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Abstract—In the cellular automata domain, the discrete convex
hull computation rules proposed until now only deal with a
connected set of seeds in infinite space, or with distant set of
seeds in finite space. Taking a spatial computing point of view,
we present a cellular automata rule that constructs the discrete
convex hull of arbitrary set of seeds in infinite spaces. This is

done by characterizing the cellular spaces and the convex hulls by
metrical properties. The rule obtained is expressed using intrinsic 3y Non-convex set (b) Convex set (c) Convex hull
and general properties of the cellular spaces, considering them
as metric spaces. In particular, this rule is a direct application of Fig. 1. Euclidean convexity examples. Considered set fovexity in gray,
metric Gabriel graphs. This allows the rule and its components seeds in black. Note that (b) is also the convex hull of (a)
to be used on all common 2D and 3D grids used in cellular
automata.
thus considered, the definition of the convex hull is adapted
only take into account polygons that only consist of hortagn
Convex hulls are an important tool of classical, i.e Ewertical and diagonal edges . This amounts to consider hieat t
clidean, geometry. In this geometry, the convex hull of ao$et internal angles have to be multiples of 45 degree, as defined
points is defined as the smallest convex polytope containipg the 45-convexity.
these points. Considering the two-dimensional case, Fig. 1pPrevious cellular automata that have been proposed to
shows a non-convex polygon, a convex polygon, and the cafompute this adapted convex hull have important limitation
vex hull of a given set of points. A common characterisatiofhe first is that most of them are restricted to this specific
of convex polygon is that all their internal angles are lésst |attice. Another limitation is that they only consider sdt o
or equal to 180 degrees. points that are connected, either directly or indirectly by
There are many algorithms that compute the Euclide@nwrapping pattern. In fact, they are designed by manual
convex hull of a set of points in sequential and paralleisgt  characterization of what needs to be done to complete the
This include Jarvis’s gift wrapping [1], Graham’s scan [2]convex hull construction. We present a way to look at the
Kirkpatrick—Seidel algorithm [3], and Chan’s algorithm].[4 same problem in a more generic way, without any constraints
These algorithms take a set of point coordinates as input agiglthe set of points, and without being specific to a particula
return the subset of these points that forms the smallesegon|attice, or to a particular dimensionality: all common ik,
polygon. either 2D or 3D are considered at once by a changing of the
We are interested in the computation of convex hulls ipoint of view on cellular spaces.
the framework of cellular automata [5]. In this massivel ) ] . )
distributed computation framework, the set of processihg &- A Spatial computing point of view
ements itself forms the space. The considered set of pointsThis genericity is obtained by taking a spatial computing
is therefore indicated by a marker on the correspondimpint of view on cellular automata. Indeed, spatial conmuyti
processing elements. Computing their convex hull is toglaconsiders a class of massively distributed computing model
a special marker on all the processing elements correspgndivhere the communication time between two processing ele-
to the points contained in the convex hull, and only on therments is proportional to their Euclidean distance. Thipprty
] is called thdocality property and taking the spatial computing
A. The classical cellular automata approach point of view is to place this property at the center of the
Cellular automata consider sets of processing elemefi@mework.
forming lattices in Euclidean spaces. Previous works aboutApplying this methodology to the particular case of celtula
convex hulls computation on cellular automata mainly studyutomata, we propose to consider their intrinsic metricepa
two-dimensional square lattice with the so-called Moorand define the problem and the solution in terms of distances.
neighborhood consisting of the direct horizontal, vetfiemd In particular, we show that the Euclidean and the adapted
diagonal neighbors. Because of the discrete nature of timespconvex hull are two instances of metric convex hulls applied

I. INTRODUCTION
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Fig. 2. The majority rule on the set of seeds (a), generates af s®nvex hulls (c)

on different metric spaces. Starting from the metric conveéX Discrete Convex Hulls
hull definition, which only manipulates distances, we d8@  Aq sajd in the introduction, previous works about convex

cellular automata rule also expressed in terms of distancgg)is computation on cellular automata mainly study the

This particularity allows it to be applied on many ce_”L'IaEquare cellular space with Moore neighborhood consisting
spaces, including square cellular spaces with 4 or 8 neiShbg¢ he girect horizontal, vertical, and diagonal neighbors

(Von Neumann or Moore neighborhoods), hexagonal cellulgfe definition of convex hull used in these works is called
spaces and their analog three-dimensional cellular spaces 45_-onvex hull: the smallest convex polygon consisting of

horizontal, vertical, and diagonal edges. We recall heet th

) ) . .. convex polygons have all their internal angles less than or
The rest of the article is roughly organized as this '”trcb'qual to 180 degrees.

