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Abstract—The evacuation of a building during an emergency
situation, such as a fire, is a complex and challenging task. As
the conditions inside the building change due to the spreading
of the hazard, it becomes difficult for an evacuee to find the best
evacuation path. Information systems can prove beneficial for
the evacuees, as they provide them with directions regarding
the best path to follow at any given time. In this paper
we present two spatially distributed computing systems that
operate inside a building. They adapt to the dynamic conditions
during an evacuation while relying on local communication
and computation for determining the best evacuation paths.
The first system is composed of a network of decision nodes
(DNs) positioned at specific locations inside the building. Their
goal is to provide the evacuees with directions regarding the
best available exit. The second system is composed of mobile
communication nodes (CNs) carried by the evacuees. They form
an opportunistic network in order to exchange information
regarding the hazard and to direct the evacuees towards the
safest exit. Sensor nodes that monitor the hazard intensity
in the building are used by both systems. We use a multi-
agent simulation platform that we developed to evaluate the
performance of our proposed systems in evacuation scenarios
inside multi-storey buildings. We show how parameters such as
the frequency of information exchange between the nodes and
communication ranges affect the performance of the systems.

Keywords-Adaptive systems; emergency simulation; disaster
management; building evacuation; opportunistic communica-
tions.

I. INTRODUCTION

The evacuation that takes place inside a confined space,

such as a building, is a complex situation. The occupants

have to quickly decide which path to follow in order to

exit the building safely. This, however, is not an easy task,

especially if there is an ongoing hazard present. In this

case, conditions can change rapidly as the state of paths

may deteriorate with time. One of the main problems that

evacuees face during an emergency situation is the lack

of knowledge regarding the conditions in other parts of

the building [1]. Most of the times there is ambiguous

information with respect to which evacuation paths are safe

and which are the locations that are affected by the hazard.

This can lead to a delay in commencing the evacuation of

the building and can also result in choosing an inappropriate

evacuation route.

There are various approaches regarding the problem of

movement decision support during emergency situations. In

[2] the authors propose a distributed algorithm for robot

navigation using a sensor network. They evaluate their

approach using a robot and a sensor network composed

of nine nodes. They do not, however, take into account

other parameters such as a dynamically spreading hazard or

high number of evacuees, which play an important role in

providing decision support during a disaster. The authors in

[3] propose an algorithm inspired by sensor network routing,

in order to guide a flying robot. Although they also evaluated

their method for guiding humans, the evaluation scenario

included only one human and twelve sensors positioned

inside a building. Scenarios with larger building occupancies

and dynamically changing conditions were not investigated.

In [4] a system based on sensor networks is proposed, for

navigating the user to a goal location by avoiding hazardous

areas. The path calculation algorithm is based on artificial

potential fields. A testbed of 50 wireless nodes was used

to evaluate the approach. The focus of the system was on

the time needed by the nodes to obtain the shortest path.

The authors, however, did not include an evaluation scenario

with a spreading hazard or a large number of evacuees. A

distributed navigation algorithm geared towards emergency

situations is presented in [5]. The approach is inspired by

an ad-hoc network routing protocol and uses hop-count

as the distance metric. The authors tested their method

using simulations in various network topologies and hazard

locations. Although the algorithm was able to find exit paths

avoiding hazardous areas, the spreading of the hazard and

the presence of evacuees inside the area were not taken into

account.

The aforementioned approaches mostly focus on how

efficiently a (sensor) network can find a path towards a

location of interest. Although the notion of hazard is present

in most of them, the context in which each system functions

is not directly related to an emergency situation. A common

assumption is a static hazard representation and the absence

of evacuees that interact with the system. We therefore

propose two spatially distributed computing systems to

provide intelligent navigation services to people for the

purposes of safe and quick evacuation in dynamic hazards.

The proposed systems are composed of small, self-contained

and self-powered computing devices spatially distributed in

a building. These devices, which we generally call nodes,



are capable of short-range wireless communications and

they monitor the hazard, disseminate information on the

hazard and the environment as it changes, calculate the

“best” direction towards an exit and communicate their

directions to the evacuees. By observing the current situation

and updating their view of the environment through local

communications, these systems are able to self-adapt as the

hazard spreads, and continue to provide updated information

and guidance to the civilians.

II. DESCRIPTION OF THE SPATIAL COMPUTING

SYSTEMS

We propose two different spatial computing systems that

are able to provide dynamic evacuation directions to people

in a building in case of an emergency such as a fire. Being

spatial “computers”, the design of our adaptive systems is

closely related to the spatial characteristics of the opera-

tional environment. We therefore first state our assumptions

regarding the physical environment and then describe our

proposed systems.

