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Abstract—In cellular automata, the well-known firing squad
synchronization problems have many solutions usually provided
as explicit transition tables, and explained in terms of idealized
continuous signals and their collision. However, very few proofs
exist despite of the large amount of work on these problems.
In this presentation, we take the spatial computing point of
view and provide a field-based description of a solution. On the
cellular automata part, this provide a understandable and formal
construction of a very general solution from which a proof seems
to be derivable almost directly. On the spatial computing part,
this provides an example of recursive field functional, with a kind
of tail-recursivity leading to a strictly finite system.

I. INTRODUCTION
A. Firing squad and signal-based programming
In cellular automata, the firing squad synchronization prob-

lem (FSSP) [2], [12], [13] may be stated as follows: find a
finite transition function having a given (fire) state such that,
starting from arbitrary sized line of cells where all but one cell
(the general) are quiescent, all cells enter for the first time in
this state synchronously. A classical solution is to send signals
at different speed so that they first collide at the middles of the
space, then at the quarter of the space, then at the eighth of the
space, and so on, until an accumulation point is reached. For
example, if one sends two bouncing signals from the leftmost
cell, one at speed 1 and another at speed 1

3 , these two signals
will collide at the middle of the space. However, this is only
an idealized presentation since actual solutions have to deal
with peculiarities appearing when applying these continuous
concepts to the discrete cellular space, the parity of the space
being the simplest example. Solutions based on these type on
intuition are therefore obtained by solving these peculiarities
by hand by iterative correction of the transition table.
Despite these difficulties, this basic idea has been gen-

eralized into many solutions for the classical problems and
for some generalizations. One can consider synchronizing
with general at any arbitrary position [1], [18], [20], many
generals synchronous or not [17], synchronizing 2D-spaces
[3], [6], [17], 3D-spaces [16], graphs [5], [15], and variants
with different constraints on shape of the space, that may also
be dynamic to some extent [4]. However, the drawback of
the method is that proofs are hard to obtain directly from the
solution, and mistakes has also been found in some cases,
using large experiment on many initial configuration. Only a
very poor number of proofs of correctness [11], [14], [19]
exist.

B. Field-based approaches in spatial computing

Spatial computing considers massively distributed architec-
tures as (programmable) spaces and promote the use of spatial
concepts to ease the programming of such architectures. Data
structure are therefore spatially extended objects, as can be
seen in languages such as PROTO and MGS. In particular, the
concept of fields is an important one: it is an object which
associates a value to each point in space and specifies the
local evolution of these values in time. In contrast with cellular
automata, the values evolution is not a closed system but an
open one, i.e. it may depend on values determined by other
input fields. Fields can therefore be composed together to form
more complex fields or fully determined (closed) systems, as
functions can be composed to obtain more complex functions
or programs.
In [7]–[10], the concept of fields has been applied to cellular

automata in order to solve algorithmically different dynamic
geometric problems in a modular way, using a common set
of fields. In particular, the distance field is present in all of
them and is the primary building block to collect spatial infor-
mation in a finite-state manner. While all these problems are
geometrical, it was postulated that non-geometrical problems
could also be tackled with the same building blocks, and this
paper is here to provide such an example. Also, while fields
are really manipulated as functions, no cases analogous to
recursive functions arose naturally from previously considered
problems, this paper is again here to provide such an example,
along with a notion of tail-recursivity.
Indeed, we propose to apply the same methodology to pro-

vide an algorithmic description of the FSSP. By algorithmic,
we mean decomposing the problem into easier sub-problems,
solving each sub-problem by a field, and composing the fields
together to obtain a cellular automata solving the problem. In
this process, each sub-problem and field will have a simple
and fully independent semantic, contrary to signals whose
meanings depend on all the signals present in the system.
Ultimately, we show that we recover the classical concepts
of modularity, reusability, semantic decomposition, etc in the
context of cellular automata. Benefits of this approach are
directly observable by the generality of the provided solution,
and by how easier and intelligible a proof for this system
seems to be compared to previous solutions.
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Fig. 1. The three fields describing the initial region and its middle

II. A FIELD-BASED DESCRIPTION OF THE FSSP
A. An algorithmic decomposition
We recall that the main idea is to divide the space into two

equals regions and to proceed recursively until all regions have
size 1.
Naturally, the first step is to identify the middle of the

physical space. To do this we introduce three fields. The first
field, R0, represents the discovery of the region to be cut.
The second field, D0, will provide some distance information
deduced from R0, such that this distance will eventually allows
us to detect the middle. The third one is a boolean field, F 0

that indicates the correctness of the values of R0 and D0.
Indeed, R0 and D0 are dynamic fields, which means that R0

discovers the space from time to time and so its derived field
D0 also updates accordingly. Eventually R0 stabilizes when
it corresponds to the whole physical space and leading in turn
to the stabilization of D0 (see Section II-B).
Now that we have a region and its middle, we introduce

another collection of three fields: R1 that represents the
discovery of the two regions induced by the previous cut of
the space, D1 the distance field deduced from R1 such that
the middles of the two regions will be detected, and F 1 the
corresponding correctness field. As the reader might guess,
this extends to a recursive schema which defines R�, D� and
F � in terms of R�−1, D�−1 and F �−1 (see Section II-C).
This obviously implies that we need an unbounded number

of fields. However, we will later explain how this can be
reduced to a finite system (see Section II-D).

