Towards a Robust Spatial Computing Language for
Modular Robots (Position Paper)

Ulrik Pagh Schultz
Modular Robotics Lab, University of Southern Denmark
Email: ups@mmmi.sdu.dk

Abstract—Self-reconfigurable, modular robots are distributed
mechatronic devices that can autonomously change their physical
shape. Self-reconfiguration from one shape to another is typically
achieved through a specific sequence of actuation operations
distributed across the modules of the robot. More generally,
control of self-reconfigurable robots requires individual modules
to act in specific ways in response to sensor input, and these
actions need to be coordinated across the modules of the robot.
Robust sequential control and role-based control of individual
modules has been experimentally demonstrated using the Dyna-
Role language. DynaRole however only allows simple sequences
of distributed operations to be executed, which is suitable for
self-reconfiguration sequences but lacks the generality needed to
implement more complex behaviors.

In this position paper we present initial ideas on generalizing
the DynaRole language to support a wider range of modular
robot control scenarios, while retaining robustness, scalability,
and the ability to declaratively address issues pertaining to the
spatial composition of the robot.

I. INTRODUCTION

Modular robotics is an approach to the design, construction
and operation of robotic devices aiming to achieve flexibility
and reliability by using a reconfigurable assembly of sim-
ple subsystems [1]. Robots built from modular components
can potentially overcome the limitations of traditional fixed-
morphology systems because they are able to rearrange mod-
ules automatically on a need basis, a process known as self-
reconfiguration, and are able to replace unserviceable mod-
ules without disrupting the system’s operations significantly.
Programming reconfigurable robots is however complicated
by the need to adapt the behavior of each of the individual
modules to the overall physical shape of the robot and the
difficulty of handling partial hardware failures in a robust
manner. These challenges bring to mind the use of spatial
programming techniques to provide robust and scalable control
coupled with the physical shape of the robot.

Control of self-reconfigurable robots can broadly be divided
into centralized and distributed approaches. The distributed
approaches are considered superior compared to centralized
approaches due to their robustness and inherent parallelism,
but are on the other hand often intractable in terms of con-
troller design. Centralized approaches are more tractable, but
have limited robustness due to having a single point of failure.
In earlier work, we have investigated the distributed execution
of a pre-specified self-reconfiguration sequence in a modular
robot [2]. A sequence is specified using a simple, centralized
scripting language, which either could be the outcome of a
planner or be hand-coded. The distributed controller generated

45

from this language allows for parallel self-reconfiguration
steps and is highly robust to communication errors and loss
of local state due to software failures. Furthermore, the self-
reconfiguration sequence can automatically be reversed if
desired. The scripting language is based on the DynaRole
role-based language for modular robots [3], but the distributed
scripting facility is only superficially integrated with the role-
based control principle, which prompts the development of
an improved language which integrates roles and robust,
distributed execution.

This position paper reviews the existing work on control
of modular robots in the context of spatial computing, with a
focus on language-based approaches. Based on this review we
propose a generalization of the DynaRole language, named
RoCoRo (for Robust Collaobrative Roles). This language
incorporates a state sharing feature heavily inspired by the
MIT Proto language [4], a notion of distributed scopes for
delimiting a modular robot into distinct ensembles of closely
collaborating modules, and a generalized approach to robust
distributed execution.

II. SPATIAL COMPUTING AND MODULAR ROBOTS

The term spatial computing denotes collections of local
computational devices distributed through a physical space, in
which: (1) the difficulty of moving information between any
two devices is strongly dependent on the distance between
them, and (2) the “functional goals” of the system are gen-
erally defined in terms of the system’s spatial structure [5].
Modular robots are obviously spatial computing systems:
computation and actuation is local to the individual module,
communication is in general module-to-module (global com-
munication such as radio could be used, but would hamper
scalability), and the typical modular robot application has to
do with controlling the physical spatial structure of the system.
Modular robots are an interesting application area for spatial
computing techniques: space and time are critical given the
robotic nature of the system, numerous variations of concrete
hardware is available for experimenting with programming,
and specifying a global behavior that is compiled into local
and robust control is considered a key issue.

Modular robotics has a significant inspiration from biolog-
ical systems, as is also the case for spatial computing. The
individual module is here seen as a cell which is part of a
larger multicellular organism. In homogeneous systems the
modules are physically identical but will typically differen-
tiate their behavior depending on their physical position in

the structure, whereas in heterogeneous systems the modules
also have different physical characteristics [6]. Chemical and
biological concepts such as gradients, hormones and central
pattern generators have been used for robust, scalable control
of modular robotic systems, although typically in an ad-hoc
fashion with an application-specific implementation in C.

