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Abstract—In the cellular automata domain, the discrete convex
hull computation rules proposed until now only deal with a
connected set of seeds in infinite space, or with distant set of
seeds in finite space. Taking a spatial computing point of view,
we present a cellular automata rule that constructs the discrete
convex hull of arbitrary set of seeds in infinite spaces. This is
done by characterizing the cellular spaces and the convex hulls by
metrical properties. The rule obtained is expressed using intrinsic
and general properties of the cellular spaces, considering them
as metric spaces. In particular, this rule is a direct application of
metric Gabriel graphs. This allows the rule and its components
to be used on all common 2D and 3D grids used in cellular
automata.

I. I NTRODUCTION

Convex hulls are an important tool of classical, i.e Eu-
clidean, geometry. In this geometry, the convex hull of a setof
points is defined as the smallest convex polytope containing
these points. Considering the two-dimensional case, Fig. 1
shows a non-convex polygon, a convex polygon, and the con-
vex hull of a given set of points. A common characterisation
of convex polygon is that all their internal angles are less than
or equal to 180 degrees.

There are many algorithms that compute the Euclidean
convex hull of a set of points in sequential and parallel settings.
This include Jarvis’s gift wrapping [1], Graham’s scan [2],
Kirkpatrick–Seidel algorithm [3], and Chan’s algorithm [4].
These algorithms take a set of point coordinates as input and
return the subset of these points that forms the smallest convex
polygon.

We are interested in the computation of convex hulls in
the framework of cellular automata [5]. In this massively
distributed computation framework, the set of processing el-
ements itself forms the space. The considered set of points
is therefore indicated by a marker on the corresponding
processing elements. Computing their convex hull is to place
a special marker on all the processing elements corresponding
to the points contained in the convex hull, and only on them.

A. The classical cellular automata approach

Cellular automata consider sets of processing elements
forming lattices in Euclidean spaces. Previous works about
convex hulls computation on cellular automata mainly study
two-dimensional square lattice with the so-called Moore
neighborhood consisting of the direct horizontal, vertical, and
diagonal neighbors. Because of the discrete nature of the space
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Fig. 1. Euclidean convexity examples. Considered set for convexity in gray,
seeds in black. Note that (b) is also the convex hull of (a)

thus considered, the definition of the convex hull is adaptedto
only take into account polygons that only consist of horizontal,
vertical and diagonal edges . This amounts to consider that the
internal angles have to be multiples of 45 degree, as defined
by the 45-convexity.

Previous cellular automata that have been proposed to
compute this adapted convex hull have important limitation.
The first is that most of them are restricted to this specific
lattice. Another limitation is that they only consider set of
points that are connected, either directly or indirectly by
a wrapping pattern. In fact, they are designed by manual
characterization of what needs to be done to complete the
convex hull construction. We present a way to look at the
same problem in a more generic way, without any constraints
on the set of points, and without being specific to a particular
lattice, or to a particular dimensionality: all common lattices,
either 2D or 3D are considered at once by a changing of the
point of view on cellular spaces.

B. A spatial computing point of view

This genericity is obtained by taking a spatial computing
point of view on cellular automata. Indeed, spatial computing
considers a class of massively distributed computing model
where the communication time between two processing ele-
ments is proportional to their Euclidean distance. This property
is called thelocality property, and taking the spatial computing
point of view is to place this property at the center of the
framework.

Applying this methodology to the particular case of cellular
automata, we propose to consider their intrinsic metric spaces
and define the problem and the solution in terms of distances.
In particular, we show that the Euclidean and the adapted
convex hull are two instances of metric convex hulls applied
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Fig. 2. The majority rule on the set of seeds (a), generates a set of convex hulls (c)

on different metric spaces. Starting from the metric convex
hull definition, which only manipulates distances, we derive a
cellular automata rule also expressed in terms of distances.
This particularity allows it to be applied on many cellular
spaces, including square cellular spaces with 4 or 8 neighbors
(Von Neumann or Moore neighborhoods), hexagonal cellular
spaces and their analog three-dimensional cellular spaces.

