
On the Space-time Situation of
Pervasive Service Ecosystems

Mirko Viroli
Alma Mater Studiorum – Università di Bologna, Italy

Email: mirko.viroli@unibo.it

Graeme Stevenson
University of St Andrews, UK

Email: graeme.stevenson@st-andrews.ac.uk

Abstract—We focus on a coordination model for pervasive com-

puting applications, tightly coupled to Semantic Web technologies

to support openness and semantic reasoning. Our approach is

based on the ideas of reifying the existence of services, data,

and events in terms of RDF-oriented annotations maintained

by local agents, and enacting global system behaviour by ma-

nipulation rules for such annotations, which resemble chemical

reactions and can be seen as sequences of SPARQL queries and

SPARUL updates over RDF stores. We show a minimal set of

ingredients to equip this framework with space-time computing

mechanisms, including reification of space-time information in

terms of annotations, and a relocation service for annotations.

Some examples of spatial computations in pervasive computing

are given to illustrate the approach.

I. INTRODUCTION

A pervasive service ecosystem is a pervasive computing
system in which the various individuals that populate it – such
as humans, their smartphones, software services, pervasive
displays, sensors and devices spread in the environment,
sources of knowledge and data – interoperate opportunistically
to achieve their private goals, but are also globally governed
by some infrastructure rules analogous to the “laws of nature”
in natural ecosystems [22]. Following the general approach
proposed in [20], [2], which we here take as a reference, we
assume that the presence and activities of such individuals
are continuously reflected (in the infrastructure node in which
they reside) as semantic annotations, called Live Semantic
Annotations (LSA). In concert, these form a global network of
annotations representing the virtual counterpart of the physical
ecosystem. Overall system behaviour is driven by a set of laws,
called eco-laws, which act locally to each node, combining
and manipulating annotations in a semantic way—enacting
all the fine- and coarse-grained processes of LSA interaction,
composition, disposal, and so on.

As a concrete implementation of this model, we focus
on one that is fully-grounded on standard frameworks and
technologies for the Semantic Web, due to their support for
openness (supporting interactions with third party software
and data) and semantic reasoning (relying on ontologies and
semantic matching) [21]. We use RDF as language for struc-
turing LSAs, and the SPARQL/SPARUL query languages for
coding eco-laws: the main advantage of this choice is that
off the shelf query engines (supporting execution of SPARQL
queries and updates over RDF stores) and reasoners [17]
can be used to support scheduling and execution of eco-laws
locally.

As a key contribution of this paper, which builds on top of

[21], [20], we isolate a minimal set of additional middleware
services that add the ability to define spatial computing ac-
tivities (evolutions of distributed structures of LSAs), namely:
(i) automatically reifying location information in each LSA,
(ii) reifying a node’s spatiotemporal state into new LSAs
injected therein, and (iii) asynchronously relocating LSAs that
have a mismatching location property. A main advantage of
the proposed technique is that spatial computations can be
structured in terms of chemical-resembling reactions applying
semantically to LSAs, handling temporal and spatial aspects in
a fully declarative way, treating spacial and temporal aspects
no differently from other service properties. We believe this
idea can bring new insights as to how spatial features can
be added to existing middlewares, particular those which are
tuple-based. As a further contribution, we discuss several
examples of spatial computations useful in the context of
pervasive computing scenarios.

The remainder of this paper is organised as follows: Sec-
tion II sketches our pervasive ecosystem framework, Sec-
tion III details the model and its RDF/SPARQL/SPARUL
serialisation, Section IV introduces our support for spatial
computing aspects, Section V presents example applications,
and Section VI provides concluding remarks.

II. ABSTRACT ARCHITECTURE

Pervasive ecosystems [22] are characterised by two main
features, which influence their underlying abstract architecture
and model. On one hand, they should be situated, namely, the
activity of any software agent and the data it produces are
tightly bound to the agent’s physical location: this is because
any behaviour should be intrinsically aware of and affect the
surrounding context. Situatedness is achieved by infrastruc-
tures reifying data, knowledge, and events in the precise point
(or region) of space where they pertain, and by promoting
interactions based on proximity. Accordingly, a cornerstone
of pervasive ecosystems is that a uniform representation is
required for the various software agents living within them
(whether they run on smartphones, sensors, actuators, displays,
or any other computational device). We term such a repre-
sentation a “Live Semantic Annotation” (LSA) for it should
continuously represent the state of its associated component
(live), and it should be implicitly or explicitly connected to the
domain in which such information is produced, interpreted and
manipulated (semantic). The LSAs of each agent are reified
in a distributed space (called an “LSA-space”) acting as the

53



Fig. 1. An architectural view of a pervasive ecosystem.

fabric of the ecosystem, located in the computational device

hosting the agent.