A. Modular robot hardware

There are numerous different kinds of modular robots [1].
From the point of view of spatial computing, we can make an
overall categorization into macroscale modules, that must be
carefully controlled due to motion constraints, and microscale
modules, that are typically controlled in a probabilistic way
that ignores most if not all physical constraints (such modules
so far only exist in simulation). In this paper, we focus on
macroscale modules, and we are concerned with the problem
of global-to-local compilation of programs for physical modu-
lar robots with significant motion constraints, limited process-
ing capacity, and unreliable neighbor-to-neighbor communca-
tion. Microscale modules would typically be more directly
amenable to principles of self-organization and mathemetical
modelling in general, whereas macroscale modules face many
significant implementation issues that must be resolved before
these principles become relevant to consider in practice.

As an example of a macroscale module, consider the
ATRON self-reconfigurable modular robot (Figure 1), which
is our primary experimental platform. The ATRON is a
3D lattice-type system [7]. Each unit is composed of two
hemispheres, which rotate relative to each other, giving the
module one degree of freedom. Connection to neighboring
modules is performed by using its four actuated male and
four passive female connectors, each positioned at 90 degree
intervals on each hemisphere. The likewise positioned eight
infrared ports are used to communicate among neighboring
modules and to sense distance to nearby objects. The ATRON
exists in two hardware generations: one with an Atmel AT-
Megal28 micro-controller and 4K of RAM per hemisphere,
and one with a 1.2MGate FPGA and 64Mb of RAM per
hemisphere, in both cases linked by a serial connection. The
first generation ATRON is typical of most modular robotic
systems: the processing units are severely constrained in order
to keep the system simple, realistic to reduce to small size,
and potentially cost-effective by mass production. The second
generation ATRON is designed as an experimental platform
enabling experiments with standard operating systems and
programming languages [8].

Fig. 1.

The ATRON modular robot used for various applications

46

B. Self-reconfiguration

Self-reconfiguration concerns the spatial transformation of
the robot morphology from one shape to another. It is typ-
ically viewed as a sequence of operations performed by the
robot; in some cases self-reconfiguration could be the only
operation performed e.g. if performing locomotion based on
self-reconfiguration by shifting the modules towards a specific
direction in a caterpillar-like motion.

Off-line planning of self-reconfiguration sequences has been
studied for a large number of different robotic systems [6], but
is largely complementary to the concerns addressed in this pa-
per: we are interested in providing runtime execution support
for control of modular robots, including self-reconfiguration.
An off-line planner could use the language proposed in this
paper as target, and would thus benefit from its features when
performing self-reconfiguration.

On-line, distributed self-reconfiguration algorithms address
the execution issue that a number of independent modules
must coordinate their actions to perform the correct sequence
of actions required for self-reconfiguration [9], [10], [11], [12],
[13], [14]. Unlike systems which require an off-line plan to
be computed first, these algorithms allow self-reconfiguration
to be done automatically given a target shape. However, a
limitation of the existing, purely on-line distributed algorithms
is that neighbor-to-neighbor communication is essential to
determine the position of modules relative to each other, and
thus a broken communication link, even if it is only one way, is
problematic. For example, in the Proteo system by Yim et al.,
two-way neighbor to neighbor communication is required for
coordination between neighboring modules and propagation of
heat values in the heat-based method [14].

For modules with motion constraints, scaling self-
reconfiguration to large-scale scenarios is often done by the
use of metamodules: small, flexible ensembles (groups) of
closely collaborating modules that can move as a unit through
the structure of the robot to shape-change the system [15],
[16]. Metamodules emerge from the larger robot configura-
tion, move on the surface of other modules, and stop at a
new position. The flow of metamodules, from one place to
another on the structure of modules, realizes the desired self-
reconfiguration. For the ATRON robot, 3 modules are typically
combined into a metamodule; a central module plays the role
of a “leg” whereas the two others are attached as “feet”.
Programming metamodules has so far been done in a low-
level manner using a combination of local actions executed
by specific metamodules and global information propagated
throughout the structure, such as a gradient serving as attractor
for the flow of metamodules [17].

C. Biologically inspired locomotion

Whereas self-reconfiguration typically serves the purpose of
transforming the robot between configurations, locomotion is
typically performed by actuating modules in a fixed configu-
ration, for example using gait tables [6]. We here review two
examples of biologically inspired locomotion that relate both
to spatial computing and to the RoCoRo language proposed in

this paper. In both cases, locomotion is achieved by propagat-
ing timed communication signals through the spatial structure
of the robot.