C. Organization of the article

The rest of the article is roughly organized as this intro-
duction. In Sect.II, we present the state of the art before
our results. This is done by giving the classical point of
view on cellular automata in Sect. II-A, by defining the usual
discrete convex hull in Sect. II-B, and by presenting the two
pre-existing convex hull cellular automata. In Sect. III, we
present our results, firstly by presenting the metrical point
of view on cellular spaces in Sect. III-A, then by defining
metric convex hulls and how they entirely contain the usual
discrete convex hulls. The remaining sections present the
corresponding cellular automata rules by incrementally giving
the intuition that leads to them. At the end, we notice that
this work reveal at the same time an algorithm that build
an interesting subgraph of Delaunay graphs: namely metric
Gabriel graphs.

II. STATE OF THE ART

A. Cellular Automata Framework

A cellular automaton is made of an infinite setS of sites,
i.e. processing elements arranged as a lattice in an Euclidean
space.S is called thecellular spaceand is endowed with
a neighborhood relation denoted asN . Being processing
elements, each sitex has a particular statevt(x) ∈ V (as
value) that changes with time,V being finite. The information
accesible by a sitex is its current statevt(x) and the current
statesvt(y) of its neighborsy ∈ N(x). It is also common to
consider that a site knows the relative position of all of its
neighbors, identifying them as North, South, East or West for
example. With this information, all sitesx update their state
to a new onevt+1(x), all at the same time and all using the
same update function.

In this framework, the convex hull problem is formulated
this way: Given a set of seedsS0, represented by a configu-
ration src defined assrc(x) ≡ x ∈ S0, the goal is to find a
rule R such that, from some instantt, Rt(x) ≡ x ∈ HC(S0),
whereHC(S0) denotes the convex hull of the set of seedsS0.

B. Discrete Convex Hulls

As said in the introduction, previous works about convex
hulls computation on cellular automata mainly study the
square cellular space with Moore neighborhood consisting
of the direct horizontal, vertical, and diagonal neighbors.
The definition of convex hull used in these works is called
45-convex hull: the smallest convex polygon consisting of
horizontal, vertical, and diagonal edges. We recall here that
convex polygons have all their internal angles less than or
equal to 180 degrees.

Allthough previous works have considered mainly 45-
convex hulls, the definition itself is very easy to extend, and
one can consider 90-convex hulls for the two-dimensional
square lattice with Von Neumann neighborhood (only vertical
and horizontal neighbors), or 60-convex hulls for hexagonal
cellular spaces which assign 6 neighbors to every sites.

C. Rule for Connected Set of Seeds

In [6], some of the first proposed rules for the convex hull
problem are described. The intuition is that any bordering site
that does not have a local configuration corresponding to the
shape of a convex set boundary has to select itself. After
observing that all rejected local configuration have 1, 2 or
3 selected sites, the rule is simplified to a counter that checks
whether there are at least 4 selected sites in the neighborhood.
This rule can be generalized to the majority rule, since 4 can
be interpreted as the half of 8, the number of neighbors. The
convex hull behavior of the majority rule is described in [5].
In fact, the set of seeds does not need to be connected, but
simply denser enough, since only their quantity matters. Also,
as more and more sites are selected by the rule, many local
convex hulls can merge to form bigger convex hulls that can
also merge, etc. Using our notations, the majority rule can be
expressed as follows, and gives the results shown in Fig. 2 for
hexagonal grids.

majot+1(x) =











⊤ if src(x)

⊤ if card{ y ∈ N(x) | majot(y) } ≥ card(N(x))
2

⊥ otherwise.

D. Rule for Wrapped Set of Seeds

In [7], [8], a rule is proposed for non connected set of
seeds. However, it requires the seeds to be included in a finite
connected pattern. One can also consider that this rule only
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Fig. 3. Stages from wrapped seeds to their convex hull: The initial wrapping
(a) is shrunk to (b) and is then grown to convex hull (c)

works for finite spaces, considering the space itself as the
finite wrapper. The proposed rule consists of two globally
successive stages. The first one erodes the wrapper until a
minimal isometric set is obtained. Thus between any pair of
points of the set, at least one shortest path is in the set. The
second stage is the application of a rule to transform this
connected set of sites into its convex hull, as done in the
previous subsection. The stages are shown in Fig. 3.