On the other hand, pervasive ecosystems should be adaptive,

exhibiting properties of autonomous adaptation and manage-

ment to survive contingencies without human intervention

and/or global supervision. This is achieved following the

natural inspiration [22], by designing system rules that – by

acting locally – make global properties emerge dynamically.

So, while agents enact their individual behaviour by observing

their context and updating their LSAs, global behaviour (i.e.,

global system coordination) is enacted by self-organising
manipulation rules of the LSA-space, which we call eco-laws.

They can execute delete/update/create actions applied to a

small set of LSAs within the same locality. Following [3], [18],

such eco-laws are structured as chemical-resembling reactions

over LSAs.

Figure 1 shows an architectural view, based on the above

abstractions, of a portion of an ecosystem featuring: two public

displays and two smartphones (carried by people in front

of displays), forming a network of 4 computational nodes,

each with a local LSA-space containing some running agents

(e.g., profile agents and sensor agents in smartphones); LSAs

through which agents manifest (in colour); additional LSAs

representing data, knowledge, and contextual information like

the existence of neighbouring nodes (in white); references

from one LSA to another (also called bonds); and a set of eco-

laws executed by an underlying engine working over the global

LSA-space. More generally, one should think of a very large

and mobile set of devices connected to each other based on

proximity, creating a distributed “space” – ideally a pervasive

continuum – where LSAs form spatial structures that evolve

over time. The eco-law engine, accordingly, has to be seen as a

distributed one uniformly working on all LSA-space—though

we will show that a feasible approach amounts at developing

local eco-law engines in each node.

III. A CONCRETE MODEL OF LSAS AND ECO-LAWS

A. Live Semantic Annotations
LSAs have a unique, system-wide identifier (LSA-id),

and a content (description) including all the information the

agent wants to manifest to the ecosystem. This is realised as

an RDF-like (Resource Description Framework [10]) set of

multi-valued properties, or equivalently, a set of triples that

consist of a subject (an LSA-id), a predicate (the property

name, a Uniform Resource Identifier – URI) and an object

(the assigned value, a literal, URI, or bnode
1
). URIs are

qualified by universally-accessible namespaces (using syntax

namespace:term). In RDF, a literal can be qualified by an

XML Schema datatype (XSD) as in "10.0"ˆˆxsd:double
to enforce type-checking, but we shall omit it for the sake of

simplicity, and simply consider quoted strings. By adopting

a notation resembling N3 [6], an LSA is represented e.g,.

as “id p v; id q w1 w2 w3;” where id is the LSA-id,

property p is assigned to value v, and property q is assigned

to values w1, w2, and w3. Following N3, we can avoid

repeating the subject when this is unchanged with respect to

previous triple, hence writing “id p v; q w1 w2 w3;” for

the above example. A concrete example of an LSA is, hence:

lsa:crowdsensorlsa1123
eco:type msm:crowd;
msm:time "2011-05-30T11:00:00";
msm:crowd_level "0.9";

which is the LSA injected by a sensor that describes the precise

point in time that a value (0.9) concerning the presence of

people in a given room of a museum is sensed.

B. Eco-laws
Eco-laws are structured as chemical-resembling rules of

the kind “P+..+P --r--> Q+..+Q”. Elements P and Q are

patterns of LSAs, expressed like LSAs with the following

extensions: (i) in place of each element of a triple one can use

a variable ?V (matching any value) or an annotated variable

?V(filter) where filter is a predicate expression over

?V (matching any value that makes filter true); and (ii)
the object of a triple can be prepended by a symbol “+”
(assumed by default), “-”, or “=”— respectively meaning that

the triples with this object should exist, should not exist,

should be the only that exists for that subject and predicate.