Shen et al. investigates a hormone-inspired approach to
communication and control in the CONRO self-reconfigurable
robot, where a set of communication signals triggers different
behaviors in modules [18]. Hormone signals are packets that
are diffused throughout the structure of the robot, possibly
causing operations to activate or new hormones to be created
when they arrive. This is similar to chemical diffusion, which
has also been used as the basis for spatial computing sys-
tems [19], [20], [21], and has been shown to be an effective
basis for decentralized communication and execution of pro-
grams in spatial computing systems. Shen et al. demonstrate
experimentally how hormones can be used to control locomo-
tion and self-reconfiguration of physical modular robots in a
highly dynamic fashion that automatically adapts to the current
topology. Self-reconfiguration is performed using a “cascade
of actions” that in execution is similar to the distributed
sequences of DynaRole.

In the work of Stoy et al, a lizard-like structure with
four legs is programmed using a primitive form of role-
based control where modules respond differently to a time-
pulse stimuli that propagates through the structure [22]. The
behavior of each module and its response to communication
is given by its position in the robot, such as “head”, “leg”,
or “spine”. Concretely, roles are used to express how modules
interpret sensors and events, and the behavior of each module
of the robot at any given time is driven by a combination of
its role and timed signals propagated through the structure.
In this work, the sole focus is on performing cyclic behavior
for locomotion, there is no support for coordination or for
performing sequences of actions in response to events.

D. Language-based approaches

The self-reconfiguration and locomotion techniques pre-
sented thus far all follow a high-level pattern, but are to the
author’s knowledge in every case implemented using compli-
cated low-level code that is difficult to reuse in a different
scenario. Recently, language-based approaches have however
been used in the attempt of creating succinct and reusable
software for controlling modular robots.

Locally Distributed Predicates [23], [24] and Meld [25]
are two declarative programming languages specifically devel-
oped to support the operation of large-scale modular robots
composed of spherical microrobots [26] that form a self-
reconfigurable spatial computing system. The declarative style
of these languages enables complex behaviors of subsets of
modules to be derived from concise specifications of spatial
constraints. The feasibility of executing these languages on
resource-constrainted modular robots has however not been
addressed. Moreover, from a language design point of view,
the declarative style is perhaps not ideal for specifying com-
plex sequences of operations, as the actual operations to be
performed are the result of constraint resolutions as opposed
to programmer-specified behavior. This is an open issue that

47

we return to later in this paper. We note that while the context
and purpose are similar to the work presented in this paper, a
significant difference is the number of modules that robots
are anticipated to comprise: The spherical microrobots are
assumed to exist in numbers several order of magnitudes
higher than macroscale modular robots such as the ATRON.
Million-module structures are an ideal match for the typi-
cal spatial computing scenario, and can afford to overlook
reliability issues that we are intereted in addressing: in the
typical macroscale scenario, a single failing module can dis-
rupt locomotion or a whole self-reconfiguration sequence, and
must thus be taken into account, while in a highly-redundant
context, the same occurrence is often not as significant and
can in many cases be ignored due to physical redundancy.

The DynaRole language is designed for role-based control
of macroscale modular robots [3]. The DynaRole language is
a role-oriented language that allows the programmer to use
roles to declaratively specify how behaviors are deployed and
activated in the modular robot as a function of its spatial
layout and, similarly to the idea of role-based control, how
each module responds to sensor inputs and communication.
DynaRole programs run on a virtual machine that enables fast
and incremental on-line updates of programs, allowing the pro-
grammer to interactively experiment with the physical robots.
The use of roles allows behaviors to be organized into modules
that again are organized into an inheritance hierarchy, provid-
ing both reuse and behavioral specialization. Nevertheless, the
language provides no support for specifying behaviors at a
global level, the underlying virtual machine assumes reliable
communication, and in general there is no robustness towards
partial failures. Role selection is based on declarative spatial
specifications e.g. identifying wheel modules as “modules that
have a horizontal rotation axis, only have a single connection,
and are at y coordinate 0”. The declarative selection primitives
and 3D coordinate computations are specific to the robot
kinematics, but are in fact automatically generated based on
the geometrical description of a single module in the M3L
kinematics language [27], which when combined with spatial
labels [28] enables morphology-independent programming of
modular robots [29].

