
Graph Stores based on Spatial Computers
Dominic Pacher, Robert Binna, Günther Specht

Databases and Information Systems
Institute of Computer Science

University of Innsbruck, Austria
{firstname.lastname}@uibk.ac.at

Abstract—This paper presents a novel concept of a Spatially
Aware Graph Store, which combines a Graph Store and a
Spatial Computer to manage graphs in one, two or three physical
dimensions. In this environment, the physical distance between
graph nodes strongly affects graph traversal performance. Con-
sequently, a Spatially Aware Graph Store needs to minimize these
distances to operate efficiently. We show that this minimization
can be achieved by increasing the dimensionality of the Spatial
Computer. Furthermore, a novel optimization method is intro-
duced to further minimize distances by rearranging nodes in the
data space. Our results show that the overall distances between
nodes can be reduced by three orders of magnitude for 3-D in
comparison to 1-D Spatially Aware Graph Stores. Moreover, the
suggested optimization method achieves a reduction by another
order of magnitude.

I. INTRODUCTION

Over the last years the number of available linked data sets
as well as the size of each single dataset has undergone an
exponential growth1. In the beginnings, stores designed for
linked data query and retrieval, could easily deal with the
amount of data available by either using in-memory stores or
by mapping the graph data onto existing relational database
technologies. With the amount of linked open data surpassing
the computing power of a single central processing unit, it
became inevitable to distribute the workload onto several pro-
cessing units. Furthermore, dedicated main memory systems
were developed to ensure low access times. However, future
graph stores will have to cope with significantly larger data
sets due to exponential growth. Eventually, this development
will surpass the performance of todays main memory graph
stores. The main reasons for this lie in the access delay
of main memory, which did not evolve at the same rate as
computation power. Consequently, the so called memory wall
issue [19] emerged. On contemporary systems this means
that a single cpu executes about 100 instructions until it
receives previously requested data from the main memory.
For computationally intensive problems, which need many
instructions per single data element, this performance penalty
can be neglected. However, in graph stores computationally
cheap filter operations are dominant. This makes such systems
much more vulnerable to the memory wall issue. Furthermore,
the problem gets even worse if distribution is introduced,
as in multi core environments all cpus need to share the
main memory hardware. Hence, we identify the memory wall

1Freie Universität Berlin, The Linking Open Data cloud diagram, http://lod-
cloud.net/, last visited February 2014

effect as the main problem of future graph stores. This issue
needs to be addressed to enable both, higher performance and
scalability.
Spatial Computers present a promising alternative to address
this issue as it introduces a new way of how data is stored
and processed. In more detail, in Spatial Computers physical
space is not an issue that is neglected, but is exploited to enable
more efficient storage and distributed processing [3]. A graph
store operating on this architecture would store its graph in
physical space. In the course of this endeavor, an important
property needs to be considered. In Spatial Computers access
delay depends on the actual physical distance between a
processing unit and the requested data element. This represents
a major difference to todays non spatial computers, which
provide constant random access delay. Consequently, linked
graph nodes should be located closely to each other to enable
efficient node-to-node traversing.
This leads to the following two challenges. First, how much
can the distances between linked nodes be decreased by
operating in a 2-D or 3-D rather than on a 1-D physical space?
Second, is it possible to rearrange nodes in the store aiming at
further decreasing distances? The latter question is particularly
important as graph data is usually high dimensional. Conse-
quently, even if all three physical dimensions are used, the
distances between linked nodes will not be sufficiently mini-
mized. As there are no more than three physical dimensions,
an alternative way to further decrease the distances between
linked nodes is required.
To address these challenges the main contributions of this work
are: 1) A hybrid concept of a Spatially Aware Graph Store,
which combines a Graph Store with a Spatial Computer 2) The
Mid Point Optimization method to decrease distances between
linked nodes and 3) An agent based approach to query data.
The remainder of this paper is structured as follows. Section II
introduces the concept in detail along with its basic operations
and explains the origin of the distance dependent access delay.
Section III discusses the effect of graphs embedded in 1-D,
2-D and 3-D Spatial Computers on the distances between
linked nodes and presents the Mid Point Optimization to im-
prove embeddings. In Section IV we evaluate how the distance
between linked nodes decreases through higher dimensional
Spatial Computers and how the suggested optimization method
can enhance results even more. In addition, the effect on graph
queries is evaluated. In Section V we present related work in
the area of spatial computing, graph stores and optimization of

