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Abstract—We have developed a self-organizing shape forma-
tion system based on locally interacting agents whose behaviors
are inspired by living cells. Given a predefined macroscopic
shape, genetic programming is used to find a finite field function
that defines the agents’ interactions. By following the gradient
of the cumulative field the agents form into a desired shape.
It has been seen that the self-organization process may form
two or more stable final configurations. In order to control the
outcome of the shape formation process, it is first necessary to
accurately predict the outcome of the dynamic simulation. This
paper describes an approach to predicting the final configurations
produced by our spatial self-organization system at an early
stage in the process. The approach calculates statistical moments
of the coordinates of the agents, and employs Support Vector
Machines to predict the final shape of the agent swarm based on
the moments and their time derivatives.

I. INTRODUCTION

Motivated by the ability of living cells to form into specific
shapes and structures, we have developed chemotaxis-inspired
software agents for self-organizing shape formation [1], [2].
The actions of the agents, which we call Morphogenetic Prim-
itives (MPs), are based on the behaviors exhibited by living
cells. Cells emit chemicals into the environment. Neighboring
cells detect the overall chemical concentration at their surfaces
and respond to the chemical stimulus by moving along the
chemical field’s gradients [3]. Similarly, in our system the
agents emit a virtual chemical, with its concentration defined
by an explicit mathematical expression. All agents start with an
initial random configuration and stochastically follow the gra-
dient of the cumulative concentration field. These chemotaxis-
based local interactions can direct the agents to self-organize
into user-specified shapes (Figure 1), a capability that could
be used to control a robotic swarm.

In some cases, we have observed that the agents do not
spatially self-organize into a unique shape, but instead form
two or more stable final configurations. It would be useful to
control the outcome of these divergent spatial self-organization
processes. This would allow us to guarantee that all of our MP
simulations would produce a single, desired shape. The first
step toward providing the guarantee involves predicting, at an
early stage of the evolution, which final shape will be formed.
This will then make it possible to apply changes that direct the
agent swarm towards the correct spatial configuration. Towards
this end, we have discovered features, based on statistical
moments and their derivatives of the agents’ positions, that

Fig. 1. MPs self-organizing into a pinwheel shape.

can be computed early in the swarm’s evolution and may be
used to predict the final shape of the self-organizing system.
Analyzing these features with a Support Vector Machine
[4], a supervised machine learning technique, classifies the
agent system, i.e. provides a prediction for the system’s final
configuration. Given a prediction that a swarm is aggregating
into an “undesired” configuration, it may be possible to perturb
the positions of the agents to redirect their shape evolution. We
aim to design biased perturbations that can change the path of
the evolution towards a “desired” shape.

II. RELATED WORK

Multi-agent approaches have been widely utilized to model
self-organizing systems [5], [6], [7]. Our current work focuses
on how to analyze and predict the outcome of such systems.
To date, a variety of methods have been used to analyze these
systems. These methods usually require identifying global
variables [8] and/or deriving quantitative properties of the
whole system [9]. Differential equations also are used to
capture state transitions of a system [10], [11]. These meth-
ods require identifying global variables and the relationships
between them, which can be obscure and quite complex.

Various analytical methods have been used to predict the
outcomes of self-organizing systems. Time series analysis has
been applied to predict self-organizing maps [12]. The analysis
aims to predict long-term trends, rather than predicting specific
final states. Hamann [13] presents a data-driven, iterative
process, based on a swarm urn model, Markov chains and
abductive reasoning, for determining, testing, and refining



hypotheses about how self-organizing decision-making system
operate. The process is able to identify influential feedback
loops and important subsections of the configuration space in
these types of systems.

Machine learning algorithms have also been applied to
self-organizing systems. An unsupervised learning algorithm
is utilized to construct a self-organizing map for informa-
tion retrieval [14]. Support Vector Machines have been used
together with self-organizing maps for shape-based image
retrieval [15].

Statistical moments are measures that quantify the shape
of distributions. In statistics, the method of moments is used
to estimate population parameters [16]. In our work, we gain
insights from the moments of the coordinates of moving agents
in a 2D arena and predict the final outcome of the system
based on the moment information.

