even before final
convergence. (If, however, such actuation may disrupt the
upstream computations by triggering non-monotonic changes
that may contradict the existing outputs, then the inputs must
be checkpointed first and the computation disabled; this is
discussed in Section 1V-B.)

III. SiMPLE COMPUTATIONS

The simplest sort of self-timed computations are those that
depend only on local information, for example, taking local
averages or detecting local maxima of a field. Such compu-
tations can simply wait for all their inputs to be available,
locally and from immediate neighbors, and then produce an
output. If a partial set of inputs or partially informative inputs
are available, a partial output may also be computed early, if
desired. For example, if the number of neighbors expressing
a signal is to be counted, and two have responded with
the signal, three without, while one response remains to be
received, the output count can be expressed as the interval
[2,3]. When the final response is received, the output is
narrowed to an exact answer. On the other hand, sometimes
partial inputs are sufficient to produce a complete output. For
example, the boolean OR of binary inputs is known to be true
as soon as the first positive response is received.

Implicit in this formulation is that cells must be able to
enumerate their set of neighbors or otherwise determine when
a complete set of responses has been received. This is natural
for cells in physical contact with one another but is a slight
departure from the classical amorphous computing model [10].

A. Gradients

Most spatial patterning algorithms are not so simple, relying
on long-range propagation of information from cell to cell.
However, the same principle can be applied, since simple



Fig. 1.  Four iterations in the computation of a self-timed gradient, with
source cell at the left (green) and one uncertain or stalled cell (red).

functions are the building blocks used to compute the outputs
that are shared with cells’ neighbors. To illustrate, let us
construct a self-timed version of the Bellman-Ford hop count
gradient algorithm, one of the most useful algorithms in
discrete spatial patterning.

Ordinary Bellman-Ford works using a single communi-
cation channel, where each cell broadcasts its best known
distance to a source, or zero if it itself is a source.
Each cell iteratively replaces its best known distance with
Mily,eneighbors distance(n) + 1. Eventually, distances con-
verge to steady-state values, but there is no local indicator of
convergence.

To reformulate this as a self-timed computation, we must
properly express what is known in the form of monotonic
partial information. The best known distance is just that—an
upper bound. If we represent distance as an interval, we can
include a lower bound as well. With no information, a cell
must report that its distance is in the interval [0, co]. At each
local iteration, sources broadcast zero for their distance, while
non-sources compute min, cyeighbors distance(n)+[1, 1] and
broadcast that. In interval arithmetic, the minimum value of a
set of intervals is an interval spanning from the minimum over
the lower bounds to the minimum over the upper bounds. As
cells discover paths to sources, the interval upper bound always
falls. As cells learn that successive rings of neighbors are not
sources, the interval lower bound steadily rises. The interval
thus brackets the actual distance between progressively nar-
rowing bounds. When the two bounds meet, local convergence
has been achieved. The time required relative to Bellman-Ford
is essentially unchanged.

The same gradient algorithm works whether there is one
source or many. If the input to the algorithm—the map
of sources—is determined programmatically, it too must be

represented as monotonic partial information. In this case,
each cell may be source, a non-source, or undetermined.
An undetermined cell always reports the lower bound of its
distance as zero and hence will be surrounded by a “well”
of cells with uncertain distance intervals, waiting to determine
whether they’re sitting right near a source (see Figure 1). Once
the cell’s source status is finally determined, the uncertainty
disappears.

Cascading gradients and simple local computations, we have
a fairly powerful patterning toolkit along the lines of [11], only
now completely self-timed.

B. Growing Points

Another useful patterning tool is growing points [2]. Grow-
ing points are virtual excitations that move about a substrate
according to programmable tropisms, tracing out paths. With
self-timed gradients to direct their tropisms, we can construct
self-timed growing points fairly easily, though some limita-
tions will arise, affecting the tropisms that can be practically
implemented.

The output of a growing points computation is a field of
“secretions” left behind in the growing points’ wake. For
a complete self-timed formulation, we must know not only
where the secretions are, but where they are not. Thus,
we must be able to determine both the paths traversed by
the growing points and the places that, at the conclusion
of propagation, they will not have traversed. The presence
of one or another determination indicates that, locally, the
computation has completed.

The forward propagation of a growing point is straightfor-
ward. The cell hosting the growing tip waits until sufficient
tropism-relevant information has been posted by all of its
neighbors and then nominates the most favorable among them
as a successor. Upon noticing the nomination, the designated
successor changes its status from “unknown” to “in path” and
performs its own nomination process. Secretions are then a
local function computed on the path status.

