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Decentralized spatial algorithm design
Matt Duckham

Abstract—Spatial computers present challenges to conventional
distributed algorithm design. Substantive progress is being made
in developing new algorithm design tools and techniques, for
example in the development of the Proto language. This paper
summarizes an alternative but complementary technique tar-
geted at the specification of decentralized algorithms for spatial
computing. The approach focuses on abstract, implementation-
independent specification of designs, as opposed to more practical
programming constructs. The aim is to speed the development
and ease the communication of algorithms designs. This is
achieved augmenting an established distributed algorithm design
technique with the minimal additional constructs required to
compute with diverse spatiotemporal objects and relationships.
The paper illustrates the additional spatial and temporal struc-
tures using the running example of decentralized algorithms for
spatial region boundary detection.

I. INTRODUCTION

Spatial computing can be characterized as a special case
of distributed computing, where additional geographic con-
straints to the generation and communication of information
exist. The challenge set in [1] is “to conceive of how to re-
formulate [distributed systems] applications for a continuous
geometric world.”

This paper describes an approach to designing decentralized
spatial algorithms. A decentralized system is a distributed
system where no single system element possesses global
knowledge of the system state [2]. Consequently, decentral-
ized spatial algorithms are well-suited to spatial computing
environments, which present geographic constraints to both
the generation and movement of information. Our approach
is complementary to, but distinct from related approaches in
spatial computing, in particular [1], [3], [4]. In comparison
with [1], [3], [4], our approach focuses more strongly on the
algorithm design and specification. We augment an established
distributed algorithm design procedure with the spatiotemporal
structures required for decentralized computing with many
different types of spatiotemporal objects, references, and re-
lations. As a consequence, however, our approach does not
focus so strongly on practical programming architectures and
implementation—something that is an important focus and
contribution of [1], [3], [4].

Following a brief review of related work, the established
distributed algorithm design technique upon which our ap-
proach is founded is introduced (Section III, after [5]). We then
identify, with examples, the fundamental spatial and temporal
structures required for decentralized spatial algorithm design
(Sections IV and V). Finally, before concluding (Section VII)
the paper looks briefly at the role of agent-based simulation
in algorithm design (Section VI).
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II. RELATED WORK

As already highlighted, this work shares similar aims to
research on the definition of languages for spatial computing,
including the development of the Proto language [1], [3], [4],
[6] as well as more broadly (see [7] for a survey). The design
process summarized in this paper is, we believe, complemen-
tary to these efforts. Our approach favors assisting designers
with the construction and communication of algorithms; but
places less emphasis on practical implementation of these
algorithms within spatial computers.

In attempting to construct an implementation-independent
decentralized spatial algorithm design framework, it is essen-
tial to draw on established design tools and techniques. Hoare’s
CSP (communicating sequential processes [8]) and Robin
Milner’s CCS (calculus of communicating systems, [9]) are
two examples of influential formal models that deal explicitly
with the interactions between processes, and so are highly
relevant. More recently, Milner’s CCS has been extended with
additional structure in the pi-calculus and bigraphs [10], [11].

These formalisms are being applied to fundamental prob-
lems in geographic information science (e.g., [12]), but are
relatively complex to apply to higher-level domains, like
algorithm design. Similarly, related models like IOA (input-
output automata, [2]), have been applied to decentralized
spatial algorithms (e.g., [13], [14]), but have a strong focus
on proving formal properties, like fairness and liveness, rather
than ease of construction or communication of designs.

So, while alternative models have the advantage of more
formal rigor, their substantial additional complexity makes
them less well-adapted to supporting the algorithm design
process. Hence, in this paper we argue that the less formal
but more intuitive technique of Nicola Santoro [5] provides a
practical compromise between complexity and rigor.

III. SANTORO’S DISTRIBUTED ALGORITHM DESIGN

The distributed algorithm design approach of [5] is founded
on four key structures:

1) Restrictions on the environment in which the algo-
rithm is designed to operate, such as restrictions on
the network structure and connectivity, communication
reliability and synchronization, and so forth.