III. SELF-ORGANIZING SHAPE FORMATION

Our previous work [2], [17] is inspired by developmental
biology [18] and morphogenesis [19] and defines software
agents with behaviors similar to living cells. This work builds
upon a chemotaxis-based cell aggregation simulation sys-
tem [20]. Morphogenesis is the process that develops the shape
or structure of an organism through cell shape change, move-
ment, attachment, growth and death. The motions induced
by chemotaxis (one of the mechanisms of morphogenesis)
may produce patterns or sorting of cells [21]. These natural
phenomena provide the proof-of-concept that chemotaxis-
based cell aggregation offers a promising approach to guiding
spatial self-organization processes.

A. Morphogenetic Primitives

In our system, virtual cells (agents) are initially placed
inside a 2D environment with a random uniform distribution,
and interact with each other via a chemotaxis paradigm.
This interaction produces movements that lead the agents to
aggregate into a single user-specified shape. We call these self-
organizing agents Morphogenetic Primitives (MPs).

Each MP is represented by a small disc and emits a
‘chemical’ into the environment within a fixed distance. Every
MP emits the identical local chemical field. An MP detects the
cumulative chemical field at eight receptors on its surface, and
calculates the field gradient from this input. MPs move in the
direction of the field gradient with a speed proportional to
the magnitude of the gradient. By employing these relatively
simple chemotaxis-inspired behaviors MPs are able to self-
organize into specific macroscopic shapes.

B. Local Interactions

While MPs’ fundamental interactions are based on a
chemotaxis-inspired paradigm, we do not limit their behav-
iors/properties to be physically realistic or completely con-
sistent with biology. Instead, developmental biology provides
a motivating starting point for MPs. As a way to customize
chemotaxis-inspired agents for shape formation, we alter the
chemical concentration fields around individual cells. Instead

of the chemical concentration dropping off as a function of
distance, e.g. 1/r, in our system we define the concentration
field with an explicit function of cell-cell distance d, one cell’s
angular location θ in another cell’s local coordinate system and
simulation time t.

Currently, there is no prescriptive way to specify a par-
ticular local field function that will direct MPs to form
a specific macroscopic shape, we therefore employ genetic
programming [22] to produce the mathematical expression
that explicitly specifies the field function. In order to meet
the substantial computational requirement imposed by our
evolutionary computing approach, we have implemented a
master-slave form of the distributed genetic programming pro-
cess [1]. The fitness measure associated with each individual
field function is based on the shape that emerges from the
chemical-field-driven aggregation simulation, and determines
which functions will be passed along to later generations. The
genetic process stops once an individual (i.e., a mathematical
expression) in the population produces the desired shape via a
chemotaxis simulation, or after a certain number of generations
have been produced and evaluated.

With this algorithm, we have successfully evolved local MP
chemical field functions for a number of simple shapes. These
results support the proposition that biological phenomena offer
paradigms for designing cellular primitives for self-organizing
shape formation. Additionally, evolutionary computing tech-
niques, specifically genetic programming, have been crucial
for discovering the detailed local interactions that lead to the
emergence of macroscopic shapes and structures.

However, given the MPs’ initial random configurations and
the stochastic nature of the self-organization process, the
outcomes of the simulations with a specific field function are
not always the same. We have found that the shape formation
simulations can generate bifurcating results. For some field
functions, if we run numerous simulations each starting with
a different random distribution of MPs, two sets of final
configurations will be formed. In most cases an equal number
of each configuration is formed, but in a few cases the ratio of
the numbers is not one. Since it would be useful to control the
outcomes of the self-organization process, we are developing
methods for predicting the final configuration of a bifurcating
simulation at an early stage of the process.

IV. MOMENT ANALYSIS

In order to predict the final outcome of a self-organizing
shape formation simulation, we first extract features that
capture the spatial distribution of the MPs. Moments provide
a quantitative way to describe a distribution. Since MPs are
defined as small discs, we use the center of each disc to
represent each MP’s location. We therefore can simplify the
collection of MP locations as a set of 2D points, and apply
moment analysis to this set over the duration of the MP
simulation.



A. Moment Calculation

We calculate the mean (first moment), variance (second
central moment), skewness (third central moment) and kurtosis
(fourth central moment) from the x and y coordinates of the
MP centers. We analyze the locations Xi of all points (MPs)
as a whole, rather than tracking the location and movement
of each individual point. The population size of the agents
is denoted as n, (n = 500), and the formulas of the four
moments M1 to M4 are given in Equations 1 to 4,
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1
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These statistical moments provide quantitative information
about the shape of histograms/distributions. When computed
for the x and y coordinates of the MPs, these moments capture
the symmetry and asymmetry of the spatial distribution of the
whole population. Since the x and y coordinates of the points
change over time, so do the four moments of the distribution of
the x and y values. The change of the moments as a function of
simulation time also provides insight into the dynamic nature
of a particular MP simulation.

