
Spatial Computing for non-IT Specialists

Steffan Karger, Agostino Di Figlia, Maurice Bos, Andrei Pruteanu, Stefan Dulman
Delft University of Technology, the Netherlands

{s.j.karger, a.difiglia, m.bos-1}@student.tudelft.nl, {a.s.pruteanu, s.o.dulman}@tudelft.nl

ABSTRACT

Designers and architects are showing an increasing interest
for intelligent and interactive building environments, em-
ploying large numbers of networked embedded devices, often
equipped with wireless communication capabilities. Build-
ing small prototypes is usually feasible with a central-control
approach. As soon as the prototype needs to be scaled up
in the commissioned buildings, complexity arises due to the
large number of interacting devices.

In this paper, we link the interactive environments appli-
cations with the field of spatial computing. As we will show,
the two are strongly correlated and spatial computing can
prove to be an elegant solution for the problem at hand.
Moreover, spatial computing has the potential of uncover-
ing new designs, based on the emergent behavior proper-
ties of large-scale networks. We propose a new framework,
called IDS (Interactive Design Studio), which allows for ex-
ploration of new design possibilities employing networked
embedded systems, without the expertise of IT-specialists.

The IDS framework is built on top of the Proto program-
ming language and targets the protoDeck interactive floor.
We showcase its capabilities via two application scenarios
and confirm its benefits by means of a survey involving ar-
chitecture students. Finally, we show implementation details
of the complete software stack and experimental results from
deployment on the embedded platform.

Keywords

spatial computing, distributed systems, interactive design,
embedded systems, software framework

1. INTRODUCTION

Recent years have seen an explosion in the number of net-
worked devices embedded into engineered systems. Wireless
sensor networks, swarming robots, mobile ad-hoc networks,
smart phones and smart appliances are just a few well-known
application domains where this has already become a reality.
Properties such as flexibility and ease of use make networked
systems attractive solutions for problems outside the infor-
mation technology domain.

Architects show an increasing interest for intelligent and

Appears in: Proceedings of the 11th International Confer-

ence on Autonomous Agents and Multiagent Systems (AA-

MAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),

June, 4–8, 2012, Valencia, Spain.

Copyright c� 2012, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

interactive building environments [7]. Current state-of-the-
art includes designs such as the Ada floor [8]. It is composed
of interconnected tiles capable of interacting with the users
stepping on it by means of light patterns. Another example
is the Healing pool by Brian Knep[15], consisting of a projec-
tion of organic patterns on the floor; the patterns self-heal
after being torn apart by people walking around. These
projects emphasize the growing trend of designing complex
interactive spaces in private or public buildings [11, 18].

Even though interactivity is achieved with different tech-
nologies, a common property is occurring in all applications:
computational elements are spread out and fill the design
space. They interact with each other and the users in var-
ious ways leading to complex behaviors. When surveying
the current deployments, we noticed that the current instal-
lations usually employ some form of centralized control. For
prototypes consisting of a small number of elements, that
is not an issue. When scaling up to large setups, central-
ized control becomes almost impossible and the distributed
interaction is simply dropped. When trying to mimic dis-
tributed systems, such as in the case of the healing pool
application [15], the technology used (projectors, cameras
and image recognition, a limited-sized deployment area) im-
plies the need of a specific, carefully controlled environment,
considerably limiting the design freedom.

At high level, we believe that the problem architects face
when designing interactive environments is very close to the

killer application for the field of spatial computing. The cor-
relation between the two topics is obvious and we can break
down the application scenario in two parts linked to the
bottom-up and top-down design of complex systems:

• With an ever increasing number of computing devices
equipped with sensing and actuation capabilities, there
is a quest for exploring feasible and interesting inter-
active designs that make use of embedded platforms.
Non-IT specialists need ways to fast prototype ideas
on large-scale systems, while abstracting from the un-
derlying technological complexity related to commu-
nication protocols, programming languages, operating
systems, embedded virtual machines, hardware plat-
forms etc.

• Secondly, the complexity that arises in such distributed
systems, in the form of top-down translation of specifi-
cations for system behavior into local rules (also called
global-to-local compiling) is a challenging research ques-
tion that has been addressed before for different appli-
cation domains [17].

33



Both problems are still open for research in the field of
complexity theory in general and spatial computing in par-
ticular. To the best of our knowledge, solutions to both
problems include human expertise [9]. We do not hold a
completely autonomous solution to these problems - we merely
attempt to provide a framework in the form of a software
tool chain that makes use of distributed computing, sensing
and actuation. The framework targets designers and archi-
tects - the non-IT specialists - and aims to help them explore
various interactive design ideas via spatial computing con-
structs.