To enable DynaRole to be used for self-reconfiguration,
we extended the language to support robust execution of
distributed sequences of operations [2]. Specifically, self-
reconfiguration sequences are compiled to a robust and ef-
ficient implementation based on a distributed state machine
that continuously shares the current execution state between
the modules of the robot. Dependencies between operations
are explicitly stated to allow independent operations to be per-
formed in parallel while enforcing sequential ordering between
actions that are physically dependent on each other. The lan-
guage is reversible meaning that for any self-reconfiguration
sequence the reverse one is automatically generated: due to
the sequential nature of the programs, any self-reconfiguration
process described in the language is reversible by simply
performing the corresponding inverse operations in reverse
order. Reversibility is subject to physical constraints such as

gravity, changes in the environment, and hardware failures.
The continuous diffusion of the state of each module to its
neighboring modules provides a high degree of robustness
towards partial failures: one-way communication links still
serve to propagate state throughout the structure, and modules
that are reset (e.g., due to hardware issues or by a watchdog-
based timer) are automatically restored from the neighboring
modules. Nevertheless, the distributed sequences are extremely
simple, there are no conditionals, loops, or propagation of any
state except how far the sequence has executed.

III. ANALYSIS

The extension of DynaRole to support execution of dis-
tributed sequences provided a significant increase in robust-
ness, which was demonstrated both with (relatively) long-
running, reversible self-reconfiguration experiments using
physical ATRON modules, and a comprehensive set of self-
reconfiguration experiments using simulated ATRON modules
(and simulated M-TRAN [9] modules) [2]. One of the primary
challenges in programming the ATRON is ensuring robustness
towards partial hardware failures in communication, for exam-
ple two-way communication links that only provide one-way
connectivity due to misaligned infrared transceivers. Due to
the continuous state diffusion, execution in theory works as
long as for any two modules there exists a communication
path between them in the robot. The path needs neither to
be reliable nor to be static. On the other hand, as mentioned
earlier, the sequences cannot react to changes in the environ-
ment and are not really integrated with the role-based behavior
specification language.

DynaRole sequences could be made more general by adding
support for shared program state and conditionals. Shared
program state could be diffused similarly to how the dis-
tributed sequence progression is shared. In the specific case of
sequence progression, each module is reponsible for merging
the global state received from neighboring modules with the
local state — for arbitrary program state this would have to
be handled by the programmer. Such a state sharing approach
is inspired by and bears many similarities to MIT Proto [4]:
there is not necessarily a single, consistent global state, rather
each module continously computes its own view of the shared
state. Given that changes to state and progression of execution
are propagated together, different parts of the robot may have
different views on the state of the sequence, but each of
those views will be consistent and will ultimately converge
if conditionals are guaranteed to always take the same branch.
Indeed, for conditionals the primary challenge is to handle
the case where different modules executing parts of the same
sequence would take different branches due to sensor inputs
or local copies of a shared state having different values.
More generally, there is also the question of when to start
the execution of a distributed sequence: since the sequence
typically involves operations that modify the physical state
of the robot, running more than one sequence at a time is
usually not relevant. A solution to both of these issues is to
delegate the responsibility of triggering sequences and testing

48

conditionals to a single module in the structure. This provides
a simple semantics perfectly suitable for e.g. local creation and
control of metamodules, but at the obvious cost of limitations
in scalability and robustness.

The Meld and LDP language have been designed for con-
trolling subsets of modules within the larger structure. Decla-
rations are used to identify subsets of modules that perform
specified operations over time. This approach is obviously
required for scalability to larger scenarios, and is essential
for supporting the concept of metamodules, which is a proven
way of controlling larger-scale ATRON structures. In these
scenarios, module groups must be created and dissolved at
runtime. A similar scenario is that of self-assembly of modular
robots [30]. Here, a larger ensemble is built from smaller
groups of modules that become dynamically connected, but the
reverse operation splits up the ensemble into smaller groups,
each forming their own ensemble. In all these cases, the
module subsets can be seen as a dynamic scope delimiter
for execution and state propagation. This scope identifies
modules that are sharing state and optionally are participating
in the execution of a distributed sequence of actions. (This
notion of a distributed scope has many similarities to logical
neighborhoods [31].)

The design of domain-specific languages often exhibits a
tension between declarative and imperative styles of program-
ming. Unlike Meld and LDP which are purely declarative,
DynaRole favors a mixed style where declarations are used
to control the selection of behaviors in response to the spatial
layout of the robot, whereas the behaviors themselves are in
an imperative style, similarly the growing point language [19].
We believe the mixed style to be most well-suited to the task of
programming modular robots, but this remains an open issue
in the design of programming languages for modular robots
in particular and for spatial computing in general.