2) System events that occur to nodes, specifically receipt of
a message; triggered events (such as a scheduled alarm
or periodic sensor reading); and a spontaneous impulse,
external to the system.

3) Actions that a node can perform in response to the
different events that occur—actions must be atomic
sequences of operations that cannot be interrupted by
other events.
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4) States for nodes, which allow nodes to retain knowledge
of previous interactions, and respond in different ways
to the same event depending on the context.

For example, Algorithm 1 provides a simple decentralized
algorithm in the style of [5] for identifying nodes at the
boundary of a spatial region. With reference to the four key
structures identified above:

Algorithm 1: Determining the (inner) region boundary
Restrictions: Reliable, fully asynchronous communication;

undirected communication graph, G = (V,E); sensor
function s : V → {0, 1}

State Trans. Sys.:
({INIT, IDLE, BNDY}, {(INIT, IDLE), (IDLE, BNDY)})

Initialization: All nodes in state INIT

INIT
Spontaneously

broadcast (ping, s̊) {Broadcast sensed value}
become IDLE

Receiving (ping, s�)
defer until IDLE

IDLE
Receiving (ping, s�)

if s� �= s̊ and s̊ = 1 then
become BNDY

• Restrictions: The algorithm makes no restrictions on syn-
chronization between nodes (communication may be fully
asynchronous), but does require reliable communication
(messages sent will be received within some finite amount
of time). Communication is assumed to be mediated
through a bidirected communication graph G, but again
no further restrictions on the communication graph struc-
ture are required. Finally, the algorithm does require a
Boolean sensor on each node (capable of sensing either
1 or 0, e.g., in or out of a region of interest, “hot” or
“cold,” presence or absence of pollutant), represented as
a sensor function s : V → {0, 1}.

• States: The state transition system specifies at the begin-
ning of the algorithm the defined states (INIT, IDLE, and
BNDY) and allowable transitions (INIT to IDLE to BNDY).
The initial states for all nodes are also specified in the
algorithm header. The algorithm proper then defines for
each state a (possibly empty) set of events and associated
actions.

• Events and actions: Three events are defined in the
algorithm. Nodes in the INIT state can spontaneously
perform an action to broadcast a ping message, before
transitioning to an IDLE state. Nodes in the IDLE state
respond to ping messages received by checking if ad-
jacent nodes sense a different value. If so, IDLE nodes
transition into a BNDY state. Nodes in the INIT state
receiving a ping message defer this event until the node
is in the IDLE state (i.e., received message is placed on
a stack and treated as received only after the node has
transitioned into a IDLE state). Other possible events (e.g.,

receiving a ping message in the BNDY state) are by
default associated with the empty action (“do nothing”).

The intuition behind Algorithm 1 is that even without
geometric information, based purely on communication neigh-
borhoods, nodes can locally determine whether they are at a
region boundary by comparing their local sensed data with
that of their immediate one-hop neighbors.

While Algorithm 1 is kept deliberately simple, it does illus-
trate several key features of the approach. Most importantly,
although the algorithm header specifies the global restrictions
and states, the algorithm body only specifies local rules that
each individual node executes in parallel. To enforce the rigid
separation between local and global knowledge, we use the
overdot notation to distinguish between a globally defined
function, and an individual node’s local knowledge about that
function. For example, in the algorithm body, we write s̊
(read “my” s or “local” s) in place of s(◦), where ◦ ∈ V
is the local node currently under consideration. A failure to
adequately distinguish between the local information available
to an individual node, and the global information available
across the network is a major source of design errors in
decentralized algorithms (e.g., writing an action for node v
that attempts to access information that is not local to v, like
s(v�)).

