
Homeostatic architectures for
robust spatial computing

David H. Ackley
Computer Science

University of New Mexico
Albuquerque, New Mexico 87131

Email: ackley@cs.unm.edu

Lance R. Williams
Computer Science

University of New Mexico
Albuquerque, New Mexico 87131

Email: williams@cs.unm.edu

Abstract—For open-ended computational growth, we argue
that: (1) Instead of hardwiring and hiding the spatial relation-
ships of computing components, computer architecture should
expose and soften them; and (2) Instead of minimizing reliability
as just a hardware problem, robustness should climb the compu-
tational stack toward the end users. We suggest that eventually
all truly large-scale computers will be robust spatial computers—
even if intended neither for overtly spatialized tasks, nor harsh
environment deployments. This paper is an introduction for the
spatial computing community to the Movable Feast Machine
(MFM), a computing model in the spirit of an object-oriented
asynchronous cellular automata, with which we are exploring
robust, indefinitely scalable computations. We briefly motivate the
approach and present the model, then illustrate some robustness
mechanisms such as redundancy, sloppiness, and homeostasis,
showing how a basic task like sorting can be reconceived for
robustness within a homeostatic architecture.

I. INTRODUCTION

COMPUTERS of the von Neumann machine design
have revolutionized the world, but CPU and RAM,

its twin conceptual pillars, are now the greatest hindrances
to its continued computational growth. The solitary “cen-
tral” processor focuses programmers on computation with-
out communication—but CPU scalability depends heavily on
now-dwindling clock speed increases. Similarly, uniform cost
“random access” memory focuses programmers on logical
function without spatial forms—but the inescapable geometry
of physical space allows only a finite set of locations to fit
within unit time access of a single finite-sized processor.

A. Indefinitely scalability and spatial computing

We have presented [1] a research case for indefinitely
scalable computer architectures which, by definition, sup-
port open-ended computational growth without re-engineering.
To do that, indefinite scalability rejects all internal scaling
limits—such as single-source clocking, or fixed-width memory
or network addresses—so machine size is limited only by ex-
ternal costs such as materials, construction, real estate, power,
cooling, and maintenance. We argued that such an architec-
ture amounts to a three (or less) dimensional spatial tiling
of configurable elements that are initially interchangeable,

Presented at the Spatial Computing Workshop at SASO 2011 in Ann Arbor,
MI. This version revised Oct 10, 2011.

communicate only locally using relative spatial addresses, and
execute asynchronously, at least above some granularity.

While such design criteria are admittedly controversial in
the OS and distributed systems communities, they are mostly
old hat here, because any indefinitely scalable machine will be
a spatial computer in the sense of this workshop. Our approach
is discrete, reified, and designed bottom-up, compared to spa-
tial computing languages framed in continuous or amorphous
spaces such as [2], or all-in “vertical” models such as [3]. And
although external tasks aligned to a spatial computer can be
choice low-hanging fruit, we focus more on architectural uses
of space when computations are either not inherently spatial,
or are spatialized differently than the machine itself. But still,
indefinite scalability, and the Movable Feast Machine, seem
deeply compatible with spatial computing approaches (e.g.,
[4]), and so we have prepared this paper.

B. The importance of being robust

Indefinite scalability also provides a clean motivation for ex-
plorations in robustness, self-adaptation and self-organization.
An indefinitely scalable machine will likely be in use before
it’s “finished,” so it must recruit resources as they become
available, and be robust in the face of local outages, failures,
changing uses and configurations, and its own construction.

Over sixty years ago, von Neumann [5] argued that “future”
computers would need to be more robust than his namesake
approach, yet in design space there we remain today, still root-
ing around near CPU+RAM—despite all its avowed fragility
and nightmarish security properties—and we are deploying
them by the millions per week and connecting them to vast
personal information and economic leverage.

The present work emerges from a belief that it’s likely
better if von Neumann’s call for robustness came true sooner
rather than later, but robustness can be a slippery concept,
in part because the question “Robust to what?” can ramify
endlessly as we dream up ever more massive, or unlikely, or
subtly malicious system perturbations. Drawing on biology, [6]
presents useful robustness “principles and parameters”—and in
such terms, the examples in Section III touch on spatial com-
partmentalization, redundancy, sloppiness, and homeostasis.