Einstein

Albert Richard

Nobel
Prize

Ulm Queens

Feynman

Einstein

Albert Richard

Nobel
Prize

Ulm Queens

Feynman1

1

1

1

1

1

Legend:
Processing Unit Data Connection

Graph Node Graph Edge with Distance XX

Fig. 1: Design of a Spatially
Aware Graph Store

A

A

(a) 1-D Grid: Node A requires
8 Node Swap Operations

A

A

(b) 2-D Grid: Node A requires
4 Node Swaps Operations

Fig. 2: Worst Case Com-
parison of Node Rearrange-
ment Operation

graph data. Finally, section VI gives a summary and outlines
potential future work based on the results presented in this
paper.

II. SPATIALLY AWARE GRAPH STORES

The concept of a Spatially Aware Graph Store is shown in
Figure 1. In the interest of simplification, a 2-D representation
is chosen. However, the presented concept can easily be
applied to 1-D or 3-D physical space. Each square in Figure
1 represents a simple processing unit that is capable of
storing a single node of the entire graph. All processing
units are connected by a regular grid structure. In this way,
a processing unit can communicate only directly with its
adjacent neighbours. To access nodes stored to non-adjacent
neighbours, the request needs to be routed over intermediate
processing units to its destination. Consequently, the delay
of a node to access a linked node strongly depends on the
distance between these two units. In contrast to this delay,
the time to execute an operation on the node stored in a
processing unit is considered to be negligible. In fact, this
assumption can be made as query operations are usually
composed of computationally cheap filter operations. Due
to the strong dependency of access time on access distance
and the ability to process data in one, two or three physical
dimensions, the concept resembles a Spatial Computer.

A. Foundations

The architecture underlying our concept represents an
n-dimensional regular grid (cf. Figure 1) of one, two
or three dimensions. More formally, the grid is repre-
sented by a Graph G = (V,E) with edge set E =
{{(x1, x2, . . . , xn), (y1, y2, . . . , yn)} :

∑n
i=0 |xi − yi| = 1}

and vertex set V = {1, 2, ..., k}n.
Distances between two nodes (processing units) in the grid

with coordinates (x1, x2, . . . , xn) and (y1, y2. . . . , yn) are
defined by the Manhattan Distance d(x, y):

d(x, y) =

n∑
i=0

(|xi − yi|)

Furthermore, the number of adjacent neighbours with distance
d(x, y) = 1 can be controlled by the number of dimensions
used. In particular, in a 2-D grid, each inner processing
unit can directly communicate with four adjacent neighbours,
whereas in a 3-D grid, this number increases to six units.

B. Node Rearragement Operation

The ability to rearrange nodes presents a basic operation
in a Spatially Aware Graph Store. In particular, during the
optimization process described in the following Section III,
nodes frequently need to pass through the entire data space
of the spatial computer. As there is no central instance to
coordinate this movement, a decentralized method is required,
which is executed independently on each processing unit.
Therefore, each processing unit can request a swap of its
stored graph node with the one of its adjacent neighbour.
This swap operation is executed iteratively, until each graph
node is moved to its desired position. The complexity of
this operation depends on the dimensionality of the spatial
computer, as the maximum number of swap operations is
determined by the diameter of the grid. Figure 2 illustrates
this case with an example. In a store with nine nodes, node
A is linked to other nodes (for the sake of simplicity these
links are omitted in Figure 2) in a way that it needs to
be moved to the other side of the data space. As the store
can only move nodes by local swap operations within its
neighbourhood, the number of needed steps is bound by the
dimensionality of the spatial computer. In the example, eight
flip operations are needed in a 1-D architecture to reach
the other side of the data space (Figure 2a). However, in
a 2-D architecture, the number of operations is reduced to
four steps (Figure 2b). More formally, the complexity of this
move operation can be expressed as O(n ∗ k1/n) with n
being the dimensionality of the spatial computer and k being
the number of nodes. For example, in a store with 1,000,000
nodes, the worst case number of swap operations is 1,000,000
for a 1-D, 2,000 for a 2-D and 300 for a 3-D Spatial Computer.