In summary, the algorithm specification procedure adopted
in this paper offers three main features:

• an established and standard toolkit for abstract and
implementation-independent specification of decentral-
ized algorithms, supporting improved communication be-
tween designers;

• an unambiguous specification of the computational and
sensed environment in which the algorithm is designed
to operate; and

• a rigid separation of local and global knowledge, helping
to protect against design errors arising from incorrectly
referring to inaccessible global information in a local
protocol.

IV. SPATIAL EXTENSIONS

The key question underpinning all of spatial information
science is “What makes spatial special?” Similarly, extending
the general distributed algorithm design technique in Section
III to the special case of decentralized spatial algorithms
requires the identification and selection of those characteristics
that are “special” to spatial information.

Clearly, the most important spatial structure is location.
However, “location” does not necessarily imply the coordinate
location (usually termed position). Location may also involve
a diversity of less detailed quantitative information about,
for example, the relative distances or directions (bearings)
between nodes, or even qualitative information about a node’s
proximity to other nodes or known locations.

Figure 1 summarizes six of the most common forms of
location information. The six examples include: a. coordinate
position with reference to some external coordinate frame-
work, such as derived from GPS or virtual coordinate systems;
b. relative anchor location, like proximity to some external
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Fig. 1. Summary of six common types of location information available to

a node.

“anchors” at known locations, such as might be derived from

proximity-based RFID localization; c. relative neighborhood,

such as knowledge of one-hop neighbors in a physical or over-

lay communication network; d. relative distance to neighbors,

such as derived from range-finding technologies; e. relative

bearing; and f. cyclic ordering, such as may be derived from

direction-finding technologies.

The diversity of ways in which geographic location can be

represented and related (e.g., cyclic ordering can be computed

from bearings; coordinate position can be used to compute

any of the other types of location information) is typical

of problems in the spatial domain. Further information on

localization techniques and technologies may be found in a

range of literature on the topic, including [15]–[17].

Algorithm 2 provides an example extension to Algorithm

1 with more sophisticated spatial capabilities. The algorithm

identifies not simply boundary nodes, but also a unique cycle

of nodes around the region boundary. In practice, this requires

each boundary node determine its next neighbor in the cycle,

stored as local (i.e., to each node) data in the wind variable.

Being able to cycle around a region boundary is a fundamental

operation for a range of higher-level algorithms, such as com-

puting the area or centroid of a region [18], testing containment

between regions, efficient leader election for regions [19], or

simply updating information stored at the region boundary

[20]. Organizing communication around the boundary in this

way is significantly more scalable than communicating over

an entire spatial region [19].

Algorithm 2: Determining the (inner) boundary nodes and

cycle for a region (cf. Algorithm 1).

Restrictions: Reliable, fully asynchronous communication;

undirected planar communication graph, G = (V,E);
relative neighborhood, nbr : V → 2V ; s : V → {0, 1};

identifier function id : V → N; cyclic ordering

cyc : E� → id∗, where E� = {(v, id(v�))|(v, v�) ∈ E}
State Trans. Sys.:

({INIT, IDLE, BNDY}, {(INIT, IDLE), (IDLE, BNDY)})
Initialization: All nodes in state INIT

Local data: wind : V → V ∪ {∅}, initialized ˚wind := ∅;

relation D ⊂ N× {0, 1}
INIT

Spontaneously
broadcast (ping, i̊d, s̊)

become IDLE

Receiving (ping, i, d)

defer until IDLE

IDLE

Receiving (ping, i, d)

set D := D ∪ (i, d) {Store id and sensed value}
if |D| = |n̊br| then {Check if all ping received}