A. Design Assumptions

We represent the building as a graph G(V,E), where

vertices V are locations where civilians can congregate, such

as rooms, corridors and doorways, and edges E are physical

paths that civilians will travel along while moving inside

the building. The length l(i, j) of an edge is the physical

distance between vertices i, j ∈ V while H(i, j) represents
the hazard intensity along this edge. We also define the “ef-

fective” length L(i, j) of an edge: L(i, j) = l(i, j) ·H(i, j).
This metric expresses how hazardous an edge is for a civilian

that will traverse it. When there is no hazard along the edge,

L ≡ l and the effective length becomes equivalent to the

physical length of the edge. As the value of H increases,

the corresponding edge becomes more hazardous to traverse.

We assume that the building graph is known for a build-

ing. We also assume that there are sensor nodes (SNs)

installed in the building, where each SN monitors a graph

edge as depicted in Fig. 1. Each SN has a unique device ID,

a location tag that corresponds to the area (i.e. edge) it mon-

itors, and short-range wireless communication capability so

it can relay its measurements to other entities in the system.

We assume that SNs are simple devices with low computing

power and memory capacity. They do not perform any data

storage or decision making. Each measurement is stored

until it is over-written by a newer measurement. When a

DN or CN requests the current measurement from an SN,

the SN sends it its H(i, j) value.

B. Intelligent Evacuation System (IES)

Our proposed intelligent evacuation system (IES) consists

of static decision nodes (DNs), which are installed at

specific locations inside the building. In this discussion, we

assume that a DN is positioned at each graph vertex. In

Figure 1. A sensor node (SN) monitors a graph edge for possible
hazards. In the IES, decision nodes (DNs) located at graph vertices receive
measurements from their adjacent SNs and provide dynamic directions
during evacuation.

practice, however, there could be fewer DNs, with each DN

being in charge of providing directions for a contiguous set

of locations. Each DN has short-range wireless communi-

cation capability, some local processor and memory, and a

dynamic visual panel to present directions to civilians. If

each civilian is equipped with a wireless hand-held device

(such as a PDA), then DNs can also present their directions

via wireless communications with such devices.

Figure 2 depicts the IES as simulated by the Distributed

Building Evacuation Simulator (DBES) [6], [7], with each

arrow representing the direction to the best exit as given by

a DN.

Figure 2. The IES as simulated by the DBES

The goal of the IES is closely related to the system’s

spatial structure, since each DN computes the best direction

towards the DNs located at building exits and communi-

cates this (visually or via wireless) to the evacuees in its

vicinity. DNs form a wireless network among themselves

to exchange information in a distributed manner so they can

provide up-to-date dynamic evacuation directions to civilians

as the hazard spreads. Hazard information is provided to

DNs by their adjacent SNs, and this information is further

propagated among DNs based on the distributed decision

algorithm as presented below. The definition of the effective

length L(i, j) only takes into account the hazard present

along (i, j) as monitored by the associated SN [8]. We

can, however, take advantage of the spatial characteristics



of hazard spreading inside a confined space in order to

improve the performance of our system. Our approach is

inspired by the fact that a hazard, such as fire or smoke,

that is present in a building location will affect neighbouring

locations as time progresses [9], [10]. When DNs use hazard

information as obtained only from their neighboring SNs

(i.e. their adjacent links), hazard values from nearby SNs

(non-adjacent but nearby links) are not taken into account

during path calculation, which result in the calculation of

paths that may direct evacuees towards locations where there

is a nearby hazard. As the hazard spreads, it will eventually

affect these locations and the evacuation path that passes

through them. When this happens, the IES will calculate

a new evacuation path and evacuees will be given new

directions based on the new path. Waiting for the hazard

to spread to calculate a new evacuation path can cause an

increase in evacuation time since the evacuees will have

to head to a new destination. Moreover, their health will

be affected as they may come in contact with hazardous

path sections during the re-calculation. By incorporating

spatial hazard information in the effective edge length,

the algorithm can proactively exclude paths that involve

travelling near hazardous areas. To achieve this, we let

each SN communicate with its neighbours and incorporate

their readings into the ”spatial” hazard value Hsp that is

reported. The number of neighbours with which a sensor can

communicate is affected by the SN communication range R.

