
Spatial Coordination of Pervasive Systems through
Chemical-inspired Tuple Spaces
Mirko Viroli1, Matteo Casadei1, Sara Montagna1, Franco Zambonelli2

1) University of Bologna – 47023 Cesena (FC), Italy
2) University of Modena and Reggio Emilia – 42100 Reggio Emilia, Italy

mirko.viroli@unibo.it, m.casadei@unibo.it, sara.montagna@unibo.it, franco.zambonelli@unimore.it

Abstract—Pervasive computing calls for developing distributed
infrastructures featuring large-scale distribution, opennes,
context-awareness, self-organisation and self-adaptation. There,
it is quite natural to see services (software functionality, data,
knowledge, signals) as spatial concepts: they are naturally dif-
fused in the network, and in each location they are sensitive to
the context and compete with each other—as such, they can be
active in one or multiple regions (niches) of the network.

To support and engineer this scenario, we propose a nature-
inspired coordination model of chemical-inspired tuple spaces.
They extend standard tuple spaces with the ability of evolving
the “weight” of a tuple just as it represented the concentration
of a chemical substance in a biochemical system, namely, in
terms of reaction and diffusion rules that adaptively apply to
tuples modulo semantic match. We show that this model can
be used to enact self-* properties in pervasive systems, through
typical spatial patterns involving computational fields, paths, and
segregation.

I. INTRODUCTION

Emerging network scenarios witness an increasing avail-
ability of pervasive sensing and actuating devices (RFID
tags, PDAs, localisation devices), which will densely populate
our everyday environments with digital information of users
and locations, and will tightly integrate with the Web—seen
both as a shared service space and as a platform for social
networks. This will eventually lead to the emergence of a
very dense, spatially distributed shared infrastructure for the
provisioning of general-purpose digital services: traditional
Web services (social networks, video broadcasting) enriched
with new interaction means (smaller displays and cameras) and
exploiting contextual information, pervasive location-based
information services (findind nearest post-office, operas in
museums, goods in a market), services to coordinate activities
of situated users (intelligent lights and signs, user-adaptive
advertisement displays), and so on. Such highly decentralised
and dynamic scenarios require the infrastructure to feature
self-organisation, self-adaptation and self-management, in or-
der to tolerate opennes in service functionality, knowledge,
and user data and needs.

There is a significant research literature applying nature-
inspired approaches to tackle self-organising systems like the
above ones, relying on various metaphors: physical metaphors
[1], chemical metaphors [2], biological metaphors [3], together
with metaphors focussing on higher-level ecological/social
metaphors (e.g. trophic networks [4], [5]). Among them, we
develop on chemistry for it enjoys two key properties: it is

one of the areas where self-organisation properties have been
studied first, and it allows for a simple and exact computa-
tional description thanks to the work of Daniel Gillespie [6],
which represents the cornerstone of the whole Computational
Systems Biology (CSB) research field [7].

Starting from works in CSB and ideas of existing self-
organising coordination models (SwarmLinda [8] and Tota
[1]), we propose a chemical-inspired tuple space model—
namely biochemical tuple spaces, formally presented in [9].
This is a variant of standard tuple spaces, where tuples are as-
sociated with an activity/pertinency numeric value resembling
a chemical concentration, and measuring the extent to which
the tuple can influence the coordination state—e.g. a tuple
with low concentration would be rather inert, i.e. taking part in
coordination with low frequency. Chemical-like laws, properly
installed into the tuple space, evolve concentration of tuples so
as to make interesting self-organising coordination properties
emerge. Although the idea of using chemical-inspired models
is not new, this model is innovative due to the following
ingredients, whose combination can provide a general and
flexible coordination model for spatial pervasive computing:

• exactness — The stochastic behaviour of chemical laws
is exact w.r.t. natural chemistry in the sense of [6]. As
a consequence, the full power of natural/artificial chem-
istry is enabled, supporting scenarios including dynamic
decay, reinforcement, aggregation, and “evolutionary”
competition. Also, this allows to rely on the metaphor
of population dynamics, as developed in prey-predator
systems [10].

• diffusion — Chemical laws are enhanced with a mech-
anism of tuple transfer (from one tuple space to one in
the neighbourhood) mimicking how chemical substances
cross biological membranes. Due to this diffusion fea-
ture, tuples are reified as spatially-distributed structures
in the coordination system (sort of clouds), which can
be then suitably used to model the distributed struc-
ture/interface/state of services.