Create function data : I → {0, 1}, where

I = {i�|(i�, d�) ∈ D} and data : i� �→ d�

if s̊ = 1 and 0 ∈ data∗ then
set ˚wind := c̊yc(i��), where data(c̊yc(i��)) = s̊ and

data(c̊yc(i��)) �= data(i��)
become BNDY

Ensuring a unique boundary cycle exists, and can be com-

puted, requires: a. that the (overlay) network is planar
1
; and

b. that nodes have access to local spatial information about

the cyclic ordering of neighbors (listed in the restrictions

to Algorithm 2). Information about the cyclic ordering of

neighbors may be computed from geometric information, like

absolute coordinates, or deduced via other means, such as

direction finding. Irrespective of the details of the localization

technology, it is possible to provide an abstract representation

of the cyclic ordering as a function cyc : E� → id∗, where

E� = {(v, id(v�))|(v, v�) ∈ E}. The function id : V → N
maps to an identifier for each node (such as hardware address),

while id∗ is the image of the id function (the set of identifiers

mapped to by nodes). Making a clear distinction between

a node itself, v ∈ V (which cannot be communicated to

neighbors), and the identifier of that node id(v) (which can)

is again important to accurate designs. It is never assumed

that nodes have access even to immediate neighbors’ states—

1
Although simply stated, establishing and maintaining a planar network is

often difficult in practice, for example due to positioning inaccuracies and

environmental and energy fluctuations that affect network connectivity. Nev-

ertheless, stating such restrictions in the algorithm header makes explicit and

accessible those assumptions underlying an algorithm, assisting in subsequent

comparison of different alternatives or in the context of specific deployment

scenarios.
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Fig. 2. Examples of spatiotemporal model of a. environmental dynamism
(s : V × T → {black,white}) and b. node mobility (anch : V × T → A,
where A is some set of known anchor locations, for example intersections in
a transportation network).

all information that is not local to a node must be explicitly
communicated to it by the algorithm before it can be used.

In summary, “spatial” involves more than coordinate po-
sition. Using a diversity of types of location information to
efficiently construct higher-level spatial objects and relations,
like boundaries and regions, groups and clusters, is a major
challenge faced by decentralized spatial computing.

V. TEMPORAL EXTENSIONS

In a purely structural sense, time is a straightforward exten-
sion to our algorithm designs. Those functions that describe
global restrictions to the algorithm can be easily augmented
with an ordered set of discrete times T as part of their domain.
For example, the atemporal positioning function p : V → R2

can be extended to have time-varying positions as its domain,
p : V × T → R2. Extensions to time-varying communication
graphs can be similarly defined. In this way, both environmen-
tal dynamism and node mobility and volatility can be modeled
(see Figure 2).

Algorithm 3 completes our boundary tracking example,
showing an extension of the simple neighborhood-based
boundary determination in Algorithm 1 to ongoing tracking of
boundary status (this time through Boolean thresholding of a
continuous sensor value, rather than a truly Boolean sensor).
Currying allows time-varying functions to still be accessed
locally. We adopt the database terminology now to indicate the
current sensed value for a node (i.e., in Curried form s̊(now)).

Despite this apparent simplicity, dealing with time does
introduce additional conceptual complexity into algorithms.
A basic philosophical distinction is made usually between
things that endure through time (called endurants or contin-
uants), and things that happen in time (called perdurants or
occurrents) [12]. Boundaries and regions are typical examples
of geospatial endurants; the appearance, splitting, merging,
and disappearance of regions are all examples of geospatial
perdurants.

The distinction between endurants and perdurants maps
directly to two fundamentally different types of information
that may be generated by a decentralized spatiotemporal
algorithm: histories and chronicles [21]. A history provides

Algorithm 3: Tracking the (inner) boundary of a region,
with state maintenance.

Restrictions: Reliable, fully asynchronous communication;
undirected planar communication graph G = (V,E);
s : V × T → R; id : V → N; region threshold r

State Trans. Sys.:
({INIT, IDLE, BNDY}, {(INIT, IDLE), (IDLE, BNDY),
(BNDY, IDLE), (IDLE, INIT), (BNDY, INIT)})

Initialization: All nodes in state INIT
Local data: sensor reading at time of state change sl;

neighbor data d : n̊br → {−1, 0, 1}, initialized to
d(v) := −1

INIT
Spontaneously

set sl := s̊(now) {Store last sensed value}
broadcast (ping, s̊(now), i̊d)
become IDLE

IDLE, BNDY
Spontaneously

if s̊(now) = 1 and 0 ∈ d∗ then
become BNDY

else
become IDLE

Receiving (ping, s�, i)
set d(i) := s�{Store neighbor’s sensed values}

When s̊(now) < r ≤ sl or sl < r ≤ s̊(now)
become INIT

a spatiotemporal record of the states of monitored endurants
(e.g., point locations, regions, boundaries, moving objects)
through time. A chronicle provides a record of the occurrences
(perdurants) that happened through time.