Previous attempts of specifying global system behaviors
via spatial computing constructs were targeted at the so-
called IT specialists: we refer the reader to a number of
spatial computing domain-specific languages (DSLs) made
available in recent years, such as Proto [3], Kairos [10] and
TOTA [16]. Our framework is built on top of such a pro-
gramming language, Proto. We further elaborate on this in
Section 2.

The framework we present in this paper has been tailored
for protoSpace [12] at TU Delft, Faculty of Architecture,
Hyperbody Group[6]. The space has an interactive floor,
protoDeck, consisting of 189 tiles each equipped with a mi-
crocontroller, RGB leds and a pressure sensor (Figure 1).
Due to the power requirements of the LED’s, the nodes
are powered from the grid. ProtoSpace 3.0 [12] also com-
prises other multimedia devices such as beamers, a complex
sound system and various interactive objects. The ambition
is to use protoSpace and all its components as an ecosystem
capable to create interactive user experiences. To achieve
that, we provide the non-IT specialists with a friendly design
tool chain. It facilitates the design of interactive spaces for
various events such as art exhibitions, dance performances,
teaching activities, social events, etc.

The design tool chain (Figure 2) comprises four compo-
nents: GUI, StateChart Compiler, DeckSim and protoDeck.
They correspond to the four stages of the design process.
The GUI serves as a graphical specification tool that eases
the description of the tiles’ behavior. The GUI produces a
state chart representation of the behavior and is given as an
input to the StateChart Compiler which generates the plat-
form specific code for DeckSim and the protoDeck hardware.
The SC Compiler aims to substitute the embedded systems
specialists in the design loop.

The paper has the following outline. In Section 2 we dis-
cuss related work for both interactive spaces and spatial
computing platforms. Section 3 outlines and describes the
framework and its components in detail. An example sce-
nario is given in Section 4. We show the experimental results
in Section 5. We discuss the results in Section 6. Finally,
we conclude in Section 7.

2. RELATED WORK

Interactive environments have become popular in recent
years [5] and several aspects achieving interactivity have
been explored. Next section will discuss three interactive
spaces (Ada [8], Healing Pool [13] and Hallway monitor-

ing [2]) and their main characteristics in terms of interac-
tivity type and adopted techniques.

2.1 Interactive Environments

Delbruck et al. have created a tactile luminous floor,
Ada, for an interactive autonomous space. The space con-

Figure 1: The protoDeck floor. On the left the floor detect-
ing presence of a person, on the right an impression of the
shape of the floor.

sists of a floor, projection screens, microphones, ceiling cam-
eras, speakers and theatre lights. The tiles on the floor are
equipped with tactile load sensors and RGB lamps. They
are networked as a cellular automata using an industrial au-
tomation network, Interbus. A centralized approach is used
for controlling the floor’s behavior. In fact, the tile’s local
controller delivers the data to a PC which controls the be-
havior. In contrast, our approach aims to provide a complete
distributed approach to achieve user interactions.

Another example of an interactive floor isHealing Pool [13].
It was presented at the exhibition in the Brauer Museum
of Art (Valparaiso University). The Healing Pool is an in-
teractive video installation equipped with video projectors,
cameras, custom software and a vinyl floor. The main char-
acteristic is the ability to project organic patterns that are
torn apart by visitors walking on the floor. Ultimately, they
rebuild themselves in an always unique way. Even though
the work relies upon artificial intelligence and imaging tech-
niques it shows the strain and increasing interest in interac-
tive spaces. We believe that large-scale complex interaction
can be achieved only by means of distributed systems of
sensors and actuators via the spatial computing paradigm.

An approach technologically more similar to ours is Hall-
way Monitoring [2]. In this project, wireless sensor nodes
have been placed underneath a hallway floor. The sensor
nodes are able to sense pressure on the tiles and actuate
lights and speakers on the hallway walls. Due to the limited
space and the lack of direct feedback from the tiles, the pos-
sibilities for complex interaction are also limited. No extra
objects to interact with can be placed in the hallway and
the movement of a person is unidirectional only. The set-
up offers interesting research possibilities from the computer
science viewpoint, but it lacks expressiveness for designers
and architects.