For syntactic convenience, we also allow a pattern to consist

solely of the source, meaning no further constraint on its

triples is imposed. Additionally, we sometimes use as filter

for a subject ?LSA an expression of the kind “?LSA clones
?LSA2”, meaning that ?LSA should have the same content of

?LSA2 plus additional constraints specified by any following

triples. The above definition of a pattern naturally induces the

concept of an LSA matching a pattern (modulo a substitution

of variable to terms).

1
A bnode, or blank node, is an locally scoped identifier. Bnodes are used

to represent structured property values within LSAs, although we do not

elaborate this concept within this paper.

54



The semantics of an eco-law is then as follows. It consumes
a set of reactant LSAs based on left-hand side patterns and
produces a set of product LSAs based on the right-hand side
patterns. In particular, right-hand side patterns are to be seen
as post-conditions applied to the selected reactant LSAs. Eco-
laws also obey a numeric transformation rate r representing a
Markovian rate in a continuous-time Markov chain (CTMC)
system. Such a rate can be omitted, in which case it is assumed
to be infinite, that is, the eco-law is executed with “as soon
as possible” semantics.

An eco-law can apply in many different locations of the
ecosystem, and to different sets of (co-located) LSAs. We call
reaction the pair consisting of a set of reactant LSAs and
their corresponding product LSAs that an eco-law can trigger.
Execution of a reaction amounts to atomically removing
reactant LSAs from the LSA-space and inserting product LSAs
back.

As an example eco-law, consider the following, which
aggregates two LSAs produced by a crowd sensor, so as to
keep the most recent:

?LSA eco:type msm:crowd; msm:time =?T; +
?LSA2 eco:type msm:crowd; msm:time =?T2(?T2<?T);
--r-->
?LSA

Note that in the right-hand side we do not specify triples for
?LSA2, which means that the LSA with id ?LSA2 will be
removed, and that for ?LSA we simply state it will be left
unchanged. Another example of an eco-law, used to make a
display activate and show an advertisement as soon as the
presence of a person with a matching profile is sensed (e.g.,
the LSA of an user present in the same space), is the following:

?DIS eco:type msm:display; msm:status ="ready"; +
?ADV eco:type msm:ad; msm:content ?C; +
?USR eco:type msm:usr; msm:prof ?P(?P matches ?C);
--r-->
?DIS msm:status ="showing"; msm:service ?ADV; +
?ADV +
?USR

Note that object ="ready" in the left-hand side means that
"ready" is the only object for subject ?DIS and predicate
msm:status, while object ="showing" in the right-hand side
means that "showing" should replace any previous value,
while using object "showing" (or +"showing") would mean
adding value "showing". We have defined a formal mapping
between eco-laws and SPARQL/SPARUL, which is not re-
ported here for brevity. As an example, the latter eco-law is
written as:

SELECT DISTINCT * WHERE{
?DIS eco:type msm:display .
?DIS msm:status "ready" .
FILTER NOT EXISTS { ?DIS msm:status ?o .

FILTER (?o!= "ready") }
?ADV eco:type msm:ad .
?ADV msm:content ?C .
?USR eco:type msm:user .
?USR msm:prof ?P; FILTER(?P rdf:type ?C) .

}
REMOVE DATA {!DIS msm:status ?o}
INSERT DATA {!DIS msm:status "showing"}
INSERT DATA {!DIS msm:service !ASV"}

Put in more general terms, each eco-law is mapped to one
single SPARQL SELECT query, and a sequence of SPARUL
REMOVE or INSERT statements. The first query checks whether
and how the eco-law applies, yielding a set of bindings for
all the variables involved—one binding of variables per each
solution found, namely, per each set of reactant LSAs. Given
one binding, the SPARUL statements are used to apply the eco-
law. To this end, we let a placeholder !VAR stand for the value
to which variable ?VAR is linked to by the binding produced
by SPARQL query.

C. Architectural Components

From an implementation viewpoint, the framework can be
realised as a lightweight and minimal middleware that reifies
LSAs in the form of semantic tuples, to be dynamically
stored and updated in a system of spatially-situated tuple
spaces spread over the devices of the network. The eco-laws
governing the ecosystem are deployed in all network nodes,
and apply locally2. Each node comprises a set of modules
managing LSAs and Eco-laws, described in turn, all based on
functionality provided by the ARQ query engine [1] and Pellet
reasoner [17].