Tiles
(memory+

processing+local communications)

mfa 1;
import Dockable;
element Sample(bond prv,
 bond nxt,
 sbond dock,
 sbond tmp)
 = 0x123
{
 /* Behavior goes here
 as loop-free code, able
 to read and write only
 inside the event window
 */
}

Element definitions
(compiled to non-volatile
memory, all tiles)

Movable Feast
Machine

Event window
 (may span tiles)

 Type: 0x123
 Bond0: (-2,-1)

 Bond1: (3,1)
Sbond0: (0,0)

 Sbond1: (-1,1)
Active atom

(type-specific atomic update+
bond-aware diffusion) Sites & atoms

(volatile memory)

H
ar

dw
ar

e
So

ftw
ar

e

Fig. 1: Architectural overview. See Section II.

C. Asynchronous cellular automata

Also popularized by von Neumann [7], based on a sug-
gestion by Ulam [8], cellular automata (CA) are widely-used
parallel spatial computing models that have been applied to
phenomena as diverse as weather and self-reproduction. As
architectures, many CAs are limited by single-source clocking,
but asynchronous cellular automata (ACA) (e.g., [9], [10],
[11]; perhaps [3]) have indefinite scalability potential.

Some ACAs use stochastic transition rules, but in any case
their site update order is usually non-deterministic. Although
a technique such as [12] can be used to implement a syn-
chronous CA on top of an ACA, for indefinite scalability such
an approach is, by itself, hopelessly fragile—for example, a
single stuck site will eventually lock the entire grid.

Scalable asynchrony is not so easily dispatched as that.

II. THE MOVABLE FEAST MACHINE

Figure 1 summarizes the Movable Feast Machine (MFM).
Though limited space precludes a truly complete description,
we try to provide concepts and details sufficient to engage the
reader’s mechanical intuition. Throughout, the phrase ’some
chosen’ is used to flag overtly parametric model properties.

A. Small programs change big neighborhoods

Viewed as a stochastic ACA, the Movable Feast Machine
falls into a rather sparsely populated corner of ACA parameter
space—with many possible states per site, and also many
sites per neighborhood. The MFM instances in this paper, for
example, use 64 bits per site, and a 41 site neighborhood

(Manhattan distance of four in a 2D rectangular lattice)—
implying about 1020 possible states per site, and a naı̈ve state
transition table with over 10800 rows. These quantitative pa-
rameter choices thus have qualitative consequences: Additional
design is needed to bypass that table’s vast infeasibility.

Instead of a table lookup, the MFM executes sequential
code to perform a state transition on a neighborhood, and
our design seeks to present a flexible and powerful, but
still transparent and understandable, machine semantics to the
state transition programmer. To that end, we adapt familiar
programming concepts—objects, classes, pointers—reinvented
for indefinite scalability, and miniaturized to fit into a MFM
site (for an object) and a neighborhood (the pointer addressing
range). The programming of a state transition feels somewhat
familiar because it executes with synchronous clocking and
single threaded semantics, which also means the MFM is an
odd but recognizable form of globally asynchronous locally
synchronous (GALS) architecture [13].

B. Sites and spatial structure

MFM computation occurs at discrete sites arranged in some
chosen lattice that is at least locally regular, and embedded in
some chosen metric space called machine space. Some chosen
event window radius is defined relative to the metric, and the
set of sites at most one event window radius away from a
given site is called its neighborhood. Though the computation
is discrete in space-time, for physical realizability the MFM
is grounded in effectively continuous spaces, distances, and
velocities. We presume that a site occupies finite but more
than infinitesimal space, and we require machine space to map
smoothly into R3, either by limiting machine space to 3D or
less, which preserves indefinite scalability but excludes many
topologies, or by using only a finite, if arbitrarily connected,
machine space—such as a 2D grid with periodic boundary
conditions, mapping smoothly into a torus in R3.