IV. TOWARDS THE ROCORO LANGUAGE
A. Introducing RoCoRo

We propose the RoCoRo (Robust Collaborative Roles) lan-
guage as a generalization of the DynaRole language, intended
for robust, general-purpose control of modular robots. The
language has two primary abstractions: ensembles and roles.
An ensemble is a dynamic, distributed scope the covers a
number of modules and introduces shared state and distributed
behaviors into these modules. A role applies to a single
module, and introduces local state and local behaviors into the
module. Roles are further divided into primary roles of which
only one can be active on a given module at a given point
in time, and mixin roles of which any number can be active
on a given module at a given point in time. A module can
be a member of any number of ensembles at a given point in
time. Ensembles and roles together are referred to as entities,
and the set of entities active on a given module is called its
activation. Declarative rules are used to control the activation
of entities based on spatial constraints, the entity activations on
neighboring modules, local state from roles, and shared state
from ensembles. Entities can be specialized with a semantics

abstract ensemble GradiField {
int g = @MAX_INT;
g.update {
min = @MAX_INT;
for(ng: GradiField.g) min = Math_min (min, ng);
if (g<@MAX_INT) g = min+l1;
}
}

mixin role GradiSource within GradiField { g.update { g = 0; } }

Fig. 2. Gradient field in RoCoRo applied to a configuration of two docked cars using concrete instantiations CarFrontGrad and FrontSensor which
specialize (instantiate) GradiField and GradiSource respectively. The docked car configuration moreover contains two Car ensembles which each
consists of three modules playing car-specific roles.

resembling standard object-oriented inheritance: members can ~ enhum Obstacle { None, Left, Right, Center }

be added and existing members can be overridden.
ensemble Car {

// State shared between all modules
. Obstacle obstacle = Obstacle.None;
B. RoCoRo by example: gradients

// Distributed control behavior

As a classical spatial computing example also relevant in behavior Front.move () {
modular robotics, consider the implementation of a simple Front.if (Car.obstacle==Obstacle.None) {
gradient field in RoCoRo, shown in Figure 2. The ensemble Wheel.drive (); Wheell!evade();

}
else {
Wheel.evade (); Wheel!drive();

GradiField is used to describe the scope of the gradient
field, it introduces a shared variable g and provides an update
rule for g which continuously updates the value of g. The }
update rule accesses the available (cached) values of g from }
the neighboring modules, and uses these to compute the local }
gradient value (the @ sign indicates an external constant).

.. . . role Front within Car {
The mixin role GradiSource can be activated on some

// Needs 2 neighbors

module that already is part of the GradiField ensemble, and require connected (@COMPASS_ANY)==2;
overrides the update rule from the ensemble to always make // Continuously monitor proximity
the local gradient value be zero, making the module a source in behavior checkProximity() {

the gradient field. Member overriding depends on the order at if (isProximity (BFRONT_LEFT) &&
isProximity (@FRONT_RIGHT)) {

which the entities were activated at runtime, in this case since obstacle = Obstacle.Center;
the role is created within a pre-existing ensemble, the update } else { ... }
rule from the ensemble would necessarily be overridden by the }
update rule from the role. Both entities are however declared !
abstrac.t, meaning they cannot be act1v:.a1ted without first making abstract role Wheel within Car {
a specialization for a concrete scenario. abstract constant Obstacle MY SIDE;
As an example of a specialization of the gradient entities, abstract constant Compass CONNECTED_SIDE;
consider a gradient field for an arbitrary car vehicle; this // Require 1 connection + break symmetry
gradient field is illustrated for a configuration of two docked require connected (CONNECTED_SIDE==1)

. . . . && connected (GCOMPASS_ANY)==1) ;
cars in Figure 2. Assume that the modules in each vehicle /) Activated as be(haviors by C;r m;\’]e

are subroles of Front or Wheel, and that the gradient source void drive () {
should be modules playing the role of Front and have no self.rotateContinuous (100,1);
forwards (“north”) connections. In this case, the following }

void evade () {
if ((obstacle==MY_SIDE)) {
self.rotateContinuous (50,0);

specialization will activate the gradient field:

ensemble CarFrontGrad extends GradiField {

require subrole(Front) || subrole (Wheel); b else {
} self.rotateContinuous (100,0);
mixin role FrontSensor extends GradiSource { }
require subrole (Front) && connected(NORTH)==0; }
} }
The ensemble specialization adds a “require” declaration Trole LeftWheel extends Wheel { ... }
role RigthWheel extends Wheel { ... }

which specifies under what conditions the ensemble can be
activated on a given module, and similarly for the mixin role

specializing the gradient source. Fig. 3. Two-wheeler ATRON car obstacle evasion in RoCoRo