• semantics — Chemical laws are applied modulo semantic
match (like e.g. in ontology-based web matchmaking
[11], [12]), instead of syntactically. Accordingly, chem-
ical laws (and hence the overall system behaviour) sup-
port opennes and context-dependency for they are fired
depending on the degree of semantic match with tuples,

hence they can be seamlessly influenced by the ontology
of the application domain, by contextual information in
each location, service/request match, user profiles, and so
on.

After presenting the necessary background on computa-
tional biochemistry (Section 2), and the proposed coordination
model (Section 3), we focus on showing that the model
promotes a view of coordination of pervasive services as a
spatial computing scenario (Section 4), and then conclude.

II. BACKGROUND ON COMPUTATIONAL BIOCHEMISTRY

A. Chemical reactions

Computational biochemistry is based on the framework of
CTMCs (Continuous-Time Markov Chains), which can be un-
derstood as state-transition systems in which transitions have
a rate specifying the average frequency at which they occur—
and assuming the memoryless property. The motivation for
using this particular stochastic meta-model comes from the
work of Gillespie [6], which argued that a stiff solution of
chemical reactions can be simulated as a CTMC computational
system. Consider a solution of substances X, Y and Z, and
a chemical reaction of kind X+Y

r−→ Z, then the rate at
which the reaction fires is computed as r ∗ #(X) ∗ #(Y),
i.e. the chemical rate multiplied by the number of possible
combinations of molecules that can be involved in the reaction.
In [6], an algorithm for simulating the dynamics of chemical
solutions has been proposed, that is commonly used in CSB —
directly or through some variant such as [13]. At each step, the
markovian rate r1, . . . , rn of the set of n chemical reactions
available is computed as seen above, and one reaction is
probabilistically selected for application—i.e., the probability
of picking law i is ri/R where R is the sum of all rates.
The whole process is executed over and over, and simulation
time is increased at each step by ∆t time units (i.e. seconds),
computed – as a consequence of memoryless property – as
log(1/τ)/R where τ is a random number between 0 and 1.

This algorithm is typically used to perform experiments,
namely, to find actual instances of chemical system behaviour
by simulation. In this paper we use this algorithm in a different
way: not to simulate, but rather to define the on-line behaviour
of the coordination “machine” that runs tuple spaces.

The motivation for promoting this view of coordination
through a biochemical-like medium is the possibility of getting
inspiration from at least three different kinds of metaphor:
(i) natural chemistry (e.g. self-regulation behaviour of given
biological pathways), (ii) artificial chemistry (chemical reac-
tions explicitly designed to achieve certain computing patterns,
as envisioned e.g. in [14]), and (iii) population systems (e.g.
systems with preys, predators, and food as suggested in the
work by Lotka and Volterra [10])—the reactions presented in
this paper mostly follow the latter style, though this does not
harm the generality of the model or the potential of other
metaphors.

It should be noted that, although existing works apply
chemical behaviour to devise distributed computing systems

– see e.g. [15] – to the best of our knowledge ours is the
first approach aimed at leveraging exact chemical behaviour
(namely, exact chemical dynamics) to devise self-organising
computing systems.

B. Chemical transfer

In this paper, other than chemical reaction dynamics, we
need to precisely characterise how tuples are to be diffused
from one space to neighbouring ones—which is key to support
distributed coordination. To keep connection with biochem-
istry as exact as possible, we shall rely on mechanisms
mimicking chemical transport through biological membranes,
though they do not seem to be computationally characterised
as chemical reactions are (after [6])—fixed chemical transfer
rate is often assumed. We instead rely on a more refined
chemical transfer model, combining Nernst equation [16] of
Electromagnetic gradient with the idea that transfer rate cannot
grow indefinitely—a maximum transfer bandwidth involving
two neighbouring compartments is to be considered due to
their physical characteristics.

As a result, we introduce a characterisation of chemical
transfer as follows: (i) topological connection between com-
partments is reflected into a (unidirectional) link concept,
characterised by a link rate r that measures the maximum
transfer frequency for molecules, (ii) the actual rate transfer
may be affected by a gradient substance G (namely, by the
concentration ratio of G in the source/target compartment),
(iii) gradient shape and strength can vary: when gradient factor
f is 0 transfer rate is not influenced by any gradient, and
remains fixed to r; when f is positive, a molecule would
tend to ascend the gradient created by G; when f is negative
it instead descend such a gradient—the actual gradient slope
increases with the absolute value of f .