B. Initial region and its middle
The initial region field R0 is defined using three states O

(“outside”), B (“border”) and I (“inside”). O is the quiescent
state of the field. A cell in state O will turn into B as soon as

one of its neighbors is in state B. The “border” state is used to
mark the border of the region currently discovered, which at
this step must finally correspond the whole physical space. A
cell in state B which does not coincide with a physical border
of the space updates its state to I . With the help of a given
static boolean field Border0(x) that states for each x if it is
a physical border or not, the field R0 is formally defined by:

R
0
t (x) =






B if R0
t−1(x) = O∧

∃y ∈ N(x);R0
t−1(y) = B

I if R0
t−1(x) = B ∧ ¬Border0(x)

R0
t−1(x) otherwise.

(1)
From any initial condition of the form BO . . . O, the evolution
of R0 produces a space-time diagram like the one depicted in
Fig. 1(a).
Now that we have the field that, after some time, represents

the whole initial region, we want to determine its middle point.
To do so, we use the fact that the middle of a region is
the further inner point from both “borders”. So, we build the
distance field D0, which associates to each cell its distance to
latest observed nearest “borders” of the region. As the middle
is necessarily an inner cell, the value of D0 of any cell that is
not inside is defined as 0. One can note that this is coherent
with the fact that a “border” is obviously at distance 0 from a
“border”. For an inner cell its distance to the latest observed
nearest “border” is obviously 1 plus the smallest distance to
the latest observed nearest “border” of its neighbors. This is
formally defined by:

D
0
t (x) =

�
0 if R0

t (x) �= I

miny∈N(x) 1 +D0
t−1(y) otherwise

(2)

This rule has been extensively studied as a generic building
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Fig. 2. The three fields describing the level 1

block in cellular automata that solve different geometric prob-
lems (see [7]–[10]). It is sufficient to detect non-strict local
maxima from the distance field to obtain the middle cell(s) of
the region. This is illustrated in Fig. 1(b) which shows how
region and distance fields evolve.

A final piece is required with respect to synchronization: we
need to know when values provided by the region and distance
fields are finals. Hence, we define a boolean field F 0 which
associates to each cell a boolean indicating if its respective
region and distance values are definitely correct. It is possible
to determine the appropriate value by a simple case analysis.
First, no field’s value of an “outside” cell is considered correct
(it has not been discovered yet). “Border” cell field’s values
are correct only if they coincide with a physical border. For
“inside” cells, we know by construction that they are really
inside so this value is always correct, but we still need to
ensure that the distance value is also correct. To determine
the distance value correctness, we use the fact that the region
only grows, which implies that distance values only increase.
And, from the point of view of a cell x, this means that
once a neighbor is both correct and minimaly-valued in its
neighborhood, it will remain such forever. This ensures that the
distance value of x will not evolve anymore since it correspond
to this fixed value + 1 as specified in Eq. (2). Altogether, this
leads to the following formal definition, whose evolution is
illustrated in Fig. 1(c).

F 0
t (x) =

�





R0
t (x) = B ∧Border0(x)

R0
t (x) = I ∧ ∃y ∈ N(x);

D0
t (x) = 1 +D0

t−1(y) ∧ F 0
t−1(y)

(3)

C. Subsequent regions and middles

Now that the initial region is identified and that enough
information has been built to divide it, let us proceed by
adding new fields to obtain the division and provide sufficient
information to recurse.
First, let us clearly identify what we want to build. From

Fig. 1, it should be clear that we are going to build one
region starting from the left and another starting from the
right. However, we shall prevent ourselves to trust our eyes
too much, but try to describe what we want by definition.
Let us come back on what we have done for the initial

region and do nearly the same here. Given the predicate
Border0(x), what we built is a region field whose values are,
after some time, R0(x) = B for x’s that are physical borders,
and R0(x) = I for x’s that are not physical borders and so
inner cells.
In the region field R1, we want to obtain as borders all

the “borders” obtained at the previous level and new ones
corresponding to the middle(s) cell(s) finally obtained at the
previous level. Thus, we consider as borders of the two
regions all correct x’s such that R0(x) = B, and all x’s that
correspond to correct non-strict local maxima of D0. We also
want to have R1(x) = I everywhere x is correct and is neither
a “border” nor a maximum among its neighbors in D0. This
naturally leads to the following recursive formal definition of
the two predicates Border and Inside for any level l > 0 :

Border�+1
t (x) =

�





R�
t(x) = B ∧ F �

t (x)

∀y ∈ {x} ∪N(x);

D�
t−1(x) ≥ D�

t−1(y) ∧ F �
t−1(y)

(4)
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Fig. 3. Stack (level 0 on top) of all field values computed at time 96. Line length is 54.