C. Query Operation

To achieve efficient query execution on graph data, both
primitive operations such as edge traversal as well as filtering
need to be efficiently executed. Applying a traditional ap-
proach where a single coordinator distributes and coordinates
all work units is not feasible. This is due to the following
two facts. First, the coordination of all participating pro-
cessing units is computationally too expensive for a single
processing unit. Second, in a Spatial Computer the access
delay depends on the actual physical distance. Consequently,
routing all communication to a single processing unit results

in an unacceptable overhead. Therefore, an execution model
is required, which on the one hand reduces the amount of data
transferred and on the other hand is independent of a central
coordinator. To fulfill these requirements, we suggest an agent
based model. This model allows the execution of a query to
flow along the graph’s edges. Whenever an edge needs to be
traversed, the agent is transferred to the destination node’s
processing unit. Therefore, every filter operation of a node
occurs at its processing unit, which is a computationally cheap
operation. Thus, this execution model fosters the distribution
of work among the participating processing units and reduces
the amount of data to be transferred. More specifically, it
prevents long access paths to distant nodes, as all computation
is done on the respective processing units. However, in spatial
computers the time needed to transfer the agent itself cannot
be neglected. It is therefore important to reduce the distance
between the participating nodes.

III. LINKED NODE DISTANCE OPTIMIZATION

In a Spatially Aware Graph Store efficient graph traversal
can only be achieved, if linked nodes are closely located to
each other. To ensure this, a twofold approach is applied.
On the one side, the maximum distance between two linked
nodes is reduced by increasing the dimensionality of the
spatial computer. On the other side, locality is improved
by rearranging nodes to reduce the distance to non-adjacent
processing units.

A. Spatial Computer Dimensionality

As previously mentioned in Section II-B, the diameter of
the Spatial Computer and therefore the maximum distance
between processing units is reduced with each additional
dimension. In this way, the average distance between linked
nodes decreases as well.
Consequently, it can be assumed that by increasing the di-
mensionality the linked node locality is improved. However,
only the physical three dimensions can be used for this
approach. This poses a problem as graphs are usually high
dimensional. In this case, a one-to-one embedding is not
possible. Nevertheless, most real world graphs are sparse
graphs with heterogeneous dimensionality. More specifically,
parts of the graph can be two dimensional while other parts
are very high dimensional. This property can be used to
calculate an optimized graph embedding to reduce the overall
distance between linked nodes. How such an embedding can
be obtained is described in the next section.

B. Graph Embedding

As shown in Figure 1, the embedding of the graph on the
processing units represents the first step to build a Spatially
Aware Graph Store. In the course of this process, many
solutions are possible. However, for efficient query processing
an embedding that minimizes the distances between linked
nodes is required. Consequently, the quality of an embedding
can be estimated by its overall sum of distances between
linked nodes. Figure 3 shows this with an example graph,

Einstein

Albert Richard

Nobel
Prize

Ulm Queens

Feynman1

1

1

1

1

1

Legend:
Processing Unit Data Connection

Graph Node Graph Edge with Distance XX

(a) Optimal Solution. Overall
Sum of Distances is 6.

EinsteinAlbert

RichardNobel
Prize

Ulm

Queens

Feynman

6

3

3

6

3 2

Legend:
Processing Unit Data Connection

Graph Node Graph Edge with Distance XX

(b) Worse Solution. Overall
Sum of Distances is 22.

Fig. 3: Embeddings of the same Graph with different Overall
Distances between Linked Nodes

which is embedded in two different ways. Although the same
graph is embedded, it becomes apparent that solutions can
differ significantly in relation to the achievable traversing
performance. In more detail, Figure 3a shows the optimal
solution. The length of each edge is one or, in other words,
only one hop is needed to reach its linked node. This way, the
overall sum of edge distances is 6 for the entire embedding. In
contrast, Figure 3b shows a worse embedding with an overall
distance of 22.