For example, imagine a spatial computer, like a sensor
network, tasked with monitoring the spread of an oil spill
(see Figure 3). We might wish the system to generate an alert
when parts of the oil spill appear or break up (a chronicle).
Alternatively, we might (also) wish the system to report on
the connectivity of the oil spill every ten minutes over the
course of a day (a history). We can expect to need to design
decentralized spatiotemporal algorithms to monitor histories
in some cases, and to monitor chronicles in other cases.

Thus, just as “spatial” involves more than simply coordinate
location, so “temporal” involves more than simply timestamps;
it means identifying and tracking salient spatial events.

VI. ALGORITHM SIMULATION

Although our design approach aims to be implementation
independent, we have developed a simulation system for
implementing and evaluating decentralized spatial algorithm
designs (see Figure 4), based on a popular agent-based simula-
tion system called NetLogo [22]. A small number of additional
keywords have been implemented as a NetLogo library, which
make it possible to rapidly and directly translate pen-and-
paper algorithm specifications into simulation models. A key
advantage of using NetLogo is in its ability to simulate both
decentralized spatial computing environments and dynamic
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Fig. 3. Histories and chronicles: Two views of the changes in the extent of
Deepwater Horizon Disaster oil slick, Gulf of Mexico, from Day 17, 7 May
2010. (Source: Times-Picayune).

geographic environments, supported by NetLogo’s large and
diverse community of domain scientist users (for example in
ecology, biology, geography, and social sciences).

The ability to simulate algorithms can greatly assist the
designer, by generating rapid feedback on algorithm behavior
and as a basis for adversarial analysis to identify design
flaws. As well as providing for empirical evaluation of the
global behavior of decentralized spatial algorithms, such as
scalability, simulations also can also help to explore exper-
imentally the robustness of decentralized spatial algorithms.
Spatial information is inherently uncertain, subject to inac-
curacy (lack of correctness), imprecision (lack of detail), and
vagueness (existence of borderline cases). In the case of spatial
computing technologies, like sensor networks, inaccuracy and
imprecision are especially important. Low cost, poorly cali-
brated sensors typically have relatively low accuracy; sensor
observations are inevitably discrete in both space and time, the
source of imprecision. Further, many of the application-level
geographic objects and events of interest, like “hot spots” or
“traffic jams,” are vague (e.g., some location may be definitely
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Fig. 4. Example NetLogo interface for decentralized spatial algorithm
simulation

in a hot spot, others definitely not, but typically there will
be borderline locations, for which it is indeterminate whether
or not they are in or out of the hot spot). Decentralized
spatial algorithms frequently need to demonstrate robustness
to imprecision and inaccuracy in sensed information, and an
ability to generate useful knowledge about vague geographic
phenomena. Spatial computing under uncertainty is a key
focus for current research.

VII. SUMMARY

This paper has demonstrated how established distributed
algorithm design techniques can be adapted to decentralized
spatial algorithm design. The approach identifies a small
number of spatial and temporal structures from which more
sophisticated spatial computing algorithms can be constructed.
Our approach complements and contrasts with existing re-
search in [1], [3], [4], [6], and aims to help human designers in
specifying local protocols that will exhibit the desired global
behaviors. By contrast, [1], [3], [4], [6] target the (auto-
mated) transformation of global constructs into local protocols.
Further, our approach emphasizes abstract, implementation-
independent algorithm specifications, but does not explicitly
address practical implementation and programming languages.
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