In order to compute the complete secretion field, cells that
will never be in the path must ultimately know to change their
status from “unknown” to “not in path”. The constraints used
to generate this information necessarily relate to the global be-
havior of the growing point (and of all other indistinguishable
growing points from the same family). For example, if the
path has a definite termination condition and it is known that
there will be only one trace of that family, then upon reaching
the termination condition the growing point can broadcast
a globally propagated completion message, signaling to all
remaining “unknown” cells they are actually “not in path”.

With more detailed information about the tropism, however,
more prompt constraints can be used. For example, a lone,
orthotropic growing point climbing a gradient can broadcast
each level of the gradient passed; all “unknown” cells below
that gradient level can conclude they are not in the path. More
locally, any growing point family known not to self-intersect
can back-propagate not-in-path status; any “unknown” cell
whose preferred successor is in path must not be in path.



Additionally, any cell whose preferred successor is not in path
must also be not in path. Together, these naturally cover many
cases, with the exception of diatropism (propagation parallel
to the contours of a gradient), where back-propagation must
be bootstrapped e.g. by emitting perpendicular orthotropic
growing points to turn off neighboring cells.

As a consequence of the fact that secretions are a function
of partial information not complete until the growing point
has exited the area, it is also generally not possible to use
“auto-tropism”, sensitivity to a gradient emitted by a trace’s
own secretions. Thus, other techniques must be used for
purposes such as inertia and preventing diatropic traces from
doubling back on themselves. Restricting successors to be non-
neighbors of one’s predecessor or favoring candidates farthest
away from the predecessor are useful alternatives [12].

1V. PUTTING THE PIECES TOGETHER
A. Composition

The composition of two self-timed computations is naturally
another self-timed computation. In the simplest case, the
downstream function merely waits for its inputs to arrive
before generating an output; more generally, monotonic partial
information propagates from one end to the other. As a result,
local computations, gradients, growing points, and other self-
timed computations can be cascaded seamlessly.

For example, a local computation based on the orientation
of per-cell polarization vectors identifies which cells are on
the left edge of the substrate and which are on the right
(Figure 2a). Left edge cells are then used as the source for
a left gradient; right edge cells are used as the source for a
right gradient. The difference in value of the two gradients
is used to divide the substrate into two compartments (2b).
Within each compartment, similar computations can be nested
recursively (2c). Note that this can converge even faster than
the traditional feed-forward equivalent, because the gradient
lower bounds allow compartment determination at the far ends
well before a signal can arrive from the opposite end’s source.

Since self-timed computations must know which neighbors
to expect responses from, nested computations must be made
aware of which cells belong to the same compartment and
hence should be expected to participate. Like the input ar-
guments, this information must be provided in a self-timed
fashion.

B. Actuation and Checkpointing

Eventually, however, it comes time to act based upon the
patterns established. Some operations, e.g. cell differentiation,
are merely irreversible. These operations may be performed
locally as soon as the necessary inputs are locally available.

Other operations, such as cell division and motility, are
disruptive, causing non-monotonic changes to the properties
and neighborhoods of cells. These must be treated with greater
care, as they may cause the very inputs on which they depend
to change, changing their own behavior and giving rise to
race conditions in neighboring cells. To accommodate these

in a self-timed computation, a checkpointing step must be
employed.

Checkpointing is a process that serves to hand control from
one stage of a patterning cascade to the next, where the stages
would interfere if they ever overlapped in time. Checkpointing
can be local to a cell or coordinated across a wider region,
depending on the needs of the computation. Checkpointing
entails halting the previous stage of computation (or at least
preventing it from having further side effects), since subse-
quent results may no longer be trusted, and saving its outputs
for future reference. This includes saving intermediate values
shared with neighboring cells, because neighbors of a cell
performing a checkpoint may not yet have completed the
computation preceding the checkpoint and will need access
to all their neighbors’ broadcasts. Once prior computations
have been halted and their outputs recorded, locally or over a
sufficiently wide radius, the next stage of computation may be
launched—e.g. a disruptive actuation process. Through check-
pointing, disruptive actuation becomes a form of irreversible
actuation.