C. Optimization of Embeddings

In distributed graph databases Graph Partitioning [1] is
commonly applied to minimize the number of cuts between
partitions. However, partitioning does not provide physical
locality between partitions when mapped onto the fixed di-
mensional space of a spatial computer. More specifically,
according to our concept, the graph is maximally partitioned
already. Each node represents one partition, stored on a single
processing unit. In this case, a partitioning algorithm cannot
improve the embedding any further, as it does not determine
how the partitions need to be placed optimally in a Spatial
Computer.
Consequently, this method is unable to increase locality in our
environment. However, there is a solution to the problem. Opti-
mal linear arrangement solvers map graphs onto n-dimensional
space in a way that the overall sum of edge distances is
minimal [7]. When applied on a Spatially Aware Graph Store,
the distances between linked nodes are minimized and the
number of intermediate processing units between two linked
nodes is reduced as shown in Figure 4.

More formally, the overall sum of distances can be denoted
as costs. The minimization problem [7] of these costs are
defined as follows. Given an n-dimensional grid G = (V,E)
as defined in Section II-A the problem is to find a mapping f
from V onto {1, 2, . . . , n} that minimizes:

cost(G, f) =
∑

{i,j}εE

(|f(i)− f(j)|)

Furthermore, the term (|f(i)− f(j)|) can be replaced by the

Manhattan distance of Equation II-A leading to

cost(G, d) =
∑

{i,j}εE

d(i, j)

It can be shown that this problem is NP-hard for directed
and undirected graphs [8], which causes the computational
requirements to become prohibitive for an optimal solution.
However, heuristics can be applied to significantly optimize
the node ordering of larger data sets in reasonable processing
time [16].

D. Mid Point Optimization

To approximate the Optimal Linear Arrangement Problem,
various different approaches exist. Rodriguez and Tello used
Local Optimization and Simulated Annealing [17] methods.
Also multi grid approaches have been suggested in [13]
and [18] to obtain results of similar quality, but with less
processing time. However, for a Spatially Aware Graph Store,
two additional issues have to be considered. First, data sets
even for main memory graph stores, consist of up to one billion
edges. Therefore, a faster optimization method than Local
Optimization and Simulated Annealing is required to achieve
better embeddings in feasible time. Second, the method needs
to be simple enough to be applicable on each processing unit of
a spatial computer. This poses a problem on complex algebraic
multi grid approaches.
Therefore, we introduce our novel method called Mid Point
Optimization. The basic principle behind this algorithm is to
iteratively search for a new embedding with lower costs. This
is done by moving a node to the geometrical mean position
of all its linked nodes. This position can be calculated, as
each node already knows the position of each linked node to
process agent bases queries (cf. Section II-C). The algorithm
is executed on each node of the graph, leading to a new overall
node arrangement with reduced costs. In more detail, the
method consists of the following three steps. First, the new mid
point positions are calculated for each node. Second, all nodes
are moved to the mid points using the node rearrangement
operation as described in Section II-B. Finally, all linked nodes
are notified of the new positions.
The algorithm is repeated iteratively until the improvement
drops below a predefined threshold. An example of this
method is shown in Figure 4. The position of each node is
denoted by its two-dimensional coordinates. For example the
node Albert has coordinates (0,0) and the node Einstein (3,0).
The first Figure 4a shows the initial embedding with an overall
distance of 12. The new mid point coordinates of the Einstein
node are: (0, 0) + (1, 1) + (0, 3) + (3, 0))/4 = (1, 1). By
applying this procedure on all nodes (results are rounded to
the next bigger integer) the new embedding shown in Figure
4b can be obtained. This embedding features a reduced overall
distance of 5.

IV. EVALUATION

To evaluate our concept of a Spatially Aware Graph Store
we conducted three experiments. First, we surveyed the in-

