Spatial Sorting Algorithms for Parallel Computing in Networks

Max OrHai, Christof Teuscher 2011 October 3

Emerging Computing Models and Technologies

Overview

• Bubble sort as a particle system

Insertion sort in a random network

Hypothesis:

Spatial abstractions can help structure parallel computation.

Collision Sort

related work

- Cellular automata (e.g. Lindgren and Nordahl 1990)
- Agent-based systems
 - Particle swarm
 optimization
 (Kennedy and Eberhart 1995)
 - Ant colony optimization (Dorigo 1992)
- Continuous Signal Machines (Duchier, Durand-Lose, and Senot, SASO 2010)

Collision Sort

- Represent data as particles in a simulated continuous space
- "Bubbles" are conditional collisions
- The space may be partitioned like CA for parallel processing

Collision Sort

- Simultaneous multi-axis sorting is a natural extension
- Absolute positioning may be non-deterministic without global synchrony
- Performance depends on factors beyond particle count: speed, size of space...

(as a developmental dataflow program in an amorphous spatial computer) related work

- Growing Point Language (Coore 1999)
- Proto (e.g. Bachrach, Beal 2006)
- Reconfigurable Asynchronous Logic Automata (Gershenfeld et al 2010)

spatial computer **assumptions** and terminology

7

- There are more nodes than items to be sorted
- Nodes are functionally identical
 - all run the same program
 - very limited local storage
 - no access to global information
- Nodes don't move
- Sufficient local connectivity
- Atomic transactions

example sequence: extension

example sequence: swelling

10

no

amorphous network approximates a 2D manifold

performance and limitations

- Parallel execution yields
 O(n) time complexity
- Growth process can get overcrowded or stuck
- No allowance for node failure in this model
- Linear linkage may be a less efficient use of space than (e.g.) spanning trees

Conclusions

- Spatial abstractions can help organize largescale, fine-grained parallel computations
- Spatial programs may, but need not, map directly to physical computers
- Random networks can do useful work

Thanks to the Maseeh College of Engineering and Computer Science Undergraduate Research and Mentoring Program

All software models are available:

http://cs.pdx.edu/~orhai