49

C. RoCoRo by example: obstacle avoidance

One of the primary design goals of RoCoRo is to allow
modular robots to be controlled in a robust manner based
on a global description of the behavior. As an example of
this, consider obstacle avoidance for the small ATRON cars
from Figure 1 (rightmost picture), depicted schematically in
a docked configuration in Figure 2: a “Front” module in the
middle and two “Wheel” modules on the sides. An obstacle
evasion program for such a two-wheeler car robot is shown in
Figure 3. The ensemble Car is used to define the scope of the
car; the ensemble is non-abstract and defines no requirements,
and so is automatically activated on every module of the robot.
This ensemble defines a shared variable obstacle (of an
enum type, similarly to e.g. C or Java) and a shared behavior
move which can only be initiated by modules playing the role
Front.! Shared behaviors execute as distributed sequences of
operations across the modules of the robot. In this example,
the move behavior is a global description that expresses the
coordination between the various modules of the ensemble;
since it only has two steps it could however also have been
implemented as a behavior in the role Front, but the chosen
design arguably makes the overall behavior of the robot more
clear. In general, an ensemble behavior can consist of several
steps which execute as a robust sequence.

Behaviors are always initiated continuously and atomically
to the entity in which they are declared (e.g., for a given role
or ensemble, only a single behavior runs at a given point in
time). Behavior initiation is decided by a scheduler on the
individual module, whether defined on an ensemble or on a
role. This is also the case for the behavior move which starts
with a test on the shared variable obstacle. Depending on the
value of obstacle, the sequence either activates the method
drive and deactivates the evade method or alternatively the
inverse, and it does this on all modules of the robot playing
the role wheel or a subrole. Activating a method means that
it acts like a behavior, that is, it is continuously activated on
the respective modules. Deactivating a method means that it
stops acting like a behavior. For a given module, this method
activation is subject to the state of the distributed sequence
being propagated to this module.

The role Front defines the requirements for role activation
(connected to two modules, the wheels) and its behavior which
is to continuously monitor the proximity sensors and update
the shared variable obstacle correspondingly. Note that no
update rules are defined for the shared variable, this means
that the default update rule is used, which simply overwrites
the local value with the most recent value received from
the neighbors, unless the variable was assigned locally in
which case it no longer updates automatically but will start to
propagate to its neighbors. (If the variable is assigned multiple
places in the robot, modules that have not assigned a value
to the variable will receive different values at different times

UIf there were multiple modules playing this role, the behavior could be
initiated in multiple places at once, dealing with this issue is considered future
work.

50

through state propagation.) The abstract role Wwheel defines the
conditions under which a wheel is activated as well as how
it behaves when the methods drive or evade are activated.
The exact requirement and behavior depends on whether it
is a left or a right wheel, which is described by the abstract
constants that are defined by the concrete subroles for left and
right wheels (not shown). The method evade uses a slower
rotation speed if the obstacle is on the same side as the wheel,
which causes the car to turn away from the obstacle.

D. RoCoRo runtime behavior

The RoCoRo language is built on the idea of continuous
state propagation by diffusion to neighboring modules. Roles
react to changes in the environment that they receive through
diffusion, both in terms of what methods are activated and in
terms of what role should be active on the module. The shared
state from ensembles is also propagated using diffusion, and
the local update rules (explicit or implicit) define how the state
is merged.

The shared behaviors execute similarly to the distributed
sequences from DynaRole: once initiated, each operation in
the behavior explicitly denotes the module where it should
execute. A program counter denoting the set of parallel exe-
cuting operations is shared between all modules executing the
sequence, and is advanced when modules begin and complete
operations. Here, the activation of a method is instantaneous
and does not wait for the method to run; rather, the method is
activated and will start to run the next time state propagation
is performed, and will continue to do so until deactivated.

State propagation is not assumed to be reliable, on the con-
trary the language is designed for operation of modular robots
with unreliable communication links, such as the ATRON.
Changes to the module activation, updates to shared variables,
activation and deactivation of methods, and progress in the
execution of a distributed sequence propagates asynchronously
throughout the module structure, and only when the underlying
communication system has succeeded in propagating informa-
tion through a communication link. For consistency, complete
information about the state of a module is transmitted in a
single packet, but this is problematic on a system like the
ATRON where the older generation modules cannot reliably
transmit more than roughly 100 bytes of information per
packet. We leave this issue to future work.