Among the various functions that can be used to model the
actual transfer rate, we adopt the one shown in Figure 1 (f =
10, r = 1): transfer rate is bound to a low noise value (10−2

in the Figure) when the target/source concentration ratio of G
(namely ct/cs) is smaller than 1, while it goes like |f |ct/cs

1+|f |ct/cs

elsewhere. Negative values of f result in switching ct with
cs, while r is treated as a multiplicative factor for the transfer
rate. Constant noise measures the probability that a molecule
is transferred even if the gradient is completely oriented in
the opposite direction—i.e. noise defines a sort of annealing
mechanism.

III. THE COORDINATION MODEL

The proposed chemical tuple-space model is an extension of
standard LINDA settings with multiple tuple spaces. A LINDA
tuple space is simply described as a repository of tuples (struc-
tured data chunks like records), which is used as a coordination
medium provided to external “agents”: such agents coordinate
their behaviour by accessing tuple spaces through primitives
out , rd , and in , used respectively to insert, read, and remove
a tuple. Operations rd and in can specify a tuple template
– a tuple with wildcards in place of some of its arguments
–, and their execution blocks until a matching tuple is found.

Fig. 1. Chart of the function adopted to model chemical transfer rate.

This model is used in distributed systems to provide agents
with mediated interaction, supporting spatial and temporal
uncoupling, and has already been used as “space” where to
enact self-organisation behaviour, as e.g. in SwarmLinda [8]
and Tota [1].

The basic idea underlying the proposed model is to attach an
integer value called “concentration” to each tuple: such a value
can be thought of as a measure of the pertinency/activity of the
tuple—the higher it is, the more likely and frequently the tuple
is retrieved and hence influences system coordination. Primive
out can now be used to inject a tuple with any initial concen-
tration: if the same tuple was already occurring in the space,
the two tuples will join and their concentrations summed—
chemically speaking, out amounts to injecting a chemical
substance into a solution. Primitive in can be either used to
entirely remove a tuple (if no concentration is specified), or
decrease the concentration of an existing tuple—in amounts
to removing (partially or entirely) a chemical substance from
a solution. Primitive rd is similar to in but just reads instead
of removing tuples—i.e. rd amounts to observing a chemical
substance in a solution in order to know its concentration.

What is essential in our model is the fact that concentration
of tuples “spontaneously” evolves exactly as in biochemistry.
Coordination rules in the form of chemical reactions can
be installed into each tuple space: the only difference with
respect to standard chemical reactions is that they now specify
tuple templates instead of molecules—a chemical reaction
is applied when for each specified reactant there currently
exists a matching tuple in the space. As such, the installed
coordination rules affect the concentrations of tuples over time
precisely as described in Section II-A, namely, the tuple space
runs as a sort of chemical simulator, picking reactions up
probabilistically, and applying them so as to change concentra-
tions, and correspondingly waiting a given time interval before
proceeding again.

A whole coordination system is deployed as a set of
tuple spaces – ideally one in each node of the network –
characterised by a concept of topological structure induced by
the neighbouring relation of tuple spaces. Interaction between
tuple spaces is achieved through a special kind of chemical
reaction that, other than just changing tuple concentration, fires
some tuples to a tuple space in the neighbourhood, chosen

probabilistically. Such reactions specify in their right-hand
side not just tuples, but also so-called firing tuples in the
form firing(tuple, gradient-tuple, gradient-factor): when a
firing tuple is created, transfer rates of all outgoing links is
computed according to the mechanism introduced in II-B,
and are used to selected the neighboring space where the
tuple has to be moved to—the higher the rate, the higher the
probability of moving. As this mechanism mimics chemical
transfer through membranes, it allows one to conceive systems
as biological-like networks of nodes – ultimately justifying the
term “biochemical tuple spaces” – and support concepts proper
of spatial computing like data/service diffusion or gradient
generation as in computational fields [1], as shown in next
sections.

Differently from standard tuple spaces, our matching mech-
anism for retrieving tuples and for applying chemical reactions
is not fixed and syntactic, but: (i) it is application-dependent;
(ii) it is not discrete (a tuple matches a template entirely or
not at all) but it returns a vagueness value between 0 and
1 [12]; (iii) it can be based on semantics rather than being
syntax-oriented [11], [12]. In particular, chemical reactions are
applied modulo match, which means that the actual rate of the
chemical reaction is to be multiplied by the degree to which
the reaction’s reactants match the concrete tuples to which the
reaction is applied—e.g., if match yields 0.5 the chemical rate
(i.e. velocity) is actually halved.