External Interface: The interface by which agents, devices,
services and other nodes – namely, the external environment –
interacts with the node providing operations to locally inject
a new LSA, observe an LSA with a known ID, and modify
and remove the LSAs the agent owns (injected).

Space: A space represents a passive component, similar to
a tuple space, storing LSAs that are local to the node. It is
responsible for the identification of LSAs within the node,
hence, it manages LSA naming through unique identifiers. It
is also the module in charge of implementing any possibly so-
phisticated indexing algorithm and data structure with the goal
of quickly retrieving and filtering candidate LSAs matching
an eco-law to be executed. Considering the above-mentioned
technologies, the space is easily realised as an RDF-store.

Matcher: During the processing of eco-laws, the reaction
manager checks whether an eco-law can apply to a candidate
set of LSAs—extracted from the space based on pattern match-
ing. More specifically, it computes all the bindings for a given

2At the time of writing, one such prototype is under construction in the
context of SAPERE project [2].

55



eco-law by executing the SPARQL query. Additionally, this
component also computes all filter expressions, the evaluation
of which is deferred to Pellet, which – other than standard
mathematical functions – allows one to code external functions
computing, e.g., any ad-hoc matching between the arguments.
The semantics provided by RDF Schema (RFDS) [8] and the
Web Ontology Language (OWL) [9] support vocabularies that
define classes of resources, semantically-rich relations, and
sets of restrictions on how both may legally be combined.
Application of these vocabularies to an RDF model may
be verified for correctness, and inferences – such as the
classification of resources – may be drawn. Indeed, stan-
dard OWL classification provides one approach to realising
ontology-based semantic matching in our eco-law language.
A filter ?A matches ?C can be interpreted as ?A rdf:type
?C. In standard OWL semantics, this considers an individual
a valid substitution for ?A if its description satisfies the set
of restrictions that describe ?C, an OWL Class description.
Hence, whenever one or more ontologies are used in the
pervasive ecosystem, they must be accessible to the Matcher
component.

Reaction manager: The reaction manager handles events
occurring within the node, based on the set of eco-laws it
holds. An event describes either an external operation upon an
LSA (injection, observation, removal or modification), or the
activation of a specific eco-law to be executed. Events of the
first kind are considered with highest priority, and are simply
processed by interaction with the space. In the second case,
the event is characterised by a reaction, indicating the eco-law
it refers to, its binding, and the time at which it should be
executed. The reaction manager exploits a simple scheduling
engine, maintaining a list of scheduled events sorted by their
occurrence time. It takes the next event, and executes the
corresponding SPARUL statements through ARQ.

IV. ADDING SPATIAL COMPUTING FEATURES

The framework described so far contains only interactions
of agents working in the same node, mediated by some form of
local knowledge, similarly to other coordination frameworks
like those in [14], [7]. In this section we develop an arguably
minimal extension, enabling the possibility to enact spatial
computing, by which distributed behaviour useful to pervasive
computing purposes can be supported. This is based on three
ingredients we describe in turn.

LSAs reifying location: We shall assume that each LSA
carries one property named eco:#loc, holding one URI value
representing the ID of the location (i.e., the node) in which
the LSA currently resides. We refer to this property as a
“synthetic” one, for it is not specified by the agent that
injects the LSA, but it is rather created and maintained by
the infrastructure. Additionally, this is a property that cannot
be changed by agents, but only by eco-laws as we will detail
in the following.

Space-time LSAs: A core idea of pervasive service ecosys-
tems is that, all information deemed important for the overall
system coordination should be reified within LSAs. This

applies, in fact, to all agent activities, and the data, knowledge,
and events they produce. Additionally, contextual information
bridging ecosystem evolution with the physical word has
to be properly reified into what we call synthetic LSAs—
again, “synthetic” here refers to the fact that these LSAs
are maintained by the infrastructure (e.g., by some agents in
charge of injecting them and keeping them updated by some
timing policy). Most importantly here, this concerns the space-
time situation of the computation, that is, at which time we
are currently executing, and how the local space is shaped.