2.2 Spatial Computing Platforms

The goal for the protoDeck space is to have an interac-
tive prototyping platform in which architects and designers
can develop interactive environments. The spatial and tem-
poral properties are both considered as fundamental con-
stituents. This is strongly correlated to the Spatial Com-
puting paradigm, which endeavors to unleash the potential
of using the notions of space and time in programming of
distributed systems. In the past, several efforts were taken
in this area [4]. In this section we will discuss three of them
(Proto [3], Kairos [10] and TOTA [16]). Additionaly, we
explain why we chose Proto for this project.

34



Proto[3] is a functional language that employs the con-

cept of an amorphous medium abstraction[1], in which the

discretization of space and time is hidden from the end user.

When using Proto, programs do not incorporate their own

algorithms for communication and communication related

services (e.g, neighborhood discovery or distance estima-

tion). The information about the network and neighbor-

hood is presumed to be available and should be taken care

of by the underlying layers. These features enable Proto pro-

grams to be very compact. Proto comes with a tool chain

that includes a compiler, a simulator and a virtual machine.

Kairos[10] is based on ideas from shared-memory parallel

programming. It delivers three primitives: a node abstrac-

tion, delivering the programmer tools to manipulate (lists

of) nodes, a list of one-hop neighbours and remote data ac-

cess. Remote data access does not guarantee delivering the

correct value, instead Karios relies on ’eventual consistency’.

Eventually the system should converge to the correct solu-

tion to the problem at hand. While executing tasks, Kairos

blocks the execution of the application. Kairos’ functional-

ity is delivered through an API, which can be accessed from

imperative programming environments. Kairos still remains

in a proof-of-concept state.

TOTA[16] stands for ’Tuples over the Air’. It is based on

the notion of Tuple fields, which can be seen as information

fields from nature, like force fields or chemical gradients. Tu-

ples consist of a content element, a propagation rule and a

maintenance rule. Tuples are produced locally and then dis-

tributed through the network. Its limitation comes from the

fact information from tuples can not be aggregated. TOTA

exposes a Java API to the end user.

When choosing a platform we have to remember our goal:

an easy to use environment for architects and designers. For

this, we need to be able to generate programs from a graphi-

cal representation (in our case a state chart) and a tool chain

that is feature-complete. The translation from state charts

to Proto code is a viable option.

3. SYSTEM DESCRIPTION

The proposed framework is described by the block dia-

gram in Figure 2. The diagram shows four components that

correspond to the four stages of our design process. In the

following we briefly describe each component and the design

rationale behind it.

3.1 GUI

The user interacts with the GUI which consists, in the

current state, of a graphical state chart editor. It allows non-

IT experts to design a state chart representing the desired

behavior of individual tiles. The state chart describes the

state transitions of a single tile of the protoDeck floor. The

ultimate ambition is to design a user friendly and easy to

use GUI for specifying system level and node level behaviors

that will hide the cumbersome design of a state chart. The

GUI produces an xml file that is structured according to the

W3C State Chart extensible Markup Language which serves

as an input to the SC Compiler. The rationale behind the

use of a state chart representation for the tile’s behavior

is the following. Since the system under design is reactive

and its elements are connected in a mesh topology, the state

charts proved to be suitable modeling technique. Moreover,

state charts have a way, though limited, of specifying time

which is sufficient for our application purposes.

Figure 2: Framework block diagram

3.2 StateChart Compiler

StateChart Compiler is a java based tool that parses the

scxml file and produces code for a specific platform or en-

vironment. In our case the two supported languages are

Netlogo[19] and Proto[3]. In order to be able to support

as many end platforms as possible the specification of the

scxml presents a strongly generalized set of events, condi-

tions and actions that can easily be mapped to any specific

platform code. In our specific case, the end platforms are

DeckSim and protoDeck. The former is a Netlogo based

simulation environment, while the latter consists of a mesh

network of embedded system devices running the DelftPro-

toVM. The compilation process is a customizable process

which receives as input a configuration file describing the

used hardware platform in terms of its sensors and actua-

tors and ,in addition, it uses the language specific spatial

computing libraries. The SC Compiler interprets the scxml

by translating the state chart with the provided hardware

specifics. While, the spatial actions are mapped by referenc-

ing the provided language specific library. The SC Compiler

can be further extended by adding a desired new language

specific library and translator module.

3.3 DeckSim

DeckSim is a Netlogo based simulator that provides the

possibility to test and have visual feedback of the state chart

behavior diagram. The simulation models protoDeck behav-

ior and allows to simulate and test interactions. This way a

speedup of the design process can be achieved. The iterative

design process consists of a design and test cycle that is usu-

ally performed by a designer or architect during sketching or

prototyping. They are able to iterate from the specification

phase to the test phase and back before deploying the code

to protoDeck. Simulations can be run either stand alone or

guided.