C. Event window processing

MFM computation proceeds asynchronously in parallel by
executing events, each of which corresponds to one indepen-
dent state transition, occuring in a compact volume of space-
time called an event window. The spatial extent of an event
window is the neighborhood of some selected site, and its
temporal extent is the state transition’s code execution time.

An event window life cycle is depicted in Figure 2. A
center site holding an active atom is selected, at random or

Select potential
center site

Lock event
window sites

Examine active
atom

Update
neighborhood

Diffuse center
atom

Reset center site
to empty

Notify caches

Unlock event
window sites

em
pty

error

error error

fail

Fig. 2: Event window life cycle. See Section II-C.

Fig. 3: Hot-plugging Illuminato X Machina tiles [14], proto-
type indefinitely scalable hardware.

by any starvation-free mechanism, such that its neighborhood
is disjoint from the neighborhoods of any other currently
selected center sites. The active atom is checked, and erased
if any format problem is found; otherwise its element type is
extracted and that type’s code sequence, if any, is executed,
updating the neighborhood arbitrarily. This freedom to modify
the neighborhood differs from CA variants that only modify
center sites—and adds complexities, such as the cache no-
tifications shown in Figure 2—but also greatly eases tasks
like maintaining bond consistency (see Section II-E). After
the update, the center site contents is optionally diffused if
possible, then neighborhood modifications are communicated
to all affected tiles, locks are released, and the event ends.

The charter of an indefinitely scalable MFM hardware
implementation is to execute as many disjoint event windows
as possible, parallel in space and consecutively in time, while
providing reasonably, if not absolutely, reliable state mainte-
nance and transitions. An initial MFM implementation on our
first indefinitely scalable hardware (Figure 3) is in progress.
For a MFM simulation—which includes any MFM that is not
running on indefinitely scalable hardware—actual execution
time is usually misleading, and instead we adopt average
events per site (AEPS) as the base unit of time; regardless
of MFM size, in 1 AEPS each site will, on average, be the
center site of one event.

D. Atomic structure

Each MFM site contains some chosen number of modifiable
state bits; each possible combination of those bit values is
called an atom, and the number of bits per site is called the
atomic width. Some chosen type function abstracts an atom
into a corresponding type number, which is associated with
an element, which in turn specifies how to perform a state
transition when that atom is active. In object-oriented terms,
an atom is akin to a small, fixed-size object instance, linked by
its type number to an element definition that acts like a class
(pseudocode shown in Figure 1), which supplies information
such as bond counts (next section) as well as the update
method that defines a state transition.

In the examples below, the type function is implemented by
designating the first 16 bits of each atom as a “header” that
specifies the interpretation of the remaining bits, with part of
that interpretation yielding the location and size of the element
type number within that atom.

Fig. 4: Bonded atoms formed into membranes and wires.

E. Bonds and mobility

A namesake aspect of the Movable Feast Machine is that
atoms move, for a variety of purposes, as implemented via
copying and erasing, or swapping, site contents. A commu-
nications mechanism, for example, could employ atoms—
interpreted as data or packets—moving relative to sites or other
atoms acting like a channel or a wire (see Figure 4 and [1]).
Atomic mobility is also handy in self-reproducing systems, so
offspring might eventually move into space of their own [15].

When atoms can move, though, their current location cannot
reliably be used to find them in the future, causing major
headaches for distributed data structures, and spawning a
variety of schemes (e.g., [16] is one survey) for updating or
forwarding pointers in the face of object migration.

In the MFM, an atomic bond can be used to join two
atoms in a relationship that survives certain atomic motions.
Bonds are designed so the element description specifies a
common bond layout for all atoms of that element, and the
hardware always knows which bits of each atom represent
bond information. Bonds are distance-limited and cannot be
longer than the event window radius, and are represented
by self-as-origin relative spatial coordinates. Each bond is
symmetric—if atom A has a bond to atom B then B will
have a bond back to A or else an inconsistency has occurred.
Finally, atomic diffusion automatically updates bond values,
and will not break or overstretch them, and weakly prefers to
keep bond lengths short.