duction. In Sect.ll, we present the state of the art beforeAIIthough previous works have considered mainly 45-

our results. This is done by giving the classical point Qfy ey hylis, the definition itself is very easy to extendd an

view on cellular automata in Sect. Il-A, by defining the usuglne can consider 90-convex hulls for the two-dimensional

discrete convex hull in Sect. II-B, and by presenting the tquuare lattice with Von Neumann neighborhood (only veltica

pre-existing convex hpll cellular automata. In Sect'. Ille Wand horizontal neighbors), or 60-convex hulls for hexagjona
present our results, firstly by presenting the metrical POy lar spaces which assign 6 neighbors to every sites.
of view on cellular spaces in Sect. llI-A, then by defining

metric convex hulls and how they entirely contain the usug@. Rule for Connected Set of Seeds

g:asr(r:(reesteorﬁlgveéelrlmgsr.aItr;?ngfgﬁjlgggl]) Si?] ((::tr'gnmsenageswfnit theﬁn [6], some of the first proposed rules for the convex hull
P g y 9" problem are described. The intuition is that any borderitey s

the intuition that leads to them. At the end, we notice th tat does not have a local configuration corresponding to the

this work reveal at the same time an algorithm that bL“Is(?hape of a convex set boundary has to select itself. After

an m_terestlng subgraph of Delaunay graphs: namely metgﬁserving that all rejected local configuration have 1, 2 or
Gabriel graphs.

3 selected sites, the rule is simplified to a counter thatlkshec

Il. STATE OF THE ART whether there are at least 4 selected sites in the neightdrho
This rule can be generalized to the majority rule, since 4 can
be interpreted as the half of 8, the number of neighbors. The

A cellular automaton is made of an infinite sgtof sites convex hull behavior of the majority rule is described in.[5]
i.e. processing elements arranged as a lattice in an Eaadliden fact, the set of seeds does not need to be connected, but
space.S is called thecellular spaceand is endowed with simply denser enough, since only their quantity mattersoAl
a neighborhood relation denoted a6. Being processing as more and more sites are selected by the rule, many local
elements, each site has a particular state;(z) € V (as convex hulls can merge to form bigger convex hulls that can
value) that changes with timé&; being finite. The information also merge, etc. Using our notations, the majority rule can b
accesible by a site is its current state, () and the current expressed as follows, and gives the results shown in Figr 2 fo
statesv; (y) of its neighborsy € N(x). It is also common to hexagonal grids.
consider that a site knows the relative position of all of its
neighbors, identifying them as North, South, East or Wesst fo

C. Organization of the article

A. Cellular Automata Framework

example. With this information, all sites update their state T ?f sre(@) V)
to a new onev,,1(z), all at the same time and all using thenajoi1(z) = T if card{y € N(z) | majo(y) } > “=5-"*
same update function. 1 otherwise.

In this framework, the convex hull problem is formulated
this way: Given a set of seed%, represented by a configu-D- Rule for Wrapped Set of Seeds
ration src defined assrc(z) = = € Sy, the goal is to find a  In [7], [8], a rule is proposed for non connected set of
rule R such that, from some instant R;(x) =« € He(Sy), seeds. However, it requires the seeds to be included in e finit
where H¢(Sp) denotes the convex hull of the set of seéds connected pattern. One can also consider that this rule only
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(a) 4-square (b) 8-square (c) hexagonal (d) 8-square

. Fig. 4. Grids used in this article: the polygons (squaresagens and
(a) input (b) erosion (c) convex hull hexagons) correspond to the sites, the lines correspontieteedges, and
example paths are in black.

Fig. 3. Stages from wrapped seeds to their convex hull: Tii@limrapping

(a) is shrunk to (b) and is then grown to convex hull (c) oooOoo0o0o0o0o0O0 0000000000
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oo oo O OO0 (O5 @)
works for finite spaces, considering the space itself as the = m B IXIXE oZoZold
finite wrapper. The proposed rule consists of two globally O00D00D00O000 00O 00000
successive stages. The first one erodes the wrapper until a npooooooood 0000000000
minimal isometric set is obtained. Thus between any pair of (a) 4-square (b) 8-square

points of the set, at least one shortest path is in the set. The occcoco00000 000000000
second stage is the application of a rule to transform this ©ococococooco0o0co 0000000000
connected set of sites into its convex hull, as done in the 88% o2 OOOOWOOOOO
previous subsection. The stages are shown in Fig. 3. 00 0000 0O 000
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Our goal is to solve the problem with no contrainst on (c) 8-squarey’2 (d) hexagonal
the input, and without depending on one particular cellular
space. This is achieved by considering the cellular spaee as
simple metric space, and by applying the definition of metric
convex hulls. In particular, this allows to work formally @n
class on cellular spaces, instead of one single cellulazespa
We illustrate this genericity through common two-dimemnsib
cellular spaces, but three or higher-dimensional cellsfi@ces g Metric Convex Hulls
are also captured by this work.