III. M ETRIC SPACE APPROACH

Our goal is to solve the problem with no contrainst on
the input, and without depending on one particular cellular
space. This is achieved by considering the cellular space asa
simple metric space, and by applying the definition of metric
convex hulls. In particular, this allows to work formally ona
class on cellular spaces, instead of one single cellular spaces.
We illustrate this genericity through common two-dimensional
cellular spaces, but three or higher-dimensional cellularspaces
are also captured by this work.

A. Cellular Spaces and Metric Spaces

As said in Sect. II-A, the cellular spaces are endowed
with a neighborhood relation. It thus forms a graph, usualy
called communication graph. The length of the paths in this
graph give rise to a distance function, called metric, on the
cellular space which is not the Euclidean distance function.
Different metrics can be associated to each cellular space.The
most commonly used two-dimensional cellular spaces are the
square grids, with 4 or 8 neighbors per site, and the hexagonal
grids, having 6 neighbors per site. Figure 4 shows these grids,
exposing the nodes and the edges of their communication
graphs.

For the distance function, we consider thehop count metric,
which associates to each edge the unitary length. This is a
natural choice for the 4-square and hexagonal grids since all
edges have the same length in the Euclidean space. However,
this is not the case for the 8-square grids, whose diagonal
edges are drawn

√
2 times longer than the vertical and hori-

zontal ones. Therefore, we also consider two metrics for the
8-square grids: the hop count metric, and the{1,

√
2} metric

that associates unitary and
√
2 lengths to non-diagonal and

diagonal edges respectively. With the hop count metric, paths
represented on Figs. 4(a), 4(b), and 4(c) have length 5. With
the {1,

√
2} metric, the path of Fig. 4(b) has length3+ 2

√
2.

It is important to note that paths of Fig. 4(d) have the same

(a) 4-square (b) 8-square (c) hexagonal (d) 8-square

Fig. 4. Grids used in this article: the polygons (squares, octagons and
hexagons) correspond to the sites, the lines correspond to the edges, and
example paths are in black.

(a) 4-square (b) 8-square

(c) 8-square-
√
2 (d) hexagonal

Fig. 5. Intervals for different grids

length for hop count and different lengths for{1,
√
2}, since

this has an effect on the notions of shortest path and convexity.

B. Metric Convex Hulls

As said in Sect. II-B, the convex hull definition needs to be
adapted to fit to cellular spaces. Instead of the 45, 90 and 60-
convexity definition, we consider the metric convexity one:
a subset of the space is metric-convex if it contains all the
shortest paths joining two of its points.

The Eculidean, 45, 90 and 60-convexity correspond to the
metric convexity applied on different metric space, as we will
see. In arbitrary metric space, a pointz lying on a shortest
path joining two pointsx andy is said to bebetweenthe two
points. It is denoted asz ∈ [x, y], where [x, y] is called the
interval betweenx and y. Formally, we have[x, y] = { z ∈
S | d(x, z) + d(z, y) = d(x, y) } whered is the metric and
S the set of points. In Euclidean spaces,[x, y] corresponds to
the segment joining the pointsx andy, since it is the unique
shortest path joining these points. Fig. 1(a) shows that anynon-
convex polygon has some missing segments. In other metric
spaces, including square and hexagonal cellular spaces, there
may be many shortest paths between two points, leading to
more complex intervals as shown in Fig. 5. In fact, this seems
an inevitable artefact when the space is discrete, that is atthe
heart of the problem difficulty.