E. Implementation status

A complete RoCoRo frontend and code generator for Java
source code is currently being implemented using the xtext
eclipse framework. The generated code assumes a high-level
object-oriented runtime system, which is being implemented
on top of the USSR generic simulation framework for modular
robots [32]. Unlike earlier work [3], this implementation does
not address the issue of code distribution in any way, this
is considered future work. Moreover, there currently is no
underlying spatial information framework, meaning that only
very simple predicates can be used to query the physical
structure of the robot. Our plan is however to integrate the

M3L language [27] with the simulator to enable automatic
generation of new robot implementations from M3L dec-
larations. Such generated robot implementations would be
automatically equipped with the ability to compute precise
spatial information based on the M3L generation of forward
kinematics.

V. DISCUSSION

There are numerous issues that must be resolved before
RoCoRo can be used for large-scale scenarios like self-
assembly and metamodules. In particular, the semantics of
ensembles needs to be defined such that multiple ensembles
of the same type can exist in the same robot. We expect that
the existing work on logical neighborhoods [31] will be a
useful source of inspiration. The RoCoRo language has been
pragmatically designed for robust control of modular robots,
and we expect that it can be applied as a generally useful
programming language for modular robots. The question of
how well RoCoRo is suited to other spatial computing tasks,
such as programming of sensor networks or swarm robotics,
is in an interesting one that will be explored in future work.
Acknowledgment: 1 would like to thank the anonymous re-
viewers for their insightful and constructive comments.

REFERENCES

[1] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular Self-Reconfigurable Robot Systems
[Grand Challenges of Robotics],” IEEE Robot. Automat. Mag., March
2007.

[2] U. P. Schultz, M. Bordignon, and K. Stoy, “Robust and reversible
execution of self-reconfiguration sequences,” Robotica, vol. 29, pp. 35—
57, 2011.

[3] M. Bordignon, K. Stoy, and U. P. Schultz, “A Virtual Machine-based
Approach for Fast and Flexible Reprogramming of Modular Robots,”
in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’09), Kobe,
Japan, May 12-17 2009, pp. 4273-4280.

[4] “MIT proto,” retrieved March 8, 2012. Software available at http://proto.
bbn.com/.

[5] J. Beal, S. Dulman, J.-L. Giavitto, and A. Spicher, “Spatial computing
workshop 2012 call for papers,” 2012, http://www.spatial-computing.
org/scw12:start, downloaded April 15th 2012.

[6] K. Stoy, D. Brandt, and D. J. Christensen, An Introduction to Self-
Reconfigurable Robots. MIT Press, 2010.

[7] E.@stergaard, K. Kassow, R. Beck, and H. Lund, “Design of the ATRON
lattice-based self-reconfigurable robot,” Autonomous Robots, vol. 21,
no. 2, pp. 165-183, 2006.

[8] M. Moghadam, D. Christensen, D. Brandt, and U. Schultz, “Towards
Python-based DSL languages for self-reconfigurable modular robotics
research,” in 2nd Int. Workshop on Domain-Specific Languages and
models for ROBotic systems (DSLRob’11), 2011.

[9] E. Yoshida, S. Murata, H. Kurokawa, K. Tomita, and S. Kokaji, “A dis-

tributed method for reconfiguration of a three-dimensional homogeneous

structure,” Advanced Robotics, no. 13, pp. 363-379, 1999.

C. Unsal, H. Kiliccote, and P. K. Khosla, “A modular self-reconfigurable

bipartite robotic system: Implementation and motion planning,” Au-

tonomous Robots, no. 10, pp. 23-40, 2001.

Z. Butler and D. Rus, “Distributed planning and control for modular

robots with unit-compressible modules,” The International Journal of

Robotics Research, no. 22, pp. 699-715, 2003.

M. D. Rosa, S. Goldstein, P. Lee, J. Campbell, and P. Pillai, “Scalable

shape sculpting via hole motion: Motion planning in lattice-constrained

modular robots,” in Proc. of the 2006 IEEE Int. Conf. on Robotics and

Automation (ICRA’06), 2006.

S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling machine,” in

Proc. of the 1994 IEEE Int. Conf. on Robotics and Automation, 1994,

pp. 441-448.