Let us now give a new definition for the adjusted effective

length of a link (i, j), Lsp(i, j), which will include the

spatial hazard information. Let m be a sensor measuring

the hazard level Hm on link (i, j). A sensor n measuring

the hazard level Hn on a link (i′, j′), will then belong to

the neighbours set N(m) of m when d(m,n) ≤ R, where

d(m,n) is the Euclidean distance between n and m and R

is the communication range of the SNs. The effective length

Lsp(i, j) that includes the spatial hazard information is given

by Lsp(i, j) = l(i, j) ·Hsp(i, j), where

Hsp(i, j) = H(i, j) +
1

|N(m)|

∑

k∈N(m)

Hk .

Each DN, positioned at vertex u, stores the following

information:

• the effective edge lengths to neighbors: Lsp(u, n), ∀n ∈
V | (u, n) ∈ E

• the effective lengths of the paths to an exit for all

neighbors: Lsp(n, e), ∀n ∈ V | (u, n) ∈ E and e is

a building exit,

• the effective length of the shortest path (SP) from u to

an exit e: Lsp(u, e),
• the next suggested DN d (i.e. the next hop along the

SP from u to an exit).

It is not necessary for a DN to keep information regarding

the effective length of the paths to all available exits. As the

algorithm is executed, this information is propagated from

the exits to the DNs and each DN will eventually select the

best exit. The distributed decision algorithm, given in Alg.

1, is executed periodically by each DN. The algorithm is

based on principles developed in [11], [12], and inspired

by the distributed shortest path algorithm [13] and adaptive

routing techniques such as the Cognitive Packet Network

[14]. Its output is the next hop (i.e. DN) towards the nearest

building exit. As edge costs are a combination of physical

distance and hazard intensity, the paths calculated by the

IES minimize travel distance to the exits while avoiding

dangerous areas in the building.

Algorithm 1 Distributed calculation for the effective length

Lsp(u, e)

Send to every neighbour n of u, the effective length of

the path from u to the exit e : Lsp(u, e)
for each sensor node monitoring a link incident to u do

Request hazard intensity Hsp from sensor node

Calculate the effective length Lsp(u, n) ,where n is

a neighbour of u

end for

Update the effective length Lsp(u, e) of the shortest

path to the exit:

Lsp(u, e) = min {Lsp(u, n)+Lsp(n, e): ∀ neighbours n

of u}
Set the next suggested Decision Node v:

v = argmin {Lsp(u, n) + Lsp(n, e): ∀ neighbours n of

u}

The initial values for the effective length at each DN

depend on its location inside the building. Exit DNs set their

L(u, e) values to 0, while all other DNs set it to ∞. The

output of the algorithm is a suggestion towards the evacuees

that are located near a DN. The suggestion is of the form

“go to v”, where v is one of the neighbour DNs of u.

Note that the IES forms a spatial computing system where

all sensing, computing and communication components of

the system are static. The spatial characteristics of the

building affect where these components are located. System

parameters, such as the SN range R and the execution

frequency of Alg. 1 by each DN, affect the performance

of the system as we discuss in Sec. III-A.

C. Opportunistic Communications based Evacuation System

(OCES)

The opportunistic communications based evacuation sys-

tem (OCES) is composed of mobile communication nodes

(CNs) carried by civilians. In the OCES, we assume that

each civilian is equipped with a pocket- or hand-held device,

with storage and processing capacity that would be equiv-

alent to a mobile phone or similar unit, capable of short

range (up to 10m) wireless communication. CNs form a

network in an opportunistic manner as devices come into



contact as a result of the vicinity of other humans and

their mobility. Opportunistic communications (oppcomms)

are characterized by the “store-carry-forward” paradigm [15]

where CNs carry messages in local storage and then forward

it to others when they get in communication range. Thus,

a message is delivered to its destination via successive

opportunistic contacts. Because the opportunistic network

(oppnet) can be disconnected for long periods of time, CNs

may need to carry messages for long durations and delivery

of messages is not guaranteed.

Oppcomms are used to disseminate emergency messages

(EMs) containing information on the hazard (i.e. location

and intensity) among CNs. A CN obtains hazard observa-

tions from SNs in its vicinity, which are then translated by

the CN into EMs that include the CN ID, locations (e.g.

edges), intensities and timestamps of the hazard observa-

tion(s). An EM is disseminated among all CNs in the OCES,

meaning each EM is sent network-wide. The first hazard

observation or EM received by a CN acts as an alarm,

indicating that there is a hazard and the civilian should

evacuate the building. Each received EM is used to update

the edge costs stored locally by a receiving CN, and triggers

re-calculation of its local evacuation SP. The evacuation SP

from the current CN location to the nearest building exit

is calculated using Dijkstra’s SP algorithm. Since effective

edge lengths (L(i, j) values) are used in SP calculation, the

“shortest” path minimizes exposure to the hazard while also

minimizing travel distance.