Inside
�+1
t (x) = F

�
t (x) ∧R

�
t(x) �= B

∧ ∃y ∈ N(x); D�
t−1(y) > D

�
t(x) (5)

Given these two boolean fields, we can apply the same
reasoning as before and, obtain nearly the same evolution
rule as the initial region. We only need to change the use
of ¬Border0(x) in Eq. 1 into Inside1t (x) and the use of
Border0(x) in Eq. 3 into Border1t (x). Thus, we obtain the
three additional fields describing the first level of division, and
iterating this construction, for any level l > 0 we obtain the
following recursive definition:

R
�
t(x) =






B if R�
t−1(x) = O∧
∃y ∈ N(x);R�

t−1(y) = B

I if R�
t−1(x) = B ∧ Inside�t(x)

R�
t−1(x) otherwise.

(6)

D
�
t(x) =

�
0 if R�

t(x) �= I

miny∈N(x) 1 +D�
t−1(y) otherwise.

(7)

F
�
t (x) =

�





R�
t(x) = B ∧Border�t(x)

R�
t(x) = I ∧ ∃y ∈ N(x);

D�
t(x) = 1 +D�

t−1(y) ∧ F �
t−1(y)

(8)

Fig. 2 shows how the three fields evolve at level 1 of the
algorithm. In Fig. 2(a) we have one region that grows from the
left and starts at the initial time, and another one that grows
from the right and starts at time n−1 (n is the number of cells).
The distance field D1 evolves inside each region described by
R1.
One can observe that while in D0 the non-strict local

maxima spanned two cells, then in D1 there is two non-strict
local maxima that both span only one cell. This depends on
whether the region’s length is odd or even (Fig. 2(b)).

D. Reduction to a finite number of states
Now we face two problems. The first one is that distance

fields are defined over integers and the other one that we ob-
tained an unbounded number of fields. A detailed explanation
of the reducability in finite state is out of the scope of this
paper, but let us sketch the most important steps.
The first problem can be solved using a special property. If

an integer field is Lipschitz-continuous, i.e. the difference of
values between two neighbors is bounded, and the information
used in the system only depends on this difference, then it
can be transformed into a finite-state field (refer to [8] for
all the details). An application of this result is that when the
difference is at most 1, then only 3 states are required. With
definitions given in Eq. 2 and Eq. 7, it’s easy to remark that

all the distance fields D� can therefore be represented with
only 3 states each.
To solve the second problem we remark that in some

sense the recursive schema is “tail-recursive”. Indeed, tail-
recursiveness is about conserving only the information that are
required by the subsequent recursive calls. From the point of
view of a cell x, if its field values at given level � are correct,
this means that they do not evolve anymore. If furthermore its
field values at �+ 1 are also correct and so are the values of
its neighbors, then its values at level � are no more useful and
can be discarded. This is observable in Fig. 3 where fields
values are represented for all cells at a given time. Values
(x, �) in darker gray are correct (F �

t (x) is true), and if the
whole neighborhood at the next level is also gray, then (x, �)
can be “forgotten”. By discarding all these gray values (and
a little bit more with a much finer analysis), we obtain for
each cell a lowest useful level represented by a bold surround
in the figure. In fact, these are the only necessary values
that need to be stored, along with their associated lowest
level number (which can be represented with only three state
thanks to the Lipschitz-continuous argument). Altogether, this
shows that field values are uniformly bounded, and that only a
finite number of fields is required. This imply that we finally
describe the behavior of a cellular automaton.

III. CONCLUSION

Without any modification, the system described in this paper
is much more general than one can think. Indeed, in all our
description we never use the property that there is only one
general on the left. Thus we can naturally expect that it is
agnostic to such particularities, and this is exactly the case
as one can observe in Fig. 4. We also never assumed that
the wake-up of the cells happens one after the other from
the general, so that removing the corresponding sub-system,
one obtain a solution for arbitrary initial desynchronized
configuration.
It seems also possible to compose the same fields in slightly

different ways to obtain different kind of solutions or to extend
this solution to higher dimensions. We can also expect that a
proof of correctness of the solution for all sizes and all initial
desynchronized configurations to be much more easier than
for classical solutions, each field is simple and almost correct
by construction, and so is their composition.
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