For example, in Figure 2d, the cells in the third compartment
are programmed to change their adhesive properties to reduce
their affinity for the remaining cells and to undergo three
rounds of oriented division. This leads to the formation of
a crossbar. In the absence of checkpointing, the resulting
rearrangement and increase in cell number leads to changes
in gradient values and hence changes in the boundaries of
the compartment, leading cells to reassess their fates. Some
cells that have already divided will conclude that they do
not belong in the crossbar after all, while other cells may
be freshly recruited, dividing and changing their adhesive
properties. The results of such churn in this example are shown
in Figure 2e, where values were allowed to converge but
checkpointing was disabled; the extent to which this matters
varies, but here it yields a much sloppier result. Without an
indication of a stage’s completion such as provided by self-
timing, checkpointing is impossible, on top of the hazard of
actuation based on premature results.

When disruptive effects are merely local, checkpointing and
actuation can be local as well. Neighboring cells may still be
continuing to work on the prerequisite computations, relying
on checkpointed copies of the cell’s broadcasts. On the other
hand, when the disruptive effects are non-local, for example,
by exerting forces sufficient to cause neighboring cells to
rearrange, a barrier computation may be needed to ensure that
all cells within the radius of potential disruption have produced
and checkpointed their outputs before the disruptive stage is
allowed to begin. In the example above, a short-range barrier
would probably be warranted (although in practice omitting it
produces acceptable results). After actuation, barriers may be
used again to verify completion of the disruptive steps, and
then another wave of patterning can be initiated.

If only nearest neighbors are disrupted, the barrier simply
waits for all neighboring cells to indicate completion. More
generally, an arbitrarily ranged barrier can be constructed by
the Bellman-Ford lower bound calculation: completed values



Fig. 2.

(@

2a-2d: Steps in patterning a crossbar. 2e: Crossbar patterned without checkpointing inputs prior to cell division and adhesion changes. A custom,

energy-minimization mechanical simulator modeling cells as soap bubbles is used to determine mechanical conformation and cell rearrangement [13].

are treated as non-sources, and incomplete values are treated as
unknown. As nearby input values converge, the distance lower
bound rises monotonically. When the distance to a source is
known to be greater than the desired range, all cells within
that range must have completed. The time required for such a
barrier computation is proportional to its range.

When the effects of actuation are predictable and consistent,
one can reasonably “prepattern” and checkpoint a map of
actuations to be performed, then perform them—patterning by
dead reckoning. One can expect to achieve a particular final
configuration, albeit with some difficulty in specification given
that the actuation map itself may be distorted by actuation. If,
however, instability, noise, variation in cell layout, and other
uncertainties lead to the actuation being not only disruptive but
also unpredictable, such naive prepatterning can make only
small changes before accumulated errors make a mess of both
the structure and the prepattern. This sort of difficulty often
arises, for example, when cells rearrange under stress or after
division. Note how in Figure 2d the border of the crossbar is
quite irregular.

In the presence of such unpredictability, a single round of
patterning followed by actuation may be insufficient. Feedback
measurements must then be used to correct the system towards
its goal. A second set of barriers is necessary to verify the com-
pletion of the actuation, and then a round of re-measurement
and corrective patterning can begin, driving a round of cor-
rective actuation. This process may be repeated several times,
if necessary. Unlike traditional closed-loop feedback, where
error measurement and actuation take place simultaneously,
self-timed feedback control must cycle through discrete stages
(potentially in the form of traveling oscillations when timing
skew is present).

V. SELF-TIMED VS. SELF-CORRECTING

In the preceding, we have been exploring the technique
of prepatterning—constructing a spatial template and then
performing irreversible and disruptive operations based on that
pattern, in order to achieve some desired product. Self-timed
patterning has played a valuable role, facilitating aggressive
actuation that neither jumps the gun nor trips over itself by
destroying its own inputs. Multiple stages of prepatterning
and actuation can be cascaded, facilitated by the barrier
mechanism. Results can be used as soon as they are available,
with no need to wait for a conservative estimate of worst-case
convergence time. Self-timed patterning and partial informa-
tion thus improve the speed, robustness, and composability of
the patterning process, compared to mechanisms that rely on
pre-programmed delays or ad-hoc assumptions about timing.

In prepatterning, the target pattern is not a stationary point
of the control algorithm. Indeed, careful steps must be taken
to prevent the control algorithm from recursing on its outputs.
However, prepatterning runs into difficulties when faced with
unpredictable operations. Unpredictability demands closed-
loop feedback to correct errors, and such feedback is most
easily phrased in terms of recursion seeking a steady state.
Furthermore, in the face of asynchronous damage (e.g. unex-
pected rearrangement that may occur during a patterning stage
rather than merely during disruptive actuation), self-timing
becomes only approximate; answers may be forced to change
non-monotonically or to remain stale. Ultimately, the entire
notion of prepatterning breaks down if serious damage can
occur at any time, independent of the state of the computation.
It is possible in this case to create self-timed, self-correcting
loops, but it is not obvious whether self-timing really aids in
solving the problem anymore.