A CN uses its evacuation SP to provide a navigation

service to its civilian by guiding her towards the next hop

(i.e. graph vertex) on the SP. CNs use the SNs to find their

location in the building. CNs request the location tag from

their nearby SNs as they move within the building, and each

near-by SN sends back a localization message (LM) which

contains its location (or the monitored area, i.e. edge). CNs

can then find out where they are in the building based on

these LMs. The actual position of a CN is therefore approxi-

mated by its inferred location (vertex) on the building graph.

Epidemic routing (ER) [16] is used for the dissemination

of EMs in the oppnet. We have found that although ER is

a classic routing algorithm for oppnets, it is very suitable

for the OCES due to its flooding-based approach which

closely matches how EMs should be disseminated, and its

high message delivery ratio and low message latencies [17],

which are critical in emergency communications. In order to

store EMs, CNs employ timestamp-priority queues, where

EMs with the earliest creation timestamps are dropped from

the queue when it is full. Figure 3 depicts the OCES as

simulated by the DBES, with each circle representing the

maximum communication range of the CNs carried by the

civilians.

The OCES is a spatial computing system similar to IES,

with the significant difference that the main computing

and communication components of the system are mobile.

Figure 3. The OCES as simulated by the DBES

This mobility introduces another level of dynamism to the

system as communications are now affected by human

mobility (which is of course restricted by the physical

environment) and human mobility is in turn affected by the

oppcomms since CNs depend on oppcomms to exchange

and disseminate information on the hazard, which affects

calculation of evacuation paths. We evaluate the effect of one

environmental and one system parameter, population density

and CN range respectively, on the performance of OCES in

the next section.

III. EVALUATION OF THE PROPOSED SPATIAL

COMPUTING SYSTEMS

We have implemented our proposed spatial computing

systems inside the Distributed Building Evacuation Simula-

tor (DBES) [6], [7]. The DBES is an agent-based discrete-

event simulation platform for the simulation of emergency

scenarios in confined and outdoor urban areas. Each actor

(e.g. civilian, computing device, emergency response person-

nel, etc.) is represented as an agent with its own behaviour

models (e.g. health and movement models for civilians).

The physical environment (e.g. the building) is represented

as a graph in the DBES as described in Sec. II-A. For

each simulation run, the initial locations of people in the

simulated building are chosen from a uniform distribution

over the respective graph vertices within each floor to help

evaluation of system performance in different occupancy

patterns. We also change the spreading pattern and rate of the

hazard (i.e. fire) in each simulation run, which is based on

the probabilistic hazard model in the simulations [6], [9]. We

do not simulate psychological aspects of people during an

emergency and assume that people act rationally and follow

directions given to them by the system (IES or OCES).

When there is no evacuation system in use, we assume

that the evacuees are familiar with the building (i.e. they

know the whole building graph) and are able to calculate and

follow the shortest path that leads to an exit. In this scenario,

all civilians start to evacuate as soon as the fire starts. If an

evacuee encounters fire (or smoke) during evacuation, she

updates her knowledge of the building (i.e. the graph edge



cost(s)) and re-calculates her SP. While the assumptions for

the no-system scenario may be unrealistic in that they require

too much from the people during an emergency, it provides

a valuable benchmark with evacuation performance which

is at least as good as what would normally be observed in

a real-life scenario without any system.

A. Simulation Results: IES

We have evaluated the IES in an emergency scenario

taking place inside the three-storey building. A fire erupts on

the ground floor of the building and the occupants evacuate

as soon as the fire starts using the four exits located on

the ground floor. The population density is 20 people per

floor. Each data point is the average of 100 simulation runs.

Simulation results regarding the performance of IES with

different SN ranges and algorithm execution frequencies

are shown in Fig. 4. We use the ratio of fatally injured

civilians to all building occupants and the average health

of evacuees (people who successfully evacuate the building)

as the performance metrics.