We define the time derivative of the moments as the slope of
a linear interpolating function of consecutive moment values.
A series of values are obtained by sampling the simulation
time with a fixed interval τ . At each simulation time t, the
four moments Mi(t) (i = 1 to 4) of the overall distribution are
calculated. For each moment Mi, we consider an interval of
4τ which containing 5 samples, that is, Mi(t−2τ), Mi(t−τ),
Mi(t), Mi(t+ τ) and Mi(t+2τ). A straight line is fit to the
five points with a least squares method. For each moment Mi

at time t, we find the ki and bi that minimize Equation 5,

min

2∑
j=−2

|ki · (t+ jτ) + bi −Mi(t+ jτ)|2. (5)

The slope ki of the fitted line is then used as an approximation
of the time derivative of Mi(t)(i = 1 to 4).

By calculating the moments and their time derivatives for
both the x and y coordinates of the point set, at a given time t,
we obtain a 16-dimensional vector to represent the distribution,

[Mx1(t),My1(t),Mx2(t),My2(t),

Mx3(t),My3(t),Mx4(t),My4(t),

kx1(t), ky1(t), kx2(t), ky2(t),

kx3(t), ky3(t), kx4(t), ky4(t)] (6)

Our simulations consist of (n = 500) 2D points and therefore

have a configuration space of dimension 2n. By distilling an
MP spatial distribution down to this feature vector, we reduce
the dimensionality of the simulation from 1000 to 16.

Given the sensitivity of non-linear dynamical systems to
initial conditions [23], it makes it extremely difficult, if not
impossible, to predict the outcome of our complex, self-
organizing system from its initial, random spatial configura-
tion. We therefore attempt to predict the final spatial config-
uration at an early stage of the aggregation, usually before it
is visually evident what shape will emerge from the process.
We have found that applying our analysis at a time in the
simulation that is a small percentage of the total time needed
for the final aggregated shape to form (e.g. 5% to 10%)
produces acceptable results (81% to 91% accuracy).

B. Using Support Vector Machines

We consider prediction of the bifurcating outcomes as a
classification problem and utilize support vector machines
(SVMs) [4] to solve it. An SVM applies kernel methods to
labeled training data and transforms the data into a high dimen-
sional space. It computes the optimal separating hyperplane,
which has the largest margin between the two classes. Doing
so produces a trained SVM model with kernel and constraint
parameters. Classification is performed by mapping new data
into the same high dimensional space and determining on
which side of the hyperplane the new data lie.

Since our data are not linearly separable, we apply a
Radial Basis Function (RBF) kernel in our SVM. We use
LIBSVM [24] to perform SVM training and testing. To train
the SVM, we employ a leave-one-out cross-validation method.
We use grid search to find the best cost parameter C for the
SVM and γ parameter for the RBF kernel. Once the optimal C
and γ values were identified, accuracy statistics were gathered
from numerous simulations, each utilizing different random
initial conditions.

To obtain training data for a specific target shape, we run a
certain number (200) of MP simulations starting with differ-
ent, random spatial configurations. Each simulation consists of
a fixed number of time steps (10, 000 to 35, 000), depending
on how long it takes for the target shape to form. We save
the spatial distribution of the agents every 100 steps of the
simulation, that is, τ = 100. Each simulation will produce
an aggregated structure at the end of the simulation, and we
manually label all final structures with one of two categories.

V. RESULTS

Our system is able to produce a large number of interesting
and stable shapes. However, it occasionally (∼8% of inter-
action functions) will produce two or more different shapes
from the same agent interaction function. In these cases we
divide the results into two “bifurcated” groups, one group
with the dominant, i.e. the most prevalent, configuration, and
the second ”other” group with the remaining less numerous
configurations. Given this grouping scheme, we have applied
the proposed prediction method to a number of bifurcating
shape evolutions. The target shapes are a quarter-moon, an



Quarter-moon
Total Time Prediction Time Positive Instances Negative Instances Kernel

35,000 3,500 100 100 RBF
Cost (C) gamma (γ) Accuracy Sensitivity Specificity

512 0.03125 91.5% 92.0% 91.0%

Ellipse
Total Time Prediction Time Positive Instances Negative Instances Kernel

10,000 500 100 100 RBF
Cost (C) gamma (γ) Accuracy Sensitivity Specificity

2048 4.883e-04 89.0% 89.0% 89.0%

Four Discs
Total Time Prediction Time Positive Instances Negative Instances Kernel