Fig. 5. Intervals for different grids

length for hop count and different lengths ffr, v/2}, since
this has an effect on the notions of shortest path and cagvexi

As said in Sect. II-B, the convex hull definition needs to be

A. Cellular Spaces and Metric Spaces adapted to fit to cellular spaces. Instead of the 45, 90 and 60-

As said in Sect. II-A, the cellular spaces are endowegbnvexity definition, we consider the metric convexity one:
with a neighborhood relation. It thus forms a graph, usua#y subset of the space is metric-convex if it contains all the
called communication graph. The length of the paths in th#hortest paths joining two of its points.
graph give rise to a distance function, called metric, on the The Eculidean, 45, 90 and 60-convexity correspond to the
cellular space which is not the Euclidean distance functiometric convexity applied on different metric space, as wi wi
Different metrics can be associated to each cellular spgee. see. In arbitrary metric space, a pointying on a shortest
most commonly used two-dimensional cellular spaces are tp@&th joining two pointss andy is said to bebetweerthe two
square grids, with 4 or 8 neighbors per site, and the hexagopaints. It is denoted as € [z,y], where[z,y] is called the
grids, having 6 neighbors per site. Figure 4 shows these grithterval betweenz andy. Formally, we havdz,y] = {z €
exposing the nodes and the edges of their communicatiSn| d(z,z) + d(z,y) = d(x,y) } whered is the metric and
graphs. S the set of points. In Euclidean spacés,y] corresponds to

For the distance function, we consider th@p count metric the segment joining the pointsandy, since it is the unique
which associates to each edge the unitary length. This isfortest path joining these points. Fig. 1(a) shows thanamny
natural choice for the 4-square and hexagonal grids sirice @nvex polygon has some missing segments. In other metric
edges have the same length in the Euclidean space. Howespaces, including square and hexagonal cellular spaca®, th
this is not the case for the 8-square grids, whose diagoma&y be many shortest paths between two points, leading to
edges are drawr/2 times longer than the vertical and hori-more complex intervals as shown in Fig. 5. In fact, this seems
zontal ones. Therefore, we also consider two metrics for the inevitable artefact when the space is discrete, thattiseat
8-square grids: the hop count metric, and {iev/2} metric heart of the problem difficulty.
that associates unitary ang2 lengths to non-diagonal and Using intervals, metric convexity can be defined as follows.
diagonal edges respectively. With the hop count metridapatA subsetC' is metric-convex if and only ifiz,y] C C for
represented on Figs. 4(a), 4(b), and 4(c) have length 5. Withy pair of points(z,y) € C?. If we define the operator
the {1, v/2} metric, the path of Fig. 4(b) has lenght+-2v/2. I(P) = U{[z,y] | (z,y) € P?} that adds to a set of points
It is important to note that paths of Fig. 4(d) have the santlbe shortest path joining them, we can say that a(3ds



the conv rule is able to construct the convex hull in more
cases than thenajo rule. One can also note that applying
magjo on an 8-square grid can only give {d,v/2}-convex
hull. The formulation ofconv allows choosing the metric

to use, and tackles many grid topologies at once, such as
the ones considered in this article and their tridimendiona
counterparts. However, it exhibits roughly the same beiravi
Figure 7 shows the evolution of thenv rule with an initial

(@) 4-square (b) 8-square configuration on whichnajo is stationary.

D. Global Convexity with Only Two Seeds

Since we have seen solutions to transform a connected set
of seeds into its convex hull, a natural idea to obtain the
convex hull of an arbitrary set of seeds is to connect them
in a minimal way that remains in the desired convex hull. We
start by studying the simpler case of only two seeds. In this

. setting, the goal is to select sites of the interval, as shiown
(c) 8-squarey’2 (d) hexagonal Fig, 5.