Accordingly, we shall first assume that in each node we
have the so-called time LSA, an LSA carrying information
about the current time in the node, which is of the kind:

lsa:timelsa321
eco:type eco:#timeLSA;
eco:#time "2011-05-30T11:00:00";
eco:#loc sid:node34164@room132;

Concerning space, we reify the shape of space as can be
perceived from a single node, namely, what are the neighbours
in the node’s proximity (possibly including their IDs, their
estimated distance, the kind of connectivity, the maximum
communication bandwidth, the relative orientation in space,
and any other information the infrastructure can discern). In
particular, in any node, we assume that for each neighbour
there is a synthetic neighbour LSA of the kind

lsa:neighlsa456
eco:type eco:#neighbourLSA;
eco:#loc sid:node34164@room132;
eco:remotelocation sid:node34163@room132;
eco:distance "51.3";
eco:orientation "north-east";

stating that the neighbouring node is at location
node34163@room132, which is at expected distance
51.3 (meters) in a north-easterly direction.

We reiterate that the connection between such LSAs and
the neighbours they represent is entirely implicit; nodes do
not directly manage their remote representations, and these
synthetic LSAs are not proxies through which information
from remote spaces may be obtained.

Relocation service: One of the motivations for reifying
these synthetic LSAs is the ability, by means of proper
eco-laws, to make their actual content impact ecosystem
dynamics, by which we can fully achieve context-dependent
behaviour. Concerning space, for instance, one can develop
an eco-law that changes the value of the eco:#loc property
of an LSA, replacing it with that of a neighbouring node.
One such eco-law is:

?LSA eco:type msm:crowd; eco:status ="tomove"; +
?NEI eco:type eco:#neighbourLSA; eco:remote ?L;
--r-->
?NEI + ?LSA eco:#loc =?L; eco:status -"tomove";

56



This causes an LSA to have a location that no longer fits

the current node in which it resides. A lower-level middleware

service then, can be in charge of intercepting such LSAs before

they are injected in the space, and relocating them to the proper

neighbour, by an asynchronous request.

Note that our management of space-time aspects has the

advantage of being fully declarative—e.g., an LSA with a new

location can just be perceived as the LSA having been relo-

cated. By this approach we retain the spatial locality property

of eco-laws, mitigating the need to perform synchronisation

across spaces during their application. This approach also

orthogonally supports more advanced concepts of “topology”,

such as notions of social neighbouring (connecting smart-

phones of people who are friends on a social network as

envisioned in [16]).

V. EXAMPLES

While a basic use of the above ingredients supports relo-

cating information to mirror its physical counterpart’s move-

ments, they also permit the enactment of some patterns of

spatial computing that enable useful interactions within per-

vasive service ecosystems; here we describe 4 such patterns,

accompanied by illustrative examples.

A. Gossiping
We first show how we can make an LSA spread from

a given location to all the nodes of the network, with the

further ability of expiring everywhere at a given time. This is

the set of eco-laws realising this behaviour:

[GOS] % ?GOS gets spread in any neighbour
?GOS spc:type spc:goss; +
?NEI eco:type eco:#neighbourLSA; eco:remote ?L;
--r-->
?NEI + ?GOS + ?CLO(?CLO clones ?GOS) eco:#loc =?L;

[AGG] % Of two similar LSAs, it removes one
?AGG spc:type spc:aggr; spc:content ?C; +
?AG2 spc:type spc:aggr; spc:content ?C;
--> ?AGG

[DEL] % Disposes an LSA if its deadline expired
?DEL spc:type spc:del; spc:deadline = ?T; +
?TIM eco:type eco:#timeLSA; eco:time ?T2(?T<?T2);
--> ?TIM

Initially, a gossip LSA with spc:type set to values spc:goss,
spc:aggr, and spc:del is injected in a node—so that all

three eco-laws apply. The former eco-law makes any gossip

LSA ?GOS (having property spc:type set to spc:goss)
create a cloned version ?CLO relocated in a neighbour node ?L.
Iterative application of this eco-law over time (at rate r) and

over all nodes makes copies of ?GOS flood the network. The

second eco-law takes two gossip LSAs (of kind spc:aggr)
with same content (namely, relative to the same source) and

drops one: this is used to avoid multiple versions residing

in the same node. Finally, the latter eco-law fires when the

current time in a node is greater than the deadline time

spc:deadline defined in the gossip LSA, causing removal

of that LSA. Of course, rate r is to be properly designed to

tune the network load, using considerations similar to those

discussed in [18]. Note that the three eco-laws orthogonally

apply—one could leverage spreading without time-disposal, or

time-disposal alone, and so on.