15,000 1,500 100 100 RBF
Cost (C) gamma (γ) Accuracy Sensitivity Specificity

512 1.221e-04 83.0% 84.0% 82.0%

Parallel Line Segments
Total Time Prediction Time Positive Instances Negative Instances Kernel

10,000 1,000 508 100 RBF
Cost (C) gamma (γ) Accuracy Sensitivity Specificity

4 0.125 (80.9± 2.5)% (80.4± 3.5)% (81.4± 2.6)%

TABLE I
DATASET INFORMATION AND PREDICTION ACCURACIES FOR BIFURCATING SHAPES AT 10% (5% FOR ELLIPSE) OF SIMULATION TIME.

ellipse, a set of four discs, and a set of two parallel line
segments. Once the SVM parameters with the best overall
accuracy are determined through grid search and leave-one-out
cross-validation, we calculate overall accuracy, sensitivity and
specificity for each example. These results are summarized,
along with the dataset descriptions and SVM parameters, in
Table I. The quarter-moon, ellipse and four-discs datasets each
contains 200 simulations, with 100 belonging to each class.
The parallel line segments dataset is unbalanced, with 508
instances belonging to one class and 100 belonging to the
other. We have seen that the SVM approach yields higher
accuracies when the bifurcation is balanced.

The quarter-moon dataset contains 100 left-facing structures
and 100 right-facing ones. The quarter-moon interaction func-
tion did produce a few shapes of a third type (a diagonal shape)
(∼9% of simulation runs), but these were not included in this
study. Instead we only used the balanced left- and right-facing
outcomes. A typical shape evolution for this dataset is shown
in Figure 2. The simulation reaches a stable state by 35, 000
simulation steps. We extract feature vectors in the form of
Vector 6. At step 3, 500 (10% of the total simulation time) we
are able to predict the left-facing or right-facing outcome with
an overall accuracy of 91.5%.

The ellipse dataset contains 100 single ellipses and 100
non-single ellipses. The non-single ellipse group included
both two ellipses and single malformed structures. Figure 3
demonstrates a typical ellipse shape evolution. The simulation

reaches a stable state by 10, 000 steps. At 500 steps (5% of
simulation time) we are able to predict whether the simulation
will produce a single ellipse or not with an overall accuracy
of 89%.

The four-discs dataset contains 100 four discs structures and
100 structures not containing four discs, with a typical shape
evolution shown in Figure 4. The second group contains a
variety of disc numbers, including 3, 5, 6 and 7, with the most
prevalent number being 5. The simulation reaches a stable state
by 15, 000 steps. At 1, 500 steps (10% of simulation time) we
are able to predict whether the simulation will form four discs
or not with an overall accuracy of 83%.

The parallel line dataset contains 508 instances of two
vertical parallel line segments and 100 instances of either ”Y-
shape” structures or one vertical line, as seen in Figure 5. The
simulation reaches a stable state by 10, 000 steps. We calculate
the prediction of the final configuration at step 1, 000. Since
this is an unbalanced dataset, we under-sample the majority
set. We randomly choose 100 out of the 508 two-line-segments
instances and merge them with the minority set. Leave-one-out
cross validation is then performed on the newly constructed
balanced dataset. We achieve an average overall accuracy of
80.9±2.5% over 100 randomly constructed balanced datasets
when predicting the formation of two vertical lines.

Since the overall line-segment results are produced via
averaging the results from numerous randomly generated par-
titions, we include a standard deviation with the average. The
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Fig. 2. Shape evolution of the quarter-moon.

other examples have balanced datasets, and therefore leave-
one-out cross-validation produces a unique partitioning and
no deviations.

VI. CONCLUSION AND FUTURE WORK

Based on the statistical moments of agents’ positions and
the time derivatives of these moments, we are able to predict
the final outcome of a spatial self-organization process at 5%
or 10% percent of the simulation time with an overall accuracy
of 81% to 91%. Now that we can predict the outcome of this
process at an early stage, we are developing algorithms that
will control or influence the agents’ interactions so that they
consistently form into one stable configuration.
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Fig. 3. Shape evolution of the ellipse.
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Fig. 4. Shape evolution of the discs structure.
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Fig. 5. Shape evolution of the line segments structure.


