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Abstract— Many basic techniques in computer science have
been founded on the assumption that physical computing
resources are scarce but orderly, and that the cost of effective
direct communication between physically distant parts of a
computer system is affordable. In large scale cluster computing
installations, fine-grained parallel computing hardware, or
wireless mesh networks, these familiar assumptions may not
hold. In this paper we present adaptations of two especially
simple classic sequential sorting algorithms, namely bubble sort
and insertion sort, to parallel execution in spatially constrained
networks of devices, using particle systems and asynchronous
automata graphs. In both cases we are able to get significant
speed-ups of these naı̈ve O(n2) algorithms, attaining linear
time complexity or better given sufficient parallelism. For
insertion sort, we obtain these results without depending on any
but statistical properties of the network medium. We discuss
potential extensions of these physically and biologically inspired
techniques to more complex parallel algorithms.

I. INTRODUCTION

The contemporary computing environment already con-
tains networks of large numbers of devices, which may be
connected in unknown or varying ways. It is reasonable to
expect that these networks will become even larger, more
distributed, and more dynamic in the future, as individual
computing devices, and their components, become smaller
and less expensive. To best take advantage of the parallel
computing potential that large-scale device networks offer,
we must minimize the overall cost of communication through
physical space, while being able to accommodate the uncer-
tainty of an unknown or irregular network topology.

A spatial computer [1] is a network of computing devices
which are located in a physical space, and connected in
a way that reflects their locality in that space. The cost
in time, energy, or reliability of communicating through
such a network is proportional to the physical distance
that messages must travel. It is generally assumed that the
intended function of a spatial computer will correspond in
some way to its shape. Some approaches, such as the MIT
Amorphous Computing project’s Growing Point Language
(GPL) [2] and the more recent Proto programming language
[3], treat the spatial computer as a discrete approximation
of a topological manifold, and work with formalisms in the
continuous abstract space. Others, such as the TOTA physical
tuple-space [4], do not introduce a continuous abstraction,
but work directly with the discrete computing elements. Both
approaches are represented here.

In this paper we discuss two inherently parallel spatial
adaptations of simple canonical sorting algorithms. The
first, collision sort, is a generalization of bubble sort that

represents data as mobile agents in a partitioned computing
manifold. The second algorithm is a parallel version of in-
sertion sort which incrementally embeds a space-conserving
active data structure in an arbitrary static network, given
a minimum average per-node connectivity. This embedding
is an example of how a simple developmental process can
coordinate the growth of active data structures in a discrete
spatial computing medium, without the use of a coordinate
system or reference to any ideal or pre-existing global
structure. We will end with some speculation on the use of
these techniques for the growth of adaptive parallel data-flow
programs.

II. RELATED WORK

Discretized computational models of physical particle sys-
tems have a long and rich history, from computing pioneer
Konrad Zuse’s early “Calculating Space” lattice-gas cellular
automata [5] to lattice Boltzmann models in physics [6].
In the 1980s, particle systems found uses in computer
graphics modeling fluids, fabrics, and other physical objects
having complex dynamics. More recently, Particle Swarm
Optimization methodology [7], developed originally to model
social behavior in animals, has found applications in a variety
of nonlinear or otherwise irregular optimization problems.
Spatial partitioning has been used as a method of organizing
data structures to efficiently represent euclidean space [8]
and coordination of parallel computing resources for spatial
data [9]. Modern GPU processors are capable of handling
million-particle systems in real time [10]. However, we are
not aware of the prior use of a particle system in a partitioned
abstract space for general purpose sorting.

The other algorithm we present draws on research in par-
allel computing models loosely based on cellular automata,
such as Tomassini’s Generalized Automata Networks [11],
and the MIT Center for Bits and Atoms’ Reconfigurable
Asynchronous Logic Automata [12]. These models suggest an
inherently parallel approach to fundamental computing tasks
that explicitly represents spatial relationships between com-
puting elements. The MIT Amorphous Computing project
[1], and in particular Coore’s Growing Point Language (GPL)
[2] is another major inspiration for this work. However,
the approach presented here is considerably simpler: it does
not rely on a gradient propagation mechanism or any pre-
existing description of the desired geometric configuration of
the system, nor does it require that the underlying network
approximate a topological manifold. Unlike classic graphical
path-finding methods, such as Dijkstra’s Algorithm [13], or



more recent Ant Colony Optimization (ACO) approaches
like that of Caro and Dorigo [14], we do not seek global
optima like shortest paths, but rather paths that remain open
to extension, while localizing and limiting exploration of
the graph. Wireless sensor network communication proto-
col research [15], [16] represents another broad source of
influence for our work. However, these networks are usually
highly application-specific, while our project seeks general
principles and methods which can be applied in a variety of
applications.