3.4 Embedded Software Platform

3.4.1 DelftProto VM
The DelftProto VM is a virtual machine that executes

Proto bytecode. In September 2011 it replaced the original

virtual machine in the Proto distribution, the ’Proto Ker-

nel’. The DelftProto VM code is written to be extremely

portable; we were able to succesfully run it on ARM Cor-

tex, Atmel ATmega, MSP430, Intel 586 and AMD 64.

The instruction set of the VM is designed specifically for

spatial computing applications. It incorporates instructions

that form an aggregate from neighborhood information and

common (high level) data types such as vectors are natively

35



Figure 3: Schematic view of platform components.

supported. Most instructions have implicit operands and
work on multiple data types, which allows complex programs
to be compiled to very small binaries that can be executed
by the VM. For example, a simple gradient algorithm has a
size of 35 bytes.

An improved virtual machine based on the DelftProto
VM, the Delft VM, is currently being developed. Whereas
the DelftProto VM is specifically made for programs writ-
ten in Proto, the Delft VM supports other languages as well.
The instruction set makes it easier to generate code from an
imperative language, although the focus still lies on func-
tional languages.

3.4.2 Communication and Scheduling
When an application is translated to local rules, it is com-

piled to run on the virtual machine. We provide an embed-
ded software framework that is easily portable to different
hardware platforms. A schematic view of the building blocks
is shown in Figure 3.

We use protoDeck as prototyping platform(Figure 1). Each
tile is equipped with RGB leds and a pressure sensor. The
nodes beneath the tiles are based on NXP LPCXPresso
LPC1769 (ARM Cortex-M3) modules connected in a wired
mesh configuration. Inter node communication uses the
chip’s UARTs at 115K2 baud, but our implementation is
built to be easily adapted to other communication methods.
A wireless (2.4 GHz, 802.15.4 based) version is planned for
future experiments. The floor is able to interact with other
objects in the room, for example tables, chairs, external
lighting and beamers.

The first software layer consists of the FreeRTOS operat-
ing system and hardware-specific driver libraries. These de-
liver basic facilities for the layers on top. The middle layer
consists of three parts: the communication library called
ProtoComm, the DelftProto VM and a reprogramming fa-
cility to update Proto applications virally.

The ProtoComm library supplies the VM with neighbor-
hood information in a best-effort way, since achieving perfect
knowledge of all neighbors is generally not possible in real
world applications. It takes care of neighborhood discov-
ery, distance estimation, lag estimation, exchange of state
information and application updates.

ProtoComm is designed to be compatible with multiple
communication types. Incoming data is buffered by device
driver interrupt routines. ProtoComm scans the buffers for

valid packets and processes them. Packet processing that
involves changing the state of the virtual machine is post-
poned until a virtual machine execution round is completed.

The reprogramming library enables the user to virally roll
out new Proto applications without the need to update each
node manually. Applications consist of (compact) Proto
bytecode, what makes updating the application easier and
faster compared to updating a complete platform binary.
Nodes keep track of their application version and automati-
cally disseminate new applications as soon as a new version
is detected in the neighborhood. An update process is initi-
ated by updating a single node with the new application.

For both disseminating state information and application
updates, a negotiation based approach (ADV-REQ-DATA)
such as in [14] is employed to avoid broadcast storms and
hidden terminal problems. For the case of state updates,
which are just exchanged between direct neighbors and thus
not propagated, we can reduce completion time by replacing
the first advertisement after a detected change in local state
with a data packet. The negotiation based technique contin-
ues to run in the background to take care of the occasional
failed initial communication.

4. INTERACTIVE SCENARIO

As an example scenario we propose using protoSpace to
enhance art exhibitions. We imagine the space consisting of
several interactive components such as the protoDeck and
responsive furniture which engage the visitor and guide him
through the various art objects. When visitors walk across
the room, the floor leaves a colored trail along the visitor’s
path. The art objects are placed in showcases which are
demarcated by the floor by creating a pulsating light circle
around them. Whenever a visitor approaches one of the
showcases it triggers an increase of the circle’s radius which
will surround object and visitor. The light patterns will
change triggered by different factors such as the number of
people that are close to an art object or the crossing of
different visitor trails.