We first comment on the effect of the sensor range (R)

on the evacuation procedure. We used three different ranges,

R = {1, 2, 3} m. The results obtained for the smallest

range (1m) are worse than the case where R = 2m but

better than the case R = 3m. This indicates that there is a

threshold value for R, until which increasing R increases

system performance due to the inclusion of larger spatial

areas in the effective link cost Lsp. After this threshold,

system performance deteriorates with increasing R. The

reason for this behaviour is the IES gets more conservative

with increasing R in its evacuation path calculations. After

a certain R value, which in this case lies between 2m and

3m, the conservative path calculation leads to safe being

discarded as potentially dangerous by the IES. In this case,

by discarding paths that are safe at an early stage during

evacuation, the IES causes a higher number of people to

become trapped in the building.

The execution frequency of the distributed algorithm by

the DNs also affects system performance. This is due to

the fact that the propagation of the changes in the envi-

ronment (such as changes in hazard values as measured

by SNs) depends on the execution frequency. Although a

high value for the algorithm execution frequency increases

communication and computation costs, it also results in a

more adaptive system which is able to give fast, correct

suggestions to the evacuees. Simulation results indicate

that the proper selection of the system parameters R and

execution frequency may be non-trivial and depends on the

spatial characteristics of the environment. We should note

that with a reasonable selection of system parameters, the

IES performs better than the no-system scenario.

B. Simulation Results: OCES

We have evaluated the OCES in an emergency scenario

taking place inside a three-storey building. A fire erupts on

the 2nd floor of the building and the occupants evacuate

using the two exits located on the ground floor. We assume

that there is no fire alarm in the building (e.g. it has failed

due to power outage) and people use the OCES as a fire

alarm and a navigation system as described in Sec. II-C. SN

range is set to 2m in the simulations and spatial information

is not used. Each data point is the average of 50 simulation

runs and results are shown with their 95% confidence

intervals. Figure 5 shows system performance with different

population densities (10–40 people per floor) and CN ranges

(4–10m). We use average evacuation time (the average of

the evacuation time for successfully evacuated civilians) and

the ratio of successfully evacuated people to all building

occupants as performance metrics.

We observe that increasing the maximum communication

range of the CNs increases system performance. As can

be expected, increasing CN range increases connectivity of

the CNs, which results in better dissemination of hazard

information among the CNs. Population density has a more

complex effect on performance. We observe that increasing

population density increases average evacuation time in all

CN ranges. This can be expected since evacuation will take

longer when there are more people in the building due

to the higher number of people needed to evacuate and

physical congestion during evacuation (e.g. at the staircases).

However, increasing population density does not always lead

to higher evacuation ratios, especially when CN range is

not low (in these cases, when range ≥ 6m. CN connectivity

increases with increasing number of people in the building

and higher connectivity leads to more communication op-

portunities and better overall system performance. However,

after the OCES reaches a high-enough connectivity level,

increases in population density negatively affect the number

of people that successfully evacuate due to congestion ef-

fects. As the evacuees need more time to exit the building,

the fire spreads to more locations and more paths become

blocked by the hazard.

IV. CONCLUSIONS AND FUTURE WORK

We have proposed two spatially distributed computing

systems that provide intelligent navigation services during

an emergency. The systems are described as deployed in

a building and provide adaptive directions towards exits

for evacuation as a hazard, such as fire, spreads. The first

system (IES) is based on static decision nodes (DNs) that

run a distributed algorithm. The IES operates as a distributed

computer where the “best” evacuation paths are calculated

collectively by the DNs using local information and local

communications, and the system adapts to changing condi-

tions. The second system (OCES) is composed of wireless

communication nodes (CNs) that are carried by the civilians.
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Figure 4. Simulation results for the IES, with population density of 20 people per floor and different execution frequencies and SN ranges (R)
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Figure 5. Simulation results for the OCES, with different population densities and CN ranges

The CNs form an opportunistic network which enables the

exchange of emergency messages among them for alerting

and guiding civilians during evacuation. The OCES can

be viewed as a hybrid spatial computer where parts of

the system are mobile (CNs) and others are static (SNs),

and information exchange depends on the mobility of the

components (CNs). Both systems are supported by pre-

deployed sensors (SNs) that provide real-time information

on the hazard by monitoring the building. We evaluate our

systems using a distributed simulation platform (DBES). Our

simulation results show that the presence of the evacuation

systems benefits the evacuation procedure. Our simulation

study also shows how various system and environmental

parameters, such as communication range, execution and

communication frequency and population density, affect

system performance. In future work we will study the

performance of our systems when failures are present, as

well as mechanisms which can improve their performance
under such conditions.
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