To do so, we compute the distance of each site to the nearest
seed, and look at the resulting pattern (Fig. 8(a)). We can
notice distinguished sites, namely the middle sites whieh a
metric-convex if and only iff (C') = C. exactly the middle of t_he shortest path joining the two seﬂds_

The convex hullHq(Sy) of a setSy ¢ S of seeds is the turns ou_t that these mld_dles can always _be detected by Igokin
minimal convex set containin§o. Using (), it corresponds 2t the distance values in a bounded neighborhood. Therefore
to the limit of the sequencé(So), I(1(So)),. .., sincel(s) they V\{I” be the first sites |de.nt|f|ed as pelng in the convex
adds points that have to be in the convex set, and the fmithull (Fig. 8(b)). All the othe.r sites of the |n'terval can thee
verifies I(L) = L. Our algorithm also adds points iteratively S€lected by back-propagating from the middles to the seeds,

Examples of initial and associated final configuration fer tHPY traveling towards neighbors that are closer to the seeds,
considered cellular spaces are shown in Fig. 6. It is inteigs 292in by using the distance values (Fig. 8(c)). This ackiéve
to see how 45, 90 and 60-convexity corresponds to metfésired construction, without using any global phase itians

Fig. 6. Each siter is black if x € Sp, or gray ifx € H¢(So)

convexity. but only chal interaction. Let us now describe each rule in
) more details.
C. Rule for Local Convexity 1) Distance Field: The distance computation described

Computing the convex hull locally means that each site hasrlier is what we call @istance fieldFor hop count metrics,
to select itself if it belongs to the convex hull of the sedektt it associates to each site an integer and can be expressed
sites present in its neighborhood. The computation of thallo by the following rule. The latter converges thst.(z) =
convex hull is an easy task due to the simplicity and finitenesvin{ d(x,y) | src(y) }:
of the space in the neighborhood of each site. Indeed, it is

enough for a site to check if it lies on a shortest path joining 0 if sre(z)

two of its selected neighbors. This gives the following localist:(z) = ¢ 1 if —src(z) At =0

convexity rule: min{ 1 + dist;—1(y) | y € N(z) } otherwise.
T if sre(x) While this rule has an infinite humber of possible state,
Tif Hyo, 11} € {y € N(z) | convi_1(y) }; we only need its gradient, i.e. the differences between the

convy(x) = 2 € [yo, v1] distance of neighboring sites. In [9], we have shown how to
N otherwise.7 represent the gradients of some kind of integer fields with a

finite number of states, thanks to the modulo operator. A&gpli
Let us mention that testing € [yo, y1] with hop count metric on thedist rule, it allows representing it modulo 3 and gives
is equivalent to testingl(yo,y1) = 2 sincez € [yo,y1] & the way to compute the gradient from these modulo values. For
d(yo,z) +d(z,y1) = d(yo,y1) andy € N(z) & d(x,y) = 1. brevity and readability, we use directtist in the rest of the
For the{1,+/2} metric, the test has to be done explicitly. ~paper and redirect the interested reader to [9]. Finallydee
Because it follows directly from the convex hull definitionnot have any mean to represent the distance field fox/2}
this rule is more precise than theajo rule. It is possible to metric with finite number of states, which is the reason why
check that whenever one selects half of the neighbors ota ghe final rule can not be directly applied to this metric.
x, then two of them are joined by a shortest path containing2) From Middles Back to Seed#&s mentioned eatrlier, the
the sitex. The reverse is obviously not true, which meansiddle sites are detected using the distance values present
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Fig. 7. Evolution of theconv rule. Themajo rule is stationary on (a)

(a) Distance (b) Middles (c) Back propagation

Fig. 8. The rulesiist, cent andback in action

in their neighborhood. The global idea is to detect distanoeaterial that allows understanding the global structuréhef
patterns that only happen when there are two nearest seealsstructed graph.
for the considered site, in which case, the considered SitQ/\/hen Compu[ing a distance field, one |mp||c|'[|y associates
is the middle of these two nearest sites. Because we sof$eeach site its nearest seed. It is strongly related to \dron
this detection in our general metric framework instead of (ﬂagram [11], the set of sites having the same nearest seed
particular grid, we delay the discussion about this detedid peing called the Voronoi region of the seed and the sitesigavi
the next subsection, and directly use:t(z) to denote that a many nearest seeds being the boundaries between the Voronoi
site z is a middle. regions. In our case, we detect boundary sites that are on a
For the back-propagation, each site having a selected sitfortest path between the corresponding seeds, to make sure
in its neighborhood has to determine if it is closer or nonthao select only sites that are in the convex hull.
the selected neighbor. If.it is so, it can select itse!f, _eiitds By doing so, we only connect seeds of neighboring Voronoi
between the selected neighbor and the seeds. This is eemre?égions, such that there is a shortest path going trough the
as. boundary between the two regions. Replacing the words
T if cent,(x) “shortest path” by “segment”, we obtain one of the defining