The aforementioned scenario can be composed of several
sub-behaviors the space performs in a distributed fashion.
Such sub-behaviors are, for example, a distance metric or
a desired light pattern. For that reason, we divide the sce-
nario in several sub-behaviors. At the current stage of our
project, we performed our experiments focusing on two test
applications - a gradient application and firefly synchroniza-
tion algorithm. By creating a gradient we were able to de-
fine a distance metric and show the viability of using spatial
primitives. Firefly synchronization is a suitable test to as-
sess the viability of using time primitives while continuously
stressing the communication layer.

5. EXPERIMENTAL RESULTS

5.1 User Survey

In order to confirm the benefits of IDS we performed a
survey amongst architecture students that have used pro-
toSpace in one of their projects. We were interested in
three different topics. Firstly, what kind of network of many
‘smart’ components they would like an environment to be
equipped with (Figure 4a). Secondly, we asked what they
would like to improve or upgrade in protoSpace (Figure 4a).
Finally, we asked what kind of software tools they would like

36



Figure 5: RAM usage comparison for the four Proto appli-
cations.

to have at hand to design or prototype protoDeck or alike
(Figure 4c).

In Figure 4 we show the radar charts of the survey out-
come. In Figure 4a we can see that the most requested
type of ‘smart’ component is a network of smart furniture
followed by a light control system and control software for
the space. Smart furniture is for example a chair, table or
other object equipped with sensors and actuators. Figure
4b shows the most requested features to add to the existing
prototype. These are a designer community, crowd sourcing
and more advanced lighting capabilities. Community and
crowd sourcing are in a certain way related. With commu-
nity the students mostly intend a forum like website where
they can discuss current and past projects regarding proto-
Space. With crowd sourcing we mean code sharing. Finally,
Figure 4c shows that most of the surveyed students would
like to have a simulation tool or a web based application
that is capable to simulate protoSpace. The gathered infor-
mation is used to guide the ongoing research.

5.2 Simulations versus Testbed Evaluation

As most embedded software developers will acknowledge,
the step from simulation to deployment is far from trivial.
In this section we highlight several issues we came across
while making this step.

Most simulations are based on unrealistic assumptions,
like instant communication, infinitesimal computation times
and a certain level of synchrony. In the actual system usually
they do not hold. Our specific approach to handle this is still
work in progress.

A larger number of nodes implies a higher risk of hardware
failures. We conducted some experiments with the previous
generation of protoDeck nodes. The testbed consisted of
24 nodes (3 by 8 mesh) with wired serial connections. The
connections were not amplified and cables were connected
directly to pin headers. This set-up was working when faced
with a number of hardware failures. People walking on the
floor caused wires to loose contact or suffer from breakage
and caused some nodes to die. The high number of compo-
nents made these failures a rule rather than an exception.
This calls for software that can handle failing nodes, unreli-
able communication.

There are possible software failures that will not show
until the software is run on the actual embedded platform.
However, once on the hardware, it is much more difficult to
find the cause of the failures. Getting the simulated environ-

Figure 6: Script size comparison for the four Proto applica-
tions.

ment closer to the real world scenario would help to discover
failures earlier.

5.3 Memory Usage and Script Size

To asses IDS, we implemented two spatial computing ap-
plications, building a gradient and firefly synchronization.
Both are implemented as a manually crafted Proto applica-
tion as well as an application generated by IDS. Tests are
run in a five node network in which one of the nodes was
connected to three neighbors. Memory usage statistics were
collected from this node.

Shown in Figure 5 is the maximum memory usage in bytes
for the various applications. As can be observed, the bulk
memory is consumed by the heap. The heap is used for
storing incoming packets and during execution of the vir-
tual machine. Our primary interest here is the increase in
memory usage with increasing application complexity, not
the absolute memory usage. When considering script size,
shown in Figure 6, as a measure for application complex-
ity we can observe that the increase in memory usage is
approximately 10% when the application complexity more
than doubles. This indicates there is space for implementing
much more advanced applications.

Also note that although the manual and state chart ver-
sions of applications are functionally equal, there is a notable
difference in script size. This is an indication that there is
much to gain from further optimization within the Proto
compiler. A compiler should ideally be able to reduce the
state chart version of an application to the same script size
as the manual version.

6. DISCUSSION

The trend in designing interactive environments is the
driving force for creating a toolchain to ease the development
of interactive spatial computing applications. To confirm
this, we conducted a survey amongst designers and archi-
tects. The survey confirms our expectations on the interest
in such environments and the need for a simulator to enable
fast prototyping. During design toolchain testing, we real-
ized that the current GUI requiring the use a state chart
representation is still a cumbersome for designers or archi-
tects. Therefore, another level of abstraction is needed to
hide the state chart representation.