III. COLLISION SORT

Particle Swarm Optimization [7] is generally used to find
global optima in an abstract space, but a similar technique
can be used to arrange the particles themselves relative to
each other, without direct regard to the properties of the
space. As a simple example, consider a one-dimensional
particle system, whether discrete [17] or continuous [18],
which allows pairwise particle interactions or collisions. If
we consider the particles not as physically realistic entities
but rather as spatial tokens, or agents, representing data to be
ordered, then we may take these interaction events, contrary
to real-world physics, as opportunities to decrease the en-
tropy of the system, by performing a comparison between
the particles and conditionally modifying their velocities
based on the results of the comparison. In the examples
shown in Fig. 1, the darker particle of the pair deflects or
continues always to the left, and the lighter colored to the
right, regardless of their initial orientation; particles must
have access to the orientation of the sorting axis, although
they need not know their exact position.

A closed interval or line segment containing these particles
between reflective bounding endpoints (as shown in Fig. 2)
will allow them to approach a total linear order in time pro-
portional to the size of the space and the simulated velocity
of the particles. However, particles which move too fast may
miss opportunities for collisions. If the interval is divided
into sub-intervals, each may be assigned to a processor, and
these processors’ particle data need not be shared except (via
a potentially asynchronous communication interface) at the
point of partition. This simple principle may be generalized
in several ways: for example to multiple dimensions, to
multi-particle collisions, or to particle velocities modulated
in a more sophisticated manner than just reversing directions.
With more complex orderings than the linear one, this tech-
nique may potentially be used to coordinate the formation
of complex global structure from initially unordered data.
The parallel, non-deterministic, and asynchronous nature of
collision sort may lend itself to GPU computing, to tiled
multi-processor systems having local caches, or (on a larger
scale) to dense network computing environments, whether
Mesh, Grid or Cloud. With sufficient parallelism, this sorting
method can be quite fast, but realistic implementations will
probably be nondeterministic not only in terms of the process
dynamics, but also in terms of exact final locations when
the process is complete: all that can be guaranteed is the
relative ordering of data within the space. For example, Fig.

Fig. 1. Simplest possible one-axis particle sorting collision rules. The
darker particle of the pair deflects or continues always to the left, and the
lighter colored to the right, regardless of their initial orientation.

Fig. 2. Time steps in a single-axis pairwise collision sort of 50 particles,
in a space 30 particle-widths wide. Each particle has a fixed velocity of 0.5
particle widths per step.

3 shows successive logical time steps in a 10,000 particle
collision sort along two axes corresponding to the redness
and blueness of the particles: in a single time step each
particle makes one comparison with all other particles that
it intersects and jumps to a new location.

Fig. 4 shows the erformance of the one-dimensional
pairwise collision sort with constant velocities and particle
counts. The sequences end when the space gets too crowded
and particles jump past each other. As one can see, the
velocity greatly influences the number of time steps required
until the sequence is totally sorted.

In some applications the sorting task may never finish
at all, but require continuous sorting on temporal streams
of data. Collision sort is well adapted to this job, as it
can accommodate any degree of continuous disruption less
than its capacity to reduce entropy. We speculate that it
may coexist with other particle system rules under some
conditions, but have not investigated this possibility in this
paper.