Using intervals, metric convexity can be defined as follows.
A subsetC is metric-convex if and only if[x, y] ⊆ C for
any pair of points(x, y) ∈ C2. If we define the operator
I(P ) =

⋃{ [x, y] | (x, y) ∈ P 2 } that adds to a set of points
the shortest path joining them, we can say that a setC is
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Fig. 6. Each sitex is black if x ∈ S0, or gray if x ∈ HC(S0)

metric-convex if and only ifI(C) = C.
The convex hullHC(S0) of a setS0 ⊂ S of seeds is the

minimal convex set containingS0. UsingI(•), it corresponds
to the limit of the sequenceI(S0), I(I(S0)), . . ., sinceI(•)
adds points that have to be in the convex set, and the limitL

verifiesI(L) = L. Our algorithm also adds points iteratively.
Examples of initial and associated final configuration for the

considered cellular spaces are shown in Fig. 6. It is interesting
to see how 45, 90 and 60-convexity corresponds to metric
convexity.

C. Rule for Local Convexity

Computing the convex hull locally means that each site has
to select itself if it belongs to the convex hull of the selected
sites present in its neighborhood. The computation of the local
convex hull is an easy task due to the simplicity and finiteness
of the space in the neighborhood of each site. Indeed, it is
enough for a site to check if it lies on a shortest path joining
two of its selected neighbors. This gives the following local
convexity rule:

convt(x) =



















⊤ if src(x)

⊤ if ∃{y0, y1} ⊂ { y ∈ N(x) | convt−1(y) };
x ∈ [y0, y1]

⊥ otherwise.

Let us mention that testingx ∈ [y0, y1] with hop count metric
is equivalent to testingd(y0, y1) = 2 sincex ∈ [y0, y1] ⇔
d(y0, x) + d(x, y1) = d(y0, y1) andy ∈ N(x) ⇔ d(x, y) = 1.
For the{1,

√
2} metric, the test has to be done explicitly.

Because it follows directly from the convex hull definition,
this rule is more precise than themajo rule. It is possible to
check that whenever one selects half of the neighbors of a site
x, then two of them are joined by a shortest path containing
the sitex. The reverse is obviously not true, which means

the conv rule is able to construct the convex hull in more
cases than themajo rule. One can also note that applying
majo on an 8-square grid can only give a{1,

√
2}-convex

hull. The formulation ofconv allows choosing the metric
to use, and tackles many grid topologies at once, such as
the ones considered in this article and their tridimensional
counterparts. However, it exhibits roughly the same behavior.
Figure 7 shows the evolution of theconv rule with an initial
configuration on whichmajo is stationary.

D. Global Convexity with Only Two Seeds

Since we have seen solutions to transform a connected set
of seeds into its convex hull, a natural idea to obtain the
convex hull of an arbitrary set of seeds is to connect them
in a minimal way that remains in the desired convex hull. We
start by studying the simpler case of only two seeds. In this
setting, the goal is to select sites of the interval, as shownin
Fig. 5.

To do so, we compute the distance of each site to the nearest
seed, and look at the resulting pattern (Fig. 8(a)). We can
notice distinguished sites, namely the middle sites which are
exactly the middle of the shortest path joining the two seeds. It
turns out that these middles can always be detected by looking
at the distance values in a bounded neighborhood. Therefore,
they will be the first sites identified as being in the convex
hull (Fig. 8(b)). All the other sites of the interval can thenbe
selected by back-propagating from the middles to the seeds,
by traveling towards neighbors that are closer to the seeds,
again by using the distance values (Fig. 8(c)). This achieves the
desired construction, without using any global phase transition
but only local interaction. Let us now describe each rule in
more details.

1) Distance Field: The distance computation described
earlier is what we call adistance field. For hop count metrics,
it associates to each site an integer and can be expressed
by the following rule. The latter converges todist∞(x) =
min{ d(x, y) | src(y) }:

distt(x) =











0 if src(x)

1 if ¬src(x) ∧ t = 0

min{ 1 + distt−1(y) | y ∈ N(x) } otherwise.

While this rule has an infinite number of possible state,
we only need its gradient, i.e. the differences between the
distance of neighboring sites. In [9], we have shown how to
represent the gradients of some kind of integer fields with a
finite number of states, thanks to the modulo operator. Applied
on thedist rule, it allows representing it modulo 3 and gives
the way to compute the gradient from these modulo values. For
brevity and readability, we use directlydist in the rest of the
paper and redirect the interested reader to [9]. Finally, wedo
not have any mean to represent the distance field for{1,

√
2}

metric with finite number of states, which is the reason why
the final rule can not be directly applied to this metric.