In separate work, I have been investigating the opposite
solution to the timing problem, self-correcting patterning,



particularly as applied to traction-driven cell rearrangement.
In this approach, cells apply forces to their neighbors in order
to incrementally rearrange themselves towards the desired
pattern. A self-correcting template defines the layout of the
pattern within the substrate [14], while each region of the
pattern thus designated runs a closed-loop control algorithm
to enforce desired local features. The results are similarly
robust to timing pathologies, but in many other ways they
are dual to self-timed prepatterning: convergence is slow
and indeterminate; completion is difficult to ascertain, and
it is not obvious how to compose sequential stages. Even if
convergence can be reliably identified, sequential composition
is likely to interfere with the self-corrective ability of earlier
stages. On the other hand, unpredictability is assumed, not
avoided, and damage naturally heals.

VI. CONCLUSION

Self-timed prepatterning and closed-loop self-correction
represent two extremes, both useful, both with some precedent
in nature. Prepatterning is fast and composable; self-correction
is robust and regenerative. I have demonstrated how the mono-
tonic propagation of partial information facilitates conver-
gence detection and checkpointing, crucial for implementing
prepatterning. On the other hand, unpredictable operations,
noise, and asynchronous damage degrade prepatterning, to the
point that it can be come unviable. Bridging the gap between
prepatterning and self-correction remains the goal of ongoing
work.

ACKNOWLEDGMENT

The author would like to thank Gerald Jay Sussman, who
supervised this work, and Alexey Radul, for many valuable
discussions on the subject of monotonic partial information
and propagators, along with the workshop organizers and
the anonymous reviewers. This material is based on work
supported in part by the National Science Foundation under
Grant No. 1116294 and in part by a grant from Google.

REFERENCES

[1] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[2] D. Coore, “Botanical computing: A developmental approach to gen-
erating inter connect topologies on an amorphous computer,” Ph.D.
dissertation, MIT, 1999.

[3] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, MIT, 2001.

[4] R. Doursat, “Programmable architectures that are complex and self-
organized: from morphogenesis to engineering,” in Artificial Life XI:
Proceedings of the Eleventh International Conference on the Simulation
and Synthesis of Living Systems, S. Bullock, J. Noble, R. Watson,
and M. A. Bedau, Eds. MIT Press, Cambridge, MA, 2008, pp. 181-
188. [Online]. Available: http://www.alifexi.org/papers/ALIFExi_pp181-

188.pdf
[5] V. Hamburger and H. L. Hamilton, “A series of normal
stages in the development of the chick embryo,” Journal of

Morphology, vol. 88, no. 1, pp. 49-92, 1951. [Online]. Available:
http://dx.doi.org/10.1002/jmor. 1050880104

[6] J. M. W. Slack, From Egg to Embryo: Regional Specification in Early
Development (Developmental and Cell Biology Series). — Cambridge
University Press, 1991.

[7]

[8]
[9]
[10]

(1]

[12]

[13]

[14]

J. Sparsg and S. Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective, ser. European low-power initiative for electronic
system design. Springer, 2001.

G. J. Sussman and A. Radul, “The art of the propagator,” MIT CSAIL,
Tech. Rep. MIT-CSAIL-TR-2009-002, January 2009.

A. Radul, “Propagation networks: A flexible and expressive substrate
for computation,” Ph.D. dissertation, MIT, 2009.

H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. Knight,
R. Nagpal, E. Rauch, G. Sussman, and R. Weiss, “Amorphous comput-
ing,” MIT, Tech. Rep. AIM-1665, 1999.

R. Doursat, “The growing canvas of biological development: Multiscale
pattern generation on an expanding lattice of gene regulatory networks,”
InterJournal: Complex Systems, vol. 1809, 2006.

A. S. Morgan and D. N. Coore, “Modeling intertia in an amorphous
computing medium,” in The 6th International Workshop on Spatial
Computing (SCW 2013), May 2013.

M. Brodsky, “Deformable amorphous computing with foam-inspired
surface mechanics,” 2014, MIT CSAIL Tech. Rep., in preparation.

, “Patterning with the rule of normal neighbors,” 2014, MIT CSAIL
Tech. Rep., in preparation.