Our current design also offers “short bonds” (‘sbond’ in
Figure 1) which sacrifice addressing range to save atomic bits.
Although here we focus on computations involving elements
without bonds, Figure 4 offers a taste of the sloppy-structured
mobility that MFM atomic bonds naturally support—with
‘message’ atoms being transported at supradiffusive rates
between larger—movable but less agile—‘cellular’ structures.

F. Temporal structuring; laws of physics

Indefinite scalability also impacts the temporal structure of
computations (see Section III-B, also [17]): Notions like “load
time” or “program start”—or even “power on”—lack global
meaning given ‘hot configurable’ hardware. For interactive
computations our prototype indefinitely scalable hardware
supports simple I/O between a tile and its embedding space,
and for ongoing management and configuration it provides in-
tertile communication channels beyond just the ‘neighborhood
updates’ of Figure 2.

Finally, we touch on the element descriptions—the physics
or ‘periodic table’—that determine atomic behavior in a MFM.

For both efficiency and robustness, the element transition rules
are stored in non-volatile memory, and they are expected to be
identical on all tiles. But we are far from having so complete
and useful a physics for it to be unalterably manufactured
into MFM tiles, so downloadable physics, for research at
least, is essential—despite the considerable conceptual chal-
lenges attending modifiable ‘laws of physics’. Updated physics
propagate across the machine—hopefully rarely—via those
additional intertile communications channels.

III. ROBUST SPATIAL COMPUTATIONS IN THE MFM
All these examples are based on a rectangular lattice in 2D
with Manhattan distance, varying grid sizes, event window
radius=4, and atomic width=64.

A. Density and homeostasis
It is easy to overlook at first, but in the MFM probably the

single biggest spatial issue is empty space management. In an
asynchronous universe especially, empty sites are precious to
facilitate the activities of nearby occupied sites—for example,
for temporary use during reconfigurations, or to allocate for
new atoms—as well as to enable the movements of travelers
passing through. And since any given empty site is in the
neighborhood of many other sites, without effective open space
management a tragedy of the commons can easily ensue,
producing traffic jams, gridlock, and similar hazards.

Traditionally such problems are managed by careful design,
and capacity simulations and analysis, but hardcore robustness
offers a much sloppier idea: If empty sites get rare, just make
more, by erasing some atoms—which might disrupt some
ongoing computations, but so what? If the computations are
robust, they’ll have spares or make repairs—and if they aren’t,
we can’t rely on them anyway.

We explore controlling occupied site density (OSD) with
DReg, a diffusing “Dynamic Regulator” element that each
update checks a random nearby site. If the site is occupied,
DReg might erase it, particularly if it’s another DReg. If it’s
empty, DReg might create a general-purpose ‘resource’ atom
(element Res), or rarely another DReg. Over time, a lone
DReg will fill MFM space with a churning mix of DReg,
Res, and empty sites, with an OSD related to the ratio of
the creation chance to the sum of the chances of creation and
destruction. We commonly use a 1/3 creation ratio, but the
specific probabilities also matter: Smaller values yield looser
regulation and slower transient response; larger probabilities
are faster but more disruptive. Figure 5 shows OSD regulation
for three different DReg parameter sets after a system is
shocked by erasing 97% of the sites at 10K AEPS.

OSD regulation is a basic housekeeping task, but if we
add other elements that perform some useful computation,
while competing for Res to reproduce themselves, we can
produce a combined system in which DReg operations are
“space shared” with other tasks, as shown in the next section.

B. Robust spatial sort
To help perfuse robustness into the computational stack, we

seek ways to intertwine it with functionality—and we are more

 0
 10
 20
 30
 40
 50

 0 5000 10000 15000 20000 25000 30000 35000

O
cc

up
ie

d
si

te
 d

en
si

ty
 (%

 o
f g

rid
)

Time (AEPS)

DReg recovery from 97% reset at 10K AEPS

Create 1-in-40 / Destroy 1-in-20
Create 1-in-20 / Destroy 1-in-10
Create 1-in-10 / Destroy 1-in-5

Fig. 5: DReg density regulation after a transient.