2) From Middles Back to Seeds:As mentioned earlier, the
middle sites are detected using the distance values present
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Fig. 7. Evolution of theconv rule. Themajo rule is stationary on (a)

(a) Distance (b) Middles (c) Back propagation

Fig. 8. The rulesdist, cent andback in action

in their neighborhood. The global idea is to detect distance
patterns that only happen when there are two nearest seeds
for the considered site, in which case, the considered site
is the middle of these two nearest sites. Because we solve
this detection in our general metric framework instead of a
particular grid, we delay the discussion about this detection to
the next subsection, and directly usecent(x) to denote that a
site x is a middle.

For the back-propagation, each site having a selected site
in its neighborhood has to determine if it is closer or not than
the selected neighbor. If it is so, it can select itself, since it is
between the selected neighbor and the seeds. This is expressed
as:

backt(x) =



















⊤ if centt(x)

⊤ if t > 0 ∧ ∃y ∈ N(x),

backt−1(y) ∧ distt−1(x) < distt−1(y)

⊥ otherwise

E. Global Convexity and Metric Gabriel Graphs

When considering the general case with many seeds, (in-
stead of just two seeds) some questions naturally arise: does
the rule presented for only two seeds do all the work pair-
wise? Do they produce a connected set? What structure is
constructed? The answer is that we produce a connected set,
connecting the seeds pairwise to draw a structure related to
Delaunay graphs. A complete description is beyond the scope
of this article but can be found in [10]. We only give here the

material that allows understanding the global structure ofthe
constructed graph.

When computing a distance field, one implicitly associates
to each site its nearest seed. It is strongly related to Voronoi
diagram [11], the set of sites having the same nearest seed
being called the Voronoi region of the seed and the sites having
many nearest seeds being the boundaries between the Voronoi
regions. In our case, we detect boundary sites that are on a
shortest path between the corresponding seeds, to make sure
to select only sites that are in the convex hull.

By doing so, we only connect seeds of neighboring Voronoi
regions, such that there is a shortest path going trough the
boundary between the two regions. Replacing the words
“shortest path” by “segment”, we obtain one of the defining
properties of Gabriel graphs [12], which is a connected sub-
graph of the Delaunay graph defined for Euclidean spaces.
In [10], we generalize the definition of Gabriel graphs to
arbitrary metric spaces and obtainmetric Gabriel graphs,
which identify exactly what we need to detect in order to
have a connected set of sites. We also explain in detail the
rule cent (as metric Gabriel ballcenters).

By using metric Gabriel graphs, we have, roughly speaking,
that back ◦ cent ◦ dist constructs a connected set of sites that
is a subset of the convex hull. In order to complete the convex
hull, we simply have to considerconv◦back◦cent◦dist. The
final cellular automaton thus described has 7 states: (3 distance
states) * (2 “in convex hull” states) + 1 special “seed” state.
Because ofcent rule, it uses a neighborhood of radius 2. The



Fig. 9. Snapshots of the computation of the three layers simultaneously. The two last snapshots show the final configurationwith, firstly back hidden and
thenback andcent hidden. Black: generators, light grays:dist, small dots:cent, dark gray:back

evolution of the rule withoutconv is shown in Fig. 9.

IV. F INAL REMARKS

We have presented a cellular automata that computes the
convex hull of arbitrary set of seeds for all the common cellular
spaces of any dimensionality. This has been done by taking
a spatial computing point of view on cellular automata and
by considering them as metric spaces. However the solution
proposed only works for the hop count metric. Therefore, it
may seem that the original 45-convexity has not been tackled,
as it does not correspond to a hop count metric, but to a
{1,

√
2}-metric. However, this is not a problem, since we can

still produce the{1,
√
2} convex hull having both diagonal and

vertical-horizontal border, by intersecting two convex hulls:
the 4-square one, having only vertical-horizontal borders, and
the 8-square one with hop count, having only diagonals. This
intersection relation can be observed on Fig. 6: Fig. 6(c) is
the intersection of Fig. 6(a) and Fig. 6(b).
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