IV. MORPHOGENIC EMBEDDING

Following the assumptions of the Amorphous Computing
project [1], we model a spatial computer as a stochastic mesh
network of simple, immobile, reactive computing devices,
each connected to all other devices in a circular neighbor-



Fig. 3. Time steps (t = 0 (left), t = 5 (middle), and t = 10 (right)) in a two-axis collision sort with 10,000 particles, each with velocity proportional to
the difference between its color and the average color of all other particles which it intersects.
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Fig. 4. Performance of the one-dimensional pairwise collision sort with
constant velocities and particle counts. The sequences end when the space
gets too crowded and particles jump past each other.

hood within a two-dimensional euclidean space, as might
be expected in a wireless mesh network of roughly co-
planar devices. Devices (or “nodes”) in this model are able
to store a limited amount of data, to distinguish between
their immediate neighbors, and to reliably transmit mes-
sages to one or more specific neighbors. They may have
methods of discovering the distance to a particular neighbor,
but no direct way to measure angles. However, the linear
embedding technique we present will work in other kinds of
static graphs having an average degree distribution greater
than two, although not very efficiently in graph structures
optimized for short path lengths, such as trees or stars.
The process operates more effectively in graphs with greater
connectivity, subject to the costs of communication in such
dense networks. The present experimental model conserves
the spatial properties of path length and node density, while

avoiding dead ends by a limited look-ahead process decribed
in the following section. Using a graph that is a stochastic
discrete approximation of the euclidean plane allows us to
easily visualize the process taking place within it, but this is
strictly optional as regards the embedding process itself.

V. LINEAR INSERTION SORT

The algorithm we present is easy to follow (see Fig. 5 and
6); it is an extremely simplified caricature of the cell sorting
process which occurs in the development of multicellular
organisms [19]. The goal is to incrementally discover (or
“grow”) a cul-de-sac-avoiding and distance-conserving path
in the underlying graph which connects exactly the same
number of nodes as the number of items to be sorted,
although this number is not known in advance. This path
behaves like a linked-list data structure, so we refer to it as
a “linkage.”

Begin by choosing any inactive node in the meshwork to
be the root entry point for data to be sorted, represented
by atomic tokens, which can be transferred between nodes,
but not duplicated. In this example, the data consists of
small integers. When the first datum is transmitted from
outside the system to the source node, the node merely stores
it. For simplicity, we assume that each node has a fixed
data storage capacity of just one token, plus another single-
token buffer used for communication. While a node’s buffer
is full, it is not able to accept any new incoming tokens.
Given a second numeric datum, a node compares it with the
number in its store; the lesser of the two is placed into the
store, while the greater is temporarily stored in the node’s
communication buffer while it recruits one of its inactive
immediate neighbors. This extension process has two phases:
first a message is broadcast to every neighbor, requesting
each to respond with a count of its own neighbors. This
count may be obtained by another on-demand broadcast and
response cycle, or we might assume that there are periodic
single-hop broadcast liveness messages sent by each node,
which allow all nodes to track the identities and quantity of



Fig. 5. Operations to embed a linkage within a mesh. The blue arrow
indicates the root node.

their immediate neighbors. The nearest node with the highest
number of inactive neighbors is chosen for recruitment: a
channel is established between the currently active node
and the newly recruited node, such that data tokens in the
buffer of the upstream node are transmitted to the new
downstream node when the latter is able to accept them.
If the newly recruited node does not already have a copy of
the sorting program described here, the program must be also
transmitted at the time of recruitment. Each node runs the
same program, and each new token received by the root node
will eventually result in a new node being recruited into the
linkage at its end. Data may be removed from the system
by passing a pull token to the root node, which responds
with the contents of its store and passes the pull request
downstream, causing data to shift up by a single node; the
end node will deactivate upon receipt of a pull token, after
discharging its store. Fig. 6 illustrates the operations each
nodes is executing.

As insertion sort is stable, all data in the stores of the
linked nodes is always fully sorted at any time in the process,
although tokens must traverse the linkage from buffer to
buffer before settling in the appropriate place. This traversal
occurs in pipelined parallel fashion, allowing the process to
attain linear execution times despite doing work proportional
to the square of the number of data items.