Channel length

C
ha

nn
el

 w
id

th

Datum emitter (input)
Datum absorber (output)

SorterDReg
Res DatumM

ob
ile

Fi
xe

d

(a) Elements and global structure

79
32

24

19

30

43

(b) Sorter behavior

Fig. 6: Elements of the Demon Horde Sort

than ready to reframe notions of functionality to that end. Here,
for example, to help break our obsession with correctness
and efficiency, we explore a sorting task that is impossible
to solve perfectly. We imagine a rectangular “flow sorting
channel,” depicted in Figure 6a, given the task of sorting
or prioritizing an endless stream of Datum atoms which are
injected at random intervals by “emitters” near the right side of
the grid. Each Datum contains a 32 bit number (and an eight
bit checksum), and is to be transported to the left and also
sorted vertically, so that small values rise and large ones sink.
Once a Datum is close to the left edge it will be consumed
by a nearby “absorber” and output from the sorting channel.

Here we focus on an equal interval goal where each output
“bucket” (the absorbers on a single row) should receive the
values of an equal portion of the underlying data range.1 We
measure performance by the average positional error—the
average distance between the bucket that absorbs a Datum
and its correct equal interval bucket, as a percentage of the
number of buckets.

We assume an unknown, perhaps non-stationary, data dis-
tribution, so perfect bucketing is simply off the table. For
a baseline comparison, we use this “Sample Sort” heuristic:
Given N buckets, repeatedly buffer up N Datums, sort them,
and then output one sorted Datum to each bucket in order.

We call our robust spatial sorting strategy the “Demon
Horde Sort.”2 It builds on DReg and Res (Section III-A)

1More general is an equal frequency goal, which asks buckets to receive
Datums equally often on average; here the two goals coincide because the
test distributions are uniform random.

2Note this is a simplified version compared to [1].

(a) All Types (b) Datum and I/O Only

(c) Sorters Only (d) DReg and Res Only

Fig. 7: Filtered views of the same state of a 150x65 flow sorter, sorting right to left, at t ≈ 100K AEPS. Datums in (b) and
Sorters in (c) rendered with colors representing their value (of data or threshold, respectively, with orange smallest to pink
largest), otherwise colors represent element types. No Res are present in (d) because of rapid Sorter transmutations.

 0
 5

 10
 15
 20
 25
 30
 35

 0 20 40 60 80 100 120 140 160 180

A
ve

ra
ge

 p
os

iti
on

al
 e

rr
or

(%
 fu

ll
ra

ng
e)

Channel length (sites horizontally, including I/O grids)

Demon Horde Sort: Effect of channel length on performance

Random order bucketing
Sample sort bucketing

Positional error

Fig. 8: Sorting performance

and adds a Sorter element, illustrated in Figure 6b. In this
version, Sorter has two primary functions. First, whenever
it sees a Res it transmutes it into another Sorter, so the
Sorter population level is indirectly controlled by DReg.
Second, Sorter transports Datums from right to left when
possible, and also up or down based on the comparison of the
Datum’s value with a 32 bit threshold stored in the Sorter.
When a Datum “crosses” the Sorter during a move, the
Sorter copies the Datum’s value to its threshold—in Fig-
ure 6b, the Sorter’s threshold will soon be 79.

In this standalone demonstration the emitters and absorbers
suppress their MFM diffusion and don’t otherwise move; in
addition to their I/O functions, they “buddy check” their same-
element neighbors and recreate them if they are missing but
the site is available—e.g., after an erasure by DReg. The initial
condition consists of some DRegs and Sorters scattered
in the channel, and appropriately-placed emitter and absorber
“seeds” from which the I/O grids establish themselves. Fig-
ure 7 illustrates a demon horde that has been running for
some 100K AEPS in a 65 bucket flow sorter, showing all the
elements at once (7a), and various subset views. In Figure 7c,
which displays Sorters colored by their thresholds, the

 0

 5

 10

 15

 20

 25

 30

 35

 1 10 100 1000 10000 100000 1e+06

A
ve

ra
ge

 p
os

iti
on

al
 e

rr
or

 (%
 fu

ll
ra

ng
e)

Site memory reliability (corruptions per billion events)

Demon Horde Sort: Performance vs site reliability

Channel length=50
Channel length=100
Channel length=150
Channel length=200

Random order bucketing
Sample sort bucketing

Fig. 9: Robustness to hardware failures

typical equilibrium structure of a demon horde is visible: Near
the emitters on the right the thresholds are choppy as diverse
data values pass through, but after some distance the thresholds
become largely laminar, making (and remaking) increasingly
fine distinctions as Datums close in on the absorbers.