EinsteinAlbert

Nobel
Prize

Ulm

6

3

3

0 1 2 3

0

1

2

3

Legend:
Processing Unit Data Connection

Graph Node Graph Edge with Distance X X

(a) Non-Optimized Graph.
The Overall Distance of the
Embedding is 12

Einstein

Albert

Nobel
Prize

Ulm

2

2

1

0 1 2 3

0

1

2

3

Legend:
Processing Unit Data Connection

Graph Node Graph Edge with Distance X X

(b) Optimized Graph. The
Overall Distance of the Em-
bedding are reduced to 5

Fig. 4: Mid Point Optimizations Example

fluence of two- and three- dimensional storage of graph
data on the edge distances. Second, the decrease of edge
distances by applying the Mid Point Optimization is evaluated.
Finally, the effects of optimization on query execution is
examined. The evaluation is carried out on the following
three datasets, namely web-Google2, p2p-Gnutella252 and
DBpedia3. These datasets were selected to provide a balanced
overview on optimization results in the best (web-Google),
average (DBpedia) and worst case (p2p-Gnutella25). To the
best of our knowledge, no hardware exists, on which a
Spatially Aware Graph Store could be evaluated. Therefore,
we implemented a simulation engine of a Spatially Aware
Graph Store which is able to load, optimize and query data
sets. Hence, all experiments were conducted by using this
simulation engine on a server equipped with two Intel Xeon
L5520 Quad Core CPUs, 2.27 GHz, 64-bit architecture and
96 GB main memory.
In the first experiment each data set was loaded into the
Spatially Aware Graph Store in a 1D, 2D and a 3D embedding.
To avoid any pre-existing locality, the nodes of each data
set were inserted in random order. The column distorg in
Table I contains the sum of all distances between linked nodes
after this insertion process. It can be observed that in the 2D
case the distances between linked nodes are reduced by two
to three orders of magnitude in comparison to the 1D case
(e.g. the web-google data set improves from 2.5× 1012 to
5.3× 109). Furthermore, the 3D case improves by another
order compared to the 2D case (the web-google data set
improves from 5.3× 109 to 8.3× 108). It can be inferred
that by embedding a graph in a higher dimensional Spatial
Computer, distances between linked nodes are significantly
reduced.
The second experiment executes the Mid Point Optimization
on each data set for the one-, two- and three dimensional
case. The resulting distances between linked nodes after this

2Stanford University, Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data/, last visited February 2014

3The DBpedia Data Set, http://wiki.dbpedia.org/Datasets, last visited Febru-
ary 2014

Dataset |V | |E| Graph Type Dim distorg distopt δdist Mopt MSopt topt

web-Google 875,713 8,644,102 web topology
1-D 2.5× 1012 6.5× 1010 0.02 2065 0.002 1348 min
2-D 5.3× 109 2.6× 108 0.04 13 0.006 24 min
3-D 8.3× 108 8.8× 107 0.1 6 0.02 16 min

DBpedia 23,617,067 126,756,890 knowledge
1-D 1.2× 1013 -4 - - - -
2-D 4.1× 1011 1.0× 1011 0.25 589 0.06 36 h
3-D 3.6× 1010 9.6× 109 0.26 56 0.06 13 h

gnutella25 62,586 295,784 peer to peer
1-D 8.2× 108 3.2× 108 0.39 2471 0.10 165 s
2-D 1.0× 107 5.0× 106 0.46 40 0.13 15 s
3-D 3.1× 106 1.5× 106 0.48 13 0.15 15 s

TABLE I: Reduction of Distances for a 1-D, 2-D and 3-D Spatially Aware Graph Store with and without Optimization

optimization can be found in Table I in colum distopt. In
addition, the relative difference between distopt and distorg
is labeled as δdist. As a result, distances were reduced by a
factor 0.02 to 0.48 in relation to the original costs (cf. web-
Google with δJ = 0.04 for the 2-D and 0.1 for the 3-D case).
Furthermore, a significant reduction of the median distance
between linked nodes can be observed in column Mopt. The
value MSopt denotes the median in relation to the maximum
possible distance.
The results of the optimization can be visualized with Edge
Density Plots. These plots are heat maps created by counting
the number of edges crossing a location in the data space. In
particular, dark colors denote few and brighter colors denote
frequent edge crossings. Figure 5 shows such edge density
plots for the DBpedia data set. In this Figure the white color
denotes 25,000 edges crossing a single location. Moreover,
Subfigure 5a visualizes the edge density of the original and
5b of the optimized embedding. It becomes apparent that in 5b
the number of hot areas decreases and distinct clusters become
visible. Beside the optimization quality also the time needed
to perform the optimization has been observed. The execution
times can be found in the last column topt of Table I. From
this values the predicted speedup (cf. Section II-B), which can
be achieved by a higher dimensional Spatial Computer, can
be observed. This is most evident for the DBpedia dataset,
which could not be optimized in feasible time using a 1-D
Spatial Store. However, in 2-D and 3-D the runtime drop
significantly from 36 to 13 hours. Due to the overhead of the
simulation engine the runtime of the gnutella25 dataset could
not be improved for the 3-D case. By comparing the times
between the datasets it becomes clear that the computational
effort does not only depend on the size of the dataset but on
its dimensionality as well.
In the last experiment, the impact of the Mid Point Optimiza-
tion on the agent based query engine is evaluated. Therefore a
query selecting all actors with a Kevin Bacon number below
or equal to two is executed5 on an unoptimized as well as on
an optimized embedding in a two dimensional Spatially Aware
Graph Store. The related edge density plots, restricted on the
edges access by this query, are shown in Figure 5c and in