The process just described is sufficient to sort any number
of data tokens in linear time, as long as the linkage does
not run out of space or grow itself into a cul-de-sac. The
time steps taken by the embedded insertion sort algorithm
to sort a randomized sequence of a given length is shown in
Fig. 7. However, we can do better. As it stands, any token
displaced from storage in a node will precipitate a ripple
of displacement throughout the rest of the structure until
a new node is recruited at the end. But, if any two nodes
in an existing linkage share a common inactive neighbor
not already in the linkage, there is an opportunity for an
alternative form of growth we call swelling. To find such a
helpful mutual neighbor in the appropriate place, an active
node n, upon receiving from its immediate upstream neighbor
m a new token representing a value less than that in its
current store, may request of an inactive neighbor n′ to, if
it is able to connect to node m, take the new token and ask
m to switch its output channel to give input to n′. Node
n′ also must connect its own output channel back to n,

Fig. 6. Illustrations of the operations each nodes is executing.

and then the swelling is complete. With this modification,
less overall work is done and the nodes occupied by the
algorithm tend to cluster together in the space underlying
the graph structure, which may be desirable in minimizing
overlap with other component processes in a spatial com-
puter. Clustering also provides an opportunity for shortcuts
in the linkage, potentially supporting a version of the skip-
list data structure [20]. These shortcuts could be useful in
this case because insertion sort maintains the order of its
stored data while working, allowing multiple comparisons
to be made for a single token by a single linkage node
with multiple downstream shortcuts; however, we have not
at present implemented skip-list functionality in our model.

VI. DYNAMIC DATAFLOW PROGRAMS

Sorting is an especially well-studied domain in computer
science, and the graph-embedded insertion sort discussed
above constitutes a straightforward adaptation of an espe-
cially simple sorting algorithm. The method of morpho-
genetic embedding itself, however, may be applicable to
supporting a wider variety of data structures and their asso-
ciated algorithms within a spatial computer. If we align the
component nodes in a regular grid, rather than an irregular
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Fig. 7. Time steps taken by the embedded insertion sort algorithm to sort
a randomized sequence of given length.

mesh substrate, we would have a general purpose dynami-
cally adaptive, asynchronous data-flow programming system
very similar to the Reconfigurable Asynchronous Logic Array
(RALA) model [12], although at a rather coarser granularity:
the RALA system uses tokens to represent only single-bit
binary data or a null value, and the individual computing
elements perform only boolean functions on these tokens.
By contrast, the tokens in the present model represent whole
integers, and the nodes are able to execute entire non-trivial
programs composed from branching conditionals, compari-
son, storage, and communication primitives. This work may
be seen as bringing some of the ideas of RALA to a
spatial computing framework like that modeled by the Proto
spatial computing language [21]. Conversely, reconfigurable
logic nodes connected in an irregular mesh may be able to
support spatial structures like those of Proto with a simpler
underlying technology more like that of RALA. In general,
a node with degree k may join or switch between k− 1
branches of an embedded dataflow structure: a node must
have at least two neighbors to conduct information through
the network. In a regular square lattice, direct three-way
branching is possible; a hexagonal lattice can directly support
up to five-way branching structures. Irregular or stochastic
graphs, such as that shown in Fig. 8, are capable of much
higher average degree, although the degree distribution may
also be much wider. Fig. 9 shows the longest sequences
attained by the insertion sort algorithm when embedded
in random graphs having a specific (discretized) Gaussian
degree distribution, such as would occur if the nodes were
placed randomly into a bounded but edgeless manifold. The
higher the mean of the degree distribution, the longer the
average maximum linkage length. The standard deviation
does not have a significant effect on the linkage length.
However, further experimentation and analysis is needed to
find the optimum trade-offs in terms of node capabilities,
network density and configuration, and programmability for

Fig. 8. Steps in the growth of an insertion sort linkage. The blue arrow
indicates the root node.
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Fig. 9. The longest sequences attained by the insertion sort algorithm
when embedded in random graphs having a specific (discretized) Gaussian
degree distribution, such as would occur if the nodes were placed randomly
into a bounded but edgeless manifold. N = 100 nodes. Average over 10
sorting linkages with randomly selected root nodes and over 5 randomly
generated graphs for the given Gaussian degree distribution mean and
standard deviation.

these types of systems.

VII. CONCLUSION

Spatial programming techniques show promise for the
design of inherently parallel fundamental algorithms for
practical computing in large-scale device networks, where
large amounts of spatially distributed computing capacity is
available but the cost of communication is proportional to the
distance it must span. We have shown two distinct parallel
variations on canonical sorting algorithms, and we believe
that the techniques we have developed for this purpose,
which build on existing research in particle systems and
network routing protocols as well as elementary methods in
graph theory and algebraic topology, may be applicable to a
variety of more sophisticated algorithms and data structures
in a wide range of parallel computing contexts.
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