A pleasant aspect of writing modular, “low commitment”
behaviors, like Sorter’s locally sensible notion of sorting,
is the extra freedom it can provide later in the design. For
example, varying the channel length allows trading off hard-
ware and latency against sorting performance, as illustrated in
Figure 8. At a channel length of 5 (in which case the emitter
and absorber neighborhoods overlap) performance is random;
by the time the channel length reaches 150 or so, performance
begins to saturate at about the “sample sort” heuristic level.

The demon horde sort’s performance may be just adequate,
by that measure, but its robustness seems quite impressive.
Figure 9 shows results of one experiment in which we
randomly corrupted site memory with simulated bit errors

at a range of probabilities. Each error occurrence selects a
random site and then flips from one to eight of its atomic bits.
We can see that while channel length helps performance, it
doesn’t help robustness against this system perturbation—but
the system is strikingly robust anyway, tolerating upwards of
one multibit corruption per 100K events with essentially no
visible performance degradation, regardless of channel length.
Above one error per 10K events the system reliably falls
apart—and the pathology appears to run a reliable course: The
bit flips trigger the error pathways in Figure 2, which wipes
out the DReg population the fastest because they are rare
and the slowest to reproduce, and their demise accelerates the
extinction of the Sorters, which leaves the emitted Datums
moving only by diffusion, and they mostly fail to reach any
absorber (let alone the right one) before they too are detectably
corrupted and erased—and for scoring purposes, we count
such lost Datums as if they had arrived at a random bucket.

If we dispensed with DReg and Res, and added direct
Sorter behaviors for managing their own population level,
the system would likely be somewhat more robust to this spe-
cific perturbation, at the expense of more custom physics and
giving up some compositionality—such as the possibility of
simultaneous regulation of multiple elements via competition
for Res. We have only begun identifying such tradeoffs and
sweet spots in MFM design space.

IV. CRITIQUE AND CONCLUSION

From the perspective of cellular automata, it is certainly true
that the MFM is a more complex and articulated design, and
its state transition programming is much harder to explain
than the pure simplicity of a state table. But of course, for
designing computations at scale, the state table’s apparent
simplicity is an illusion, not dealing with complexity, but
simply pushing it into larger assemblages, like trying to
implement a conventional computer using only NAND gates.

And from the direction of traditional programmable comput-
ers, one obvious criticism is this all makes the programmer’s
job that much harder, asking for a spatial, as well as a
functional, implementation of the same behavior. Historically,
systems making such extra demands have met only limited
success, and it’s possible such a fate awaits the MFM, but
there are also reasons for hope. On the one hand, previous
systems aspired only to finite scalability, limiting the rewards
offered for the extra work required. And on the other hand,
lately it seems that the programmer’s job is getting harder
anyway—specifically because the networked world is finally
and increasingly losing tolerance for the lack of robustness
and security that is the dark flip side of the von Neumann
machine’s zero-dimensional convenience.

Where it is applicable—for example, in relatively small and
safe contexts like those of its early years—the CPU+RAM
model of computation is simple, powerful, and a joy to
use, intoxicating in its master-of-the-universe positioning of
the programmer—and for what it’s worth there is something
deeply right about it as a model of a conscious mind. But,
it is just as deeply wrong as a physical implementation of a

brain—and it is essentially sociopathic as a model for a team
member.