In an effort to validate the viability of spatial computing

37



(a) ‘Smart’ architectural components (b) Requested features (c) Desired tools

Figure 4: Survey results

for interactive environments, we implemented a toolchain
that is capable of designing an application using state charts,
testing the application in a simulator and running it on ac-
tual hardware. A proof of concept implementation of the
spatial computing primitives confirms the validity and shows
the viability of this approach. For larger applications there
might be a need for further optimization of the memory con-
sumption.

7. CONCLUSIONS AND FUTURE WORK

In this paper we introduce a software platform called IDS

that uses the concepts of Spatial Computing to facilitate
to non-IT specialists the fast-prototyping of interactive de-
signs using distributed embedded systems installations. It
is able to translate high-level specifications into agent be-
haviors and local interaction rules. We evaluate it via two
application scenarios in order to link together all the com-
ponents of the system. Comparison to related work showed
that our approach is one of the first fully-distributed em-
bedded platforms that makes use of the Spatial Computing

paradigm for fast-prototyping of interactive design installa-
tions. As future work, we identified several directions. We
will run large-scale experiments by making use of the en-
tire size of the ProtoDeck floor. Secondly, the GUI will hide
some of the complexity related to expressing agent-level be-
haviors and will contain more complex aggregate primitives.
Complete design ideas will be prototyped and tested in order
to improve our methodology based on user feedback.

8. REFERENCES
[1] H. Abelson et al. Amorphous computing.

Communications of the ACM, 43(5):74–82, 2000.
[2] T. Baumgartner, S. Fekete, T. Kamphans, A. Kröller,

and M. Pagel. Hallway monitoring: Distributed data
processing with wireless sensor networks. In
REALWSN. 2010.

[3] J. Beal and J. Bachrach. Infrastructure for engineered
emergence on sensor/actuator networks. Intelligent
Systems, IEEE, 21(2):10 – 19, march-april 2006.

[4] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and
N. Correll. Formal and Practical Aspects of

Domain-Specific Languages: Recent Developments,
chapter Organizing the Aggregate: Languages for
Spatial Computing. IGI Global, 2012.

[5] T. Bekker, J. Sturm, and B. Eggen. Designing playful
interactions for social interaction and physical play.
Personal and Ubiquitous Computing, 14(5):385–396,
2010.

[6] N. Biloria. Emergent technologies and design.
eCAADe 23, pages 441–447, 2005.

[7] A. Crabtree, T. Hemmings, and T. Rodden.
Pattern-based support for interactive design in
domestic settings. In DIS 2002 Proceedings, pages
265–276. ACM, 2002.

[8] T. Delbrück, A. M. Whatley, R. Douglas, K. Eng,
K. Hepp, and P. F. Verschure. A tactile luminous floor
for an interactive autonomous space. Robotics and

Autonomous Systems, 55(6):433–443, 2007.
[9] S. Dulman. Robotics in Architecture, chapter Practical

Programming of Large-Scale Adaptive Systems.
JapSam Books, 2012.

[10] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming wireless sensor networks using
kairos. In DCOSS, volume 3560 of LNCS, pages
466–466. 2005.

[11] M. Haeusler. Media facades: history, technology,

content. Avedition, 2009.
[12] J. Hubers. Collaborative design in protospace 3.0.

Changing roles; new roles, new challenges, 2009.
[13] B. Knep. http://www.blep.com/healingPool/.
[14] J. Kulik, W. Heinzelman, and H. Balakrishnan.

Negotiation-based protocols for disseminating
information in wireless sensor networks. Wirel. Netw.,
8(2/3):169–185, Mar. 2002.

[15] N. Lehrer and S. Rajko. Thrii. 2010.
[16] M. Mamei and F. Zambonelli. Programming pervasive

and mobile computing applications: The tota
approach. ACM Trans. Softw. Eng. Methodol.,
18:15:1–15:56, ’09.

[17] R. Nagpal. Programmable self-assembly: constructing

global shape using biologically-inspired local

interactions and origami mathematics. PhD thesis,
Massachusetts Institute of Technology, 2002.

[18] B. Quinn. Textile Futures: Fashion, Design and

Technology. Berg Pub Ltd, 2010.
[19] U. Wilensky. Netlogo, 1999.

http://ccl.northwestern.edu/netlogo/.

38