4Skipped after 72 hours
5Two degrees of separation from Kevin Bacon Query, RDF

Store Benchmarks with DBpedia, http://wifo5-03.informatik.uni-
mannheim.de/benchmarks-200801/, last visited February 2014

(a) Edge Density before Op-
timization

(b) Edge Density after Opti-
mization

(c) Query Access Heat Map
before Optimization

(d) Query Access Heat Map
after Optimization

Fig. 5: The DBpedia Data Set Stored in 2-D Spatially Aware
Graph Store

Figure 5d. It becomes clear, that in the unoptimized case, the
nodes accessed by the query agent are randomly scattered over
the entire data space. However, in the optimized embedding the
access pattern is concentrated on a distinct hotspot. In this way,
the overall distance an agent needs to travel is significantly
reduced. In particular, 106,427,753 hops between processing
units are needed in the unoptimized case and 33,439,669 in
the optimized case.

V. RELATED WORK

To the best of our knowledge, there are only the works
of deLorimier and Kapre [4], [5] that followed a similar
approach to combine the concept of Spatial Computers
with Graph Based Processing. These works resulted in the
GraphStep system, a novel Field Programmable Arrays
(FPGAs) based compute model. However, this work differs
significantly from their approach and focuses on a specialized
concept for graph stores instead of a general compute model.
In addition, the optimization of access times using optimal
linear arrangement solvers presents an important cornerstone
of this work, which has not been discussed by deLorimier

et al. Furthermore our approach simulates a one-, two-
and three-dimensional spatial computer and is therefore not
restricted to the two dimensional FPGA design. In the area
of non-spatial computers several approaches for distributed
graph stores exist. Zeng et al. presented Trinity.RDF, a
dedicated main memory store [20]. Huang et al. combined
RDF3x [14] with the Hadoop Map Reduce Framework
in [11]. Finally, Erling presented Virtuoso, a hybrid store
combining relational and graph concepts [6]. First in-depth
experiments on the Minimum Linear Arrangement (MinLA),
also known as Optimal Linear Arrangement problem, were
conducted by Petit [16] in 2003. Simulated Annealing is the
most traditional approach to optimize data sets, which leads
to good results as it successfully escapes local minima [12].
However, this method features non-linear runtime complexity
and therefore cannot be applied on large-scale datasets [17].
Consequently, faster concepts using multigrid techniques
[2] became more popular. Safro and Koren presented such
multigrid algorithms to solve the MinLA problem [13], [18].
Furthermore, Graph Visualization algorithms [10], [9] are
related to the MinLA problem as their objective is to optimize
node-to-node locality in a two-dimensional space. However,
the problem behind graph visualization is much broader than
MinLA, as it needs to consider the full range of human
perception characteristics to achieve good results. As an
example, modern algorithms also consider crossing angles of
edges to improve human readability [15].

VI. CONCLUSION AND FUTURE WORK

This work introduced a novel concept of Spatially Aware
Graph Stores to address contemporary memory wall and scala-
bility issues. It has been shown that the combination of a Graph
Store and a Spatial Computer represents a way to enhance
existing architectures by taking advantage of storing informa-
tion in one, two or three physical dimensions. Furthermore, a
realization of the concept needs to locate nodes as close to their
linked nodes as possible to enable efficient graph querying.
Consequently in this work, the distance between linked nodes
has been minimized with a twofold approach. First, the effect
of increasing the dimensionality of the Spatially Aware Graph
Store on the overall distances between linked nodes has been
evaluated. In fact, in the case of 2-D and 3-D stores, these
distances are reduced by up to three orders of magnitude in
comparison to a 1-D realization. Second, we have shown that
the Mid Point Optimization is able to further optimize locality,
which decreases the overall distances between linked nodes by
another order of magnitude. Through the combination of the
optimization method with a two or three dimensional Spatially
Aware Graph Store, we could achieve a major speedup. Indeed
our results show, that without this speedup it is not possible
to optimize the linked node locality of large data sets in
reasonable time. Finally the results on querying the DBpedia
knowledge network showed comparable improvements, as on
optimized datasets query agents need to travel significantly
less through the Spatial Computer.