In the context of pervasive computing applications, this

pattern can be useful to advertise an event happening in a given

node to the whole network. Considering e.g., the application

scenario in [12], it could be used to advertise a fire alarm in an

exhibition centre, so as to immediately trigger all the activities

necessary to safely steer people towards exits.

B. Gradient

A variation of the above diffusion mechanism can be used

to create a gradient data structure—a key brick of several

spatial computing patterns [18], [4], [19]. This is based on

the idea of spreading copies of an LSA such that each of

them holds the estimated distance from the source according

to the shortest path. We shall also equip each LSA with a

reference to the next node to traverse in order to follow the

gradient towards the source, and provide a mechanism to

limit the gradient to a given spatial extent (gradient horizon).

This is the set of eco-laws realising this behaviour:

[GRA] % ?GRA gets spread with increasing spc:dist
?GRA spc:type spc:gra; spc:dist ?D;

spc:rng ?R; eco:#loc ?LG; spc:source ?S +
?NEI eco:type eco:#neighbourLSA; eco:remote ?L;

eco:distance ?D2(?D+?D2<=?R);
--r-->
?NEI + ?GRA +
?CLO(?CLO clones ?GRA) eco:#loc =?L; eco:prev =?LG;

spc:dist =?D3(?D3 = ?D+?D2);

[SHR] % Of two paths, the shortest one is kept
?GRA spc:type spc:short; spc:content ?C;

spc:dist ?D; +
?GR2 spc:type spc:short; spc:content ?C;

spc:dist ?D2(?D2>?D);
--> ?GRA

Initially, a gradient LSA with spc:type set to spc:gra and

spc:short, and spc:dist set to 0 is to be injected in a node;

we also assume (for the sake of the following examples) that

property spc:source is initially set to the LSA-id itself—

by spreading, this property will hold everywhere the ID of

the LSA from which the gradient originates. The former eco-

law creates a cloned version ?CLO relocated in a neighbour

node ?L, with an increased value of distance depending on

the estimated distance of that neighbour—note this does not

happen if horizon ?R is escaped. The second eco-law takes

two gradient LSAs with same content and keeps the one with

smaller distance.

In the context of pervasive computing applications, this

pattern can be useful to advertise an event in a given node

with additional information on how its source can be reached.

E.g., as a fire alarm has been spread, people can be directed

57



to any exit (acting as gradient source) by signs appearing in

their smartphone or on public displays, properly reflecting the

direction to take as can be inferred from property eco:prev

of gradient LSAs.

C. Partitioning

This pattern is used to partition a network in n areas once

n nodes (sources) have been selected as candidate centres

of these areas, ensuring that these areas have also similar

size whenever possible. This is achieved by making each

source spread a different gradient, such that propagation does

not overlap in nodes in which other gradients are already

established with smaller distance to another source. In this

way, each node will belong to the area of the nearest source

node. We observe that the above eco-laws for gradients already

support this behaviour, provided that the n source LSAs share

the same spc:content, but have e.g., different values of a

property spc:area.

An example application can be envisioned in the context

of adaptive pervasive displays [18]. Assuming we have n
different advertisements to show in an airport, and we want

the set of displays showing one of them to form a contiguous

area (to avoid people perceiving different advertisements as

the pass by neighbouring displays), we can use the partition

pattern and let displays choose what to visualise depending

on the area they belong to. Note this pattern automatically

accommodates the injection and removal of sources.

D. Path

Another pattern proposed in [11] is the path connecting two

distinct nodes, possibly enlarged to the set of devices whose

distance from that path is smaller than a given horizon h. This

is achieved by first making the two nodes (called source and

target) create their own gradient (with sufficient horizon to

reach each other). As soon as the source perceives the target,

it should gossip a new LSA indicating their relative distance

d. Then, each node should compare d with the sum of its

distance to source and target: if the difference is smaller than

h, then a new LSA is created to tag this node as being part of

the path. The eco-laws realising this behaviour are as follows:

