Spatial Sorting Algorithms for Parallel Computing in Networks

Max OrHai, Christof Teuscher
2011 October 3
Overview

- Bubble sort as a particle system
- Insertion sort in a random network

Hypothesis:
Spatial abstractions can help structure parallel computation.
Collision Sort
related work

• Cellular automata
 (e.g. Lindgren and Nordahl 1990)

• Agent-based systems
 • Particle swarm
 optimization
 (Kennedy and Eberhart 1995)
 • Ant colony optimization
 (Dorigo 1992)

• Continuous Signal Machines
 (Duchier, Durand-Lose, and Senot, SASO 2010)
Collision Sort

- Represent data as particles in a simulated continuous space
- “Bubbles” are conditional collisions
- The space may be partitioned like CA for parallel processing
Collision Sort

• Simultaneous multi-axis sorting is a natural extension

• Absolute positioning may be non-deterministic without global synchrony

• Performance depends on factors beyond particle count: speed, size of space...
Insertion Sort
(as a developmental dataflow program in an amorphous spatial computer)

related work

• Growing Point Language (Coore 1999)

• Proto (e.g. Bachrach, Beal 2006)

• Reconfigurable Asynchronous Logic Automata (Gershenfeld et al 2010)
Insertion Sort

spatial computer **assumptions** and terminology

- There are more nodes than items to be sorted
- Nodes are functionally identical
 - all run the same program
 - very limited local storage
 - no access to global information
- Nodes don’t move
- Sufficient local connectivity
- Atomic transactions
Insertion Sort

dexample sequence: extension

A.

B.

C.

D.
Insertion Sort

dexample sequence: **swelling**
Insertion Sort

amorphous network approximates a 2D manifold

Neighbors per node at density 0.55

- **Neighbor count**
 - 50
 - 37.5
 - 25
 - 12.5
 - 0

- **Node count**
 - 0
 - 2
 - 4
 - 6
 - 8
 - 10
 - 12
 - 14
 - 16
 - 18
 - 20
 - 22
 - 24
 - 26
 - 28
 - 30
 - 32
 - 34
 - 36
 - 38
 - 40
 - 42

- **Graphs**:
 - Radius 2
 - Green
 - Radius 4
Insertion Sort
performance and limitations

- Parallel execution yields $O(n)$ time complexity
- Growth process can get overcrowded or stuck
- No allowance for node failure in this model
- Linear linkage may be a less efficient use of space than (e.g.) spanning trees
Conclusions

• Spatial abstractions can help organize large-scale, fine-grained parallel computations

• Spatial programs may, but need not, map directly to physical computers

• Random networks can do useful work

Thanks to the Maseeh College of Engineering and Computer Science Undergraduate Research and Mentoring Program

All software models are available: http://cs.pdx.edu/~orhai