(10]

[11]

[12]

[13]

o1

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

M. Yim, Y. Zhang, J. Lamping, and E. Mao, “Distributed control for 3d
metamorphosis,” Auton. Robots, vol. 10, no. 1, pp. 41-56, 2001.

K. C. Prevas, C. Unsal, M. O. Efe, and P. K. Khosla, “A hierarchical
motion planning strategy for a uniform self-reconfigurable modular
robotic system,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), May 2002.

D. Christensen and K. Stoy, “Selecting a meta-module to shape-change
the ATRON self-reconfigurable robot,” in Proc. of IEEE Int. Conf. on
Robotics and Automations (ICRA), Orlando, USA, May 2006, pp. 2532—
2538.

D. J. Christensen, “Experiments on fault-tolerant self-reconfiguration
and emergent self-repair,” in Proc. of Symposium on Artificial Life part
of the IEEE Symposium Series on Computational Intelligence, Honolulu,
Hawaii, Apr. 2007.

W.-M. Shen, B. Salemi, and P. Will, “Hormone-inspired adaptive com-
munication and distributed control for conro self-reconfigurable robots,”
IEEE Transactions on Robotics and Automation, vol. 18, pp. 700-712,
2002.

D. Coore, “Botanical computing: A developmental approach to gen-
erating interconnect topologies on an amorphous computer,” Ph.D.
dissertation, MIT, 1999.

R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, MIT, 2001.

M. Viroli, M. Casadei, S. Montagna, and F. Zambonelli, “Spatial
coordination of pervasive services through chemical-inspired tuple
spaces,” ACM Trans. Auton. Adapt. Syst., vol. 6, no. 2, pp. 14:1-14:24,
June 2011. [Online]. Available: http://doi.acm.org/10.1145/1968513.
1968517

K. Stoy, W.-M. Shen, and P. Will, “Implementing configuration depen-
dent gaits in a self-reconfigurable robot,” in Proc. of the 2003 IEEE Int.
Conf. on Robotics and Automation (ICRA’03), Tai-Pei, Taiwan, Sept.
2003, pp. 3828-3833.

M. De Rosa, S. C. Goldstein, P. Lee, J. D. Campbell, and P. Pillai,
“Programming Modular Robots with Locally Distributed Predicates,” in
Proceedings of the 2008 IEEE International Conference on Robotics
and Automation (ICRA’08), Pasadena, CA, USA, May 19-23 2008, pp.
3156-3162.

M. De Rosa, S. C. Goldstein, P. Lee, J. Campbell, and P. S. Pillai,
“Detecting locally distributed predicates,” ACM Trans. Auton. Adapt.
Syst., vol. 6, no. 2, pp. 13:1-13:14, June 2011. [Online]. Available:
http://doi.acm.org/10.1145/1968513.1968516

M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A Declarative Approach to Programming Ensembles,”
in Proceedings of the 2007 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS’07), San Diego, CA, USA, October
29 - November 2 2007, pp. 2794-2800.

S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable
Matter,” IEEE Computer, vol. 38, no. 6, pp. 99-101, June 2005.

M. Bordignon, U. P. Schultz, and K. Stoy, “Model-based Kinematics
Generation for Modular Mechatronic Toolkits,” in Proc. 9th ACM SIG-
PLAN/SIGSOFT Int. Conf. on Generative Programming and Component
Engineering (GPCE’10), Eindhoven, The Netherlands, October 10-13
2010.

U. P. Schultz, M. Bordignon, D. J. Christensen, and K. Stoy, “Spatial
Computing with Labels,” in Proc. SASO’08 Spatial Computing Work-
shop (SCW’08), Venice, Italy, October 20 2008.

M. Bordignon, K. Stoy, and U. Schultz, “Generalized programming of
modular robots through kinematic configurations,” in Proc. of the 2011
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2011,
pp. 3659-3666.

K. Stoy, D. J. Christensen, D. Brandt, M. Bordignon, and U. P.
Schultz, “Exploit morphology to simplify docking of self-reconfigurable
robots,” in Proc. Int. Symp. on Distributed Autonomous Robotic Systems
(DARS’08), Tsukuba, Japan, 2008, pp. 441-452.

L. Mottola and G. Picco, “Logical neighborhoods: A programming
abstraction for wireless sensor networks,” in Distributed Computing in
Sensor Systems, 2006, pp. 150-168.

D. J. Christensen, D. Brandt, K. Stoy, and U. P. Schultz, “A Unified
Simulator for Self-Reconfigurable Robots,” in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS’08), France, 2008, pp. 870-
876.