[PATH] % SRC senses TRG gradient, gossiping distance

?GRA spc:type spc:gra spc:pathtrg;

spc:dist ?D; spc:source ?TRG; +

?SRC eco:type spc:gra spc:pathsrc; spc:dist 0;

--r-->

?GRA + ?SRC +

?GSP(?GSP clones ?GRA)

eco:type =spc:goss =spc:aggr;

spc:pathtrg =?TRG; spc:pathsrc =?SRC:

[SUM] % Reifying ?PTH if the node is inside the path

?TRG spc:type spc:gra; spc:dist ?DT; +

?SRC spc:type spc:gra; spc:dist ?DS; spc:rng = ?R +

?GSP spc:pathtarget =?TRG; spc:pathsrc =?SRC;

spc:dist ?DP(?DP>?DT+?DS-?R);

--->

?TRG + ?SRC + ?GSP +

?PTH(?PTH clones ?GSP) spc:type =spc:path =spc:shr;

The former eco-law makes a source detect the target at distance

?D and correspondingly gossip (without timeout) that value of

distance. The second eco-law makes any node inside the path

creating an LSA of kind spc:path. Note the latter LSA is also

of type spc:shr, so that only the copy with shortest distance

is kept.

This pattern can be useful to mark the transiting area

of people steered from a place to another in an articulated

environment, as in the case of people moving from one gate

to another in an airport. Public displays can be programmed to

show signs towards the target gate only if they stay inside the

path dynamically computed as described above. In this way,

we avoid affecting all the displays of the airport, but may still

handle the case of people departing slightly from the optimal

path.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described how spatial computing con-

cepts can be injected into a framework of pervasive service

ecosystems, in terms of a minimal set of features concerning

reification of space-time information (namely, bridging the gap

between the computational world and the physical world),

and a relocation service designed to remedy mismatches

between the locality declared by some information and its

actual position. Several examples of applications to spatial

computing structures are provided to explain the details of

these mechanisms and show the usefulness in pervasive com-

puting. We believe that the work presented in this paper has

a validity beyond the pervasive ecosystem framework, for it

can be smoothly applied to any distributed system based on a

notion of shared data-space (contrasting approaches based on

message-passing such as e.g. [11]).

The proposed chemical model can be extended in several

ways, all of which will be subject of our future investigations.

First of all, we currently retain a quite rigid structure in which

the number of reactants and products is statically defined:

further studies are needed to understand to which extent the

corresponding language can mimic transformations working

over sets of LSAs whose size is not known a priori. Then,

we currently rely on CTMC semantics to trigger eco-laws,

without considering further priority constructs which could be

interesting. Also, we assume a flat set of LSAs without any

hierarchical structuring of the topological space, which would

be of some interest for pervasive computing applications.

Finally, we note that a distributed setting requires security

and privacy mechanisms that complement the openness of the

system. We intend to develop such mechanisms as part of the

ecosystem fabric: for example, supporting spatially restricted

information flow and using inference based on property and

concept hierarchies to appropriately abstract information view-

able by agents. Alternatively, general frameworks tackling

security in coordination models like [13] can be evaluated.

A further roadmap for future works aimed at strengthening

the relationships between spatial computing, space-based coor-

dination models, and their applicability to pervasive computing

applications, includes the following activities: (i) identifying a

58



concept of expressiveness of spatial computations and a mini-
mal set of mechanisms to achieve it, along the lines of [5]; (ii)

studying techniques for predicting and controlling the global
behaviour that emerges out of the local coordination rules; (iii)

deepening the advantages of using semantic matching in the
context of spatial computing patterns, as e.g., exploited in [15];
(iv) thoroughly analysing the applicability of spatial computing
to emerging ICT scenarios like smart cities, intelligent traffic
control, and augmented social reality.

ACKNOWLEDGMENTS

This work has been supported by the EU FP7 project
“SAPERE - Self-aware Pervasive Service Ecosystems” under
contract No. 256873.

REFERENCES

[1] ARQ - a SPARQL processor for Jena. http://jena.sourceforge.net/ARQ/,
2011.

[2] Self-aware pervasive service ecosystems. http://www.sapere-project.eu,
2012.

[3] J.-P. Banâtre and T. Priol. Chemical programming of future service-
oriented architectures. JSW, 4(7):738–746, 2009.