A suitable approach to provide powerful semantic matching
in the context of the Web (and of pervasive computing) is that
of fuzzy description logic [12]: an OWL ontology describes the
application domain as a language of concepts, and matching
amounts to retrieve the degree to which a tuple (seen as an
individual of the application domain) is an instance of the
concept expressed by the template. As an example based on
a car selling system taken from [12], we could check if the
tuple representing a given car matches the template of a user’s
preferences, e.g., cars costing less than 26000 euros (27000 if
they have an alarm system), having air conditioning, and either
black or green external colour (these three conditions being
e.g. to be treated as equi-relevant)—if only the colour does
not match, an intermediate result like 0.66 could be provided.
In this paper we do not focus on any particular implementation
of matching, although we recognise that – as far as open
pervasive systems and the Web are concerned – the approach
in [12] is particularly suited. We hence simply assume that
the actual rate of chemical reactions is automatically tuned
(decreased) by the semantic information carried by the tuples
to which the reaction is applied.

IV. COORDINATING SPATIAL SERVICES

As discussed in Introduction, chemical-inspired tuple spaces
find applications in the context of open pervasive computing,
as a means to coordinate the behaviour of spatially distributed
digital services. We start from the idea of disseminating each
location of the pervasive system with a tuple space, pro-
grammed with proper chemical reactions. Services – software
functionality, data, knowledge, signals, user requests – reify

Fig. 2. Service symmetric (left) and asymmetric (right) competition.

their relevant information (structure, interface, state) through
proper tuples, which get combined and diffused by such
reactions. Namely, tuples are evolved and subject to change
of concentration in each location, and this behaviour can be
understood in terms of survival/extinction/regionalisation of
services, and of spatial computing patterns as presented in the
following.

An example application scenario for this kind of services
is in pervasive displays infrastructures, where news and ad-
vertisement services are required to self-organise their spatial
location, content, and visualisation policy, to the context-
dependent information available, such as users’ profile.

A. A Reference Scenario of Competing Services

We initially consider a simple yet interesting scenario in
which a single tuple space mediates the interactions between
services and their users in an open and highly dynamic
system—this examples will later be evolved into multiple tuple
spaces. In this context there is no knowledge about which
services will be deployed and how extensive their use will be,
i.e. whether they will successfully attract client needs, hence
semantic matching will be needed to dynamically bind services
to clients.

We aim at equipping the system with a self-adaptive be-
haviour such that: (i) services that do not attract users fade
until eventually disappearing from the system, (ii) successful
services attract new users more and more, and accordingly, (iii)
overlapping services compete one another for survival, so that
some of them eventually come to extinction. Note that such a
competition behaviour is not mandatory in our framework: it
should be considered as a relevant example of self-organising
coordination policy.

An example protocol for service providers can be as follows:
tuple publish(service(Ids,Desc)) is first inserted
in the space to model publication, then – cyclically – any tuple
toserve(service(ids,Desc),request(Idc,Req))
is searched that is meant to contain information about an
interested client Idc, and accordingly its request is served
eventually producing a result reply(Idc,Rep). Dually,
a client inserts a request as a tuple request(idc,req),
and accordingly retrieves a reply. Note that the tuple space
is charged with the role of matching a request with a reply,
creating tuples toserve, where a request is semantically
matched with the service that is chosen to serve it. Most
notably, the strategy by which this matching is performed
is responsible for determining successful services—some

Fig. 3. Spatial competition: after an initial pointwise injection, service s2
(down) globally overcomes s1 (top).

services might end up with having been never exploited,
some others may become intensively used.

The rules that enact the described behaviour are as follows:

(DECAY) SERV
r decay7−−−−→ 0

(USE) SERV | REQ r use7−−−→ SERV | SERV | toserve(SERV,REQ)

Rule (DECAY) states that any service tuple may fade with
a negative exponential dynamics: since matching result is a
multiplicative factor for the overall decay rate of a service, the
latter is in between 0 and r decay depending on the matching
degree. On the other hand, rule (USE) has a twofold role: (i) it
first semantically matches a service and a request (the higher
the match, the more likely service and request are combined),
and accordingly creates toserve tuple and removes requests;
and (