As computing inevitably and now quickly scales beyond the
purview of a single actor, we suggest the additional complex-
ities attending robust spatial computing are only the price of
admission to this new and larger arena. Computation cannot
continue to ignore space for that much longer, but physical
computational spaces can, and will, be studied, characterized,
graded, floorplanned, and blueprinted; and farmed and devel-
oped, and subdivided and rented and sold for computational
advantage—and in the process, computer architecture will turn
into, well, architecture. It is high time.

REFERENCES

[1] D. H. Ackley and D. C. Cannon, “Pursue robust indefinite scalability,”
in Proc. HotOS XIII, Napa Valley, California, USA, May 2011.

[2] J. Bachrach, J. Beal, and J. McLurkin, “Composable continuous-space
programs for robotic swarms,” Neural Computing and Applications,
vol. 19, no. 6, pp. 825–847, 2010.

[3] F. Gruau and C. Eisenbeis, “Programming self developing blob machines
for spatial computing.” in Computing Media and Languages for Space-
Oriented Computation, ser. Dagstuhl Seminar Proceedings, S. J. Brams,
K. Pruhs, and G. J. Woeginger, Eds., vol. 07261. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

[4] J. Beal, O. Michel, and U. P. Schultz, “Spatial computing: Distributed
systems that take advantage of our geometric world,” TAAS, vol. 6, no. 2,
p. 11, 2011.

[5] J. von Neumann, “The general and logical theory of automata,” in
Cerebral Mechanisms in Behaviour, L. A. Jeffress, Ed. Wiley, 1951.

[6] E. Micheli-Tzanakou and D. C. Krakauer, “Robustness in biological
systems: A provisional taxonomy,” in Complex Systems Science in
Biomedicine, ser. Topics in Biomedical Engineering. International Book
Series, T. S. Deisboeck and J. Y. Kresh, Eds. Springer US, 2006, pp.
183–205.

[7] J. von Neumann and A. W. Burks, Eds., Theory of Self-Reproducing
Automata. Urbana, IL, USA: University of Illinois Press, 1966.

[8] S. Ulam, “Statistical mechanics of cellular automata, 1952,” Proceedings
of the International Congress on Mathematics, vol. 2, pp. 264–275,
1950.

[9] O. Bouré, N. Fatès, and V. Chevrier, “Robustness of cellular automata
in the light of asynchronous information transmission,” in UC, ser.
Lecture Notes in Computer Science, C. S. Calude, J. Kari, I. Petre,
and G. Rozenberg, Eds., vol. 6714. Springer, 2011, pp. 52–63.

[10] D. Cornforth, D. G. Green, and D. Newth, “Ordered
asynchronous processes in multi-agent systems,” Physica D:
Nonlinear Phenomena, vol. 204, no. 1-2, pp. 70 – 82,
2005. [Online]. Available: http://www.sciencedirect.com/science/article/
B6TVK-4G77HGN-3/2/ab40980df5fc7e111078b74f37fe611b

[11] J. Lee, S. Adachi, F. Peper, and K. Morita, “Embedding universal
delay-insensitive circuits in asynchronous cellular spaces,” Fundam.
Inf., vol. 58, pp. 295–320, May 2003. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1006455.1006462

[12] C. L. Nehaniv, “Asynchronous automata networks can emulate any
synchronous automata network,” IJAC, vol. 14, no. 5-6, pp. 719–739,
2004.

[13] D. Chapiro, “Globally asynchronous locally synchronous systems,”
Ph.D. dissertation, Stanford University, October 1984, STAN-CS-84-
1026.

[14] Liquidware.com, “Illuminato X Machina,” http://illuminatolabs.com,
2011.

[15] L. R. Williams, “Artificial cells as reified quines,” in European Conf. on
Artificial Life (ECAL ’11), Paris, France, Aug. 2011.

[16] E. Pitoura and G. Samaras, “Locating objects in mobile computing,”
IEEE Transactions on Knowledge and Data Engineering, vol. 13, pp.
571–592, 2001.

[17] E. Schulte and D. Ackley, “Physical evolutionary computation,” Univer-
sity of New Mexico, Albuquerque, NM, USA, Tech. Rep. TR-CS-2011-
01, 2011, http://cs.unm.edu/∼treport/tr/11-04/paper-2011-01.pdf.