Tift>0A3y e Nx), properties of Gabriel graphs [12], which is a connected sub-

back(z) = _ _ graph of the Delaunay graph defined for Euclidean spaces.
backi—1(y) A dist,—1(x) < dist,—1(y)  |n [10], we generalize the definition of Gabriel graphs to
L otherwise arbitrary metric spaces and obtametric Gabriel graphs
) ) ) which identify exactly what we need to detect in order to
E. Global Convexity and Metric Gabriel Graphs have a connected set of sites. We also explain in detail the

When considering the general case with many seeds, (fHle cent (as metric Gabriel baltenters.

stead of just two seeds) some questions naturally arises doeBy using metric Gabriel graphs, we have, roughly speaking,
the rule presented for only two seeds do all the work paithat back o cent o dist constructs a connected set of sites that
wise? Do they produce a connected set? What structureisis subset of the convex hull. In order to complete the convex
constructed? The answer is that we produce a connected ketl, we simply have to considepnwv oback o centodist. The
connecting the seeds pairwise to draw a structure relatedfital cellular automaton thus described has 7 states: (8rdist
Delaunay graphs. A complete description is beyond the scogiates) * (2 “in convex hull” states) + 1 special “seed” state
of this article but can be found in [10]. We only give here thBecause otent rule, it uses a neighborhood of radius 2. The



Fig. 9. Snapshots of the computation of the three layers samedtusly. The two last snapshots show the final configuratitm firstly back hidden and
thenback and cent hidden. Black: generators, light gray&ist, small dots:cent, dark gray:back

evolution of the rule withoutonv is shown in Fig. 9. [2] R. L. Graham, “An efficient algorithm for determining thers@x hull
of a finite planar set,Information Processing Lettersol. 1, no. 4, pp.
132 — 133, 1972. [Online]. Available: http://dx.doi.or§/1016/0020-
0190(72)90045-2

3] D. G. Kirkpatrick and R. Seidel, “The ultimate planar cemvhull
We have presented a cellular automata that computes tl[ulg algorithm?"pSIAM Journal on Computingvol. 15, no'.) 1, pp. 287-299,
convex hull of arbitrary set of seeds for all the common datlu 1986. [Online]. Available: http:/link.aip.org/link/A)/15/287/1

spaces of any dimensionality. This has been done by takir§ T M. Chan, *Optimal output-sensitive convex hull algbms in two
. . . . and three dimensionsDiscrete & Computational Geometryol. 16,
a spatial computing point of view on cellular automata and |, 361368, 1996.

by considering them as metric spaces. However the solutids] A. llachinski, Cellular Automata: A Discrete Universe River Edge,
proposed only works for the hop count metric. Therefore, i[f] NJ, USA: World Scientific Publishing Co., Inc., 2001.

.. . A. Adamatzky,Computing in nonlinear media and automata collectives
may seem that the original 45-convexity has not been tackled” gjisior UK L)jK: |oFF)> Pu%"shing Ltd.. 2001.

as it does not correspond to a hop count metric, but to @] S. Torbey and S. G. Akl, “An exact and optimal local solatito the
{1 \/5}-metric However, this is not a problem, since we can two-dimensional convex hull of arbitrary points problendgurnal of
b) . L) L]

. . . Cellular Automata 2008.
still produce the{1, v/2} convex hull having both diagonal and [8] A. G. Clarridge and K. Salomaa, “An improved cellular autdaa

vertical-horizontal border, by intersecting two convexlisu based algorithm for the 45-convex hull problemdgurnal of Cellular
the 4-square one, having only vertical-horizontal bordarsi Automata 2008.

. . . J9] L. Maignan and F. Gruau, “Integer gradient for cellulant@nata:
the 8-square one with hOp count, having only diagonals. Th'g Principle and examples,Self-Adaptive and Self-Organizing Systems

intersection relation can be observed on Fig. 6: Fig. 6(c) is Workshops, IEEE International Conference, gp. 321-325, 2008.

IV. FINAL REMARKS

the intersection of Fig. 6(a) and Fig. G(b). [10] ——, “Gabriel graphs in arbitrary metric space and thealldar
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