We conclude that our concept of a Spatially Aware Graph
Store in combination with optimization algorithms provides a
sound basis for efficient graph stores that are less vulnerable
to the memory wall issue and enable distribution on a massive
scale. In future work, many challenging issues have to be
addressed to further develop the concept. The next steps will
be to refine the optimization method to further improve linked
node locality. In addition, the decomposition of very large
nodes that appear in scale free graphs represents an interesting
opportunity to further improve linked node locality.

REFERENCES

[1] A. Abou-Rjeili and G. Karypis. Multilevel algorithms for partitioning
power-law graphs. In Proceedings 20th IEEE International Parallel &
Distributed Processing Symposium, IPDPS’06, page 103, Rhodes Island,
Greece, 2006. IEEE.

[2] A. Brandt, D. Ron, and D. Amit. Multi-level approaches to discrete-state
and stochastic problems. Multigrid Methods II, pages 65–98, 1986.

[3] A. DeHon, J.-L. Giavitto, and F. Gruau. 06361 Executive Report
– Computing Media Languages for Space-Oriented Computation. In
Computing Media and Languages for Space-Oriented Computation,
number 06361 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,
2007.

[4] M. Delorimier and N. Kapre. GraphStep: A system architecture for
sparse-graph algorithms. In Field-Programmable Custom Computing
Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on. IEEE,
number FCCM, pages 143–151, 2006.

[5] M. Delorimier, N. Kapre, N. Mehta, and A. Dehon. Spatial hardware
implementation for sparse graph algorithms in GraphStep. ACM Trans-
actions on Autonomous and Adaptive Systems, 6(3):1–20, Sept. 2011.

[6] O. Erling and I. Mikhailov. Towards web scale RDF. Proc. SSWS, 2008.
[7] P. Fishburn, P. Tetali, and P. Winkler. Optimal linear arrangement of a

rectangular grid. Discrete Mathematics, 213(1-3):123–139, Feb. 2000.
[8] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[9] D. Harel and Y. Koren. Graph Drawing by High-Dimensional Embed-
ding. Journal of Graph Algorithms and Applications, 8(2):195–214,
2004.

[10] Y. Hu. Efficient, High-Quality Force-Directed Graph Drawing. The
Mathematica Journal, 10(1):37–71, 2006.

[11] J. Huang, D. Abadi, and K. Ren. Scalable SPARQL querying of large
RDF graphs. Proceedings of the VLDB Endowment, 4(11):1123–1134,
2011.

[12] D. S. Johnson, C. R. Aragon, L. A. Mcgeoch, C. Schevon, and
R. Aragon. Optimization by simulated annealing: an experimental
evaluation; part I, graph partitioning. Optimization, pages 865–892,
1989.

[13] Y. Koren and H. David. A multi-scale algorithm for the linear arrange-
ment problem. In Graph-Theoretic Concepts in Computer Science, pages
296–309, 2002.

[14] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF.
Proceedings of the VLDB Endowment, 1(1):647–659, 2008.

[15] Q. Nguyen, P. Eades, S. Hong, and W. Huang. Large crossing angles
in circular layouts. In Proceedings of the 18th international conference
on Graph drawing, pages 397–399, 2011.

[16] J. Petit. Experiments on the minimum linear arrangement problem.
Journal of Experimental Algorithmics, 8(3):112–128, Jan. 2003.

[17] E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez. An effective two-
stage simulated annealing algorithm for the minimum linear arrangement
problem. Computers & Operations Research, 35(10):3331–3346, 2008.

[18] I. Safro, D. Ron, and A. Brandt. Graph minimum linear arrangement by
multilevel weighted edge contractions. Journal of Algorithms, 60(1):24–
41, July 2006.

[19] W. Wulf and S. McKee. Hitting the memory wall: implications of the
obvious. ACM SIGARCH computer architecture news, pages 20–24,
1995.

[20] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph
engine for web scale RDF data. Proceedings of the 39th international
conference on Very Large Data Bases, pages 265–276, 2013.