[4] J. Beal. Flexible self-healing gradients. In Proceedings of the 2009 ACM

Symposium on Applied Computing (SAC), pages 1197–1201. ACM,
2009.

[5] J. Beal. A basis set of operators for space-time computations. In Self-

Adaptive and Self-Organizing Systems Workshop (SASOW 2010), pages
91 –97, sept. 2010.

[6] T. Berners-Lee and D. Connolly. Notation3 (N3): A readable rdf
syntax. W3C team submission, W3C, 2011. http://www.w3.org/
TeamSubmission/n3/.

[7] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable
coordination architecture for mobile agents. IEEE Internet Computing,
4(4):26–35, 2000.

[8] R. V. Guha and D. Brickley. RDF vocabulary description language 1.0:
RDF schema. W3C recommendation, W3C, Feb. 2004. http://www.w3.
org/TR/2004/REC-rdf-schema-20040210/.

[9] M. Krötzsch, P. F. Patel-Schneider, S. Rudolph, P. Hitzler, and B. Parsia.
OWL 2 web ontology language primer. Technical report, W3C, Oct.
2009. http://www.w3.org/TR/2009/REC-owl2-primer-20091027/.

[10] E. Miller and F. Manola. RDF primer. W3C recommendation, W3C,
Feb. 2004. http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[11] MIT Proto. software available at http://proto.bbn.com/, Retrieved
Nov. 1st, 2010.

[12] S. Montagna, M. Viroli, M. Risoldi, D. Pianini, and G. Di Marzo Seru-
gendo. Self-organising pervasive ecosystems: A crowd evacuation
example. In Workshop on Software Engineering for Resilient Systems,
volume 6968 of LNCS, pages 115–129. Springer, 2011.

[13] A. Omicini, A. Ricci, and M. Viroli. An algebraic approach for
modelling organisation, roles and contexts in MAS. Applicable Algebra

in Engineering, Communication and Computing, 16(2-3):151–178, Aug.
2005.

[14] A. Omicini and F. Zambonelli. Coordination for Internet application
development. Autonomous Agents and Multi-Agent Systems, 2(3):251–
269, Sept. 1999.

[15] D. Pianini, S. Virruso, R. Menezes, A. Omicini, and M. Viroli. Self or-
ganization in coordination systems using a WordNet-based ontology. In
4th IEEE International Conference on Self-Adaptive and Self-Organizing

Systems (SASO 2010), pages 114–123. IEEE CS, 27 Sept.–1 Oct. 2010.
[16] A. Rosi, M. Mamei, F. Zambonelli, S. Dobson, G. Stevenson, and J. Ye.

Social sensors and pervasive services: Approaches and perspectives. In
PerCom Workshops, pages 525–530. IEEE, 2011.

[17] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. Web Semant., 5:51–53, June 2007.

[18] M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli. Spatial coor-
dination of pervasive services through chemical-inspired tuple spaces.
ACM Transactions on Autonomous and Adaptive Systems, 6(2):14:1 –
14:24, June 2011.

[19] M. Viroli, D. Pianini, and J. Beal. Linda in space-time: an adaptive
coordination model for mobile ad-hoc environments. In M. Sirjani,
editor, Proceedings of the 14th Conference of Coordination Models

and Languages (Coordination 2012),Stockholm (Sweden), 14-15 June,
Lecture Notes in Computer Science. Springer, 2012.

[20] M. Viroli, D. Pianini, S. Montagna, and G. Stevenson. Pervasive
ecosystems: a coordination model based on semantic chemistry. In
S. Ossowski, P. Lecca, C.-C. Hung, and J. Hong, editors, 27th Annual

ACM Symposium on Applied Computing (SAC 2012), Riva del Garda,
TN, Italy, 26-30 March 2012. ACM.

[21] M. Viroli, F. Zambonelli, G. Stevenson, and S. Dobson. From

SOA to Pervasive Service Ecosystems: an approach based on Seman-

tic Web technologies. IGI Global, 2012. Available for reviewers
to download at: http://apice.unibo.it/xwiki/bin/download/Publications/
SemanticSapereIGI2012/chapter.pdf.

[22] F. Zambonelli and M. Viroli. A survey on nature-inspired metaphors
for pervasive service ecosystems. International Journal of Pervasive

Computing and Communications, 7(3):186–204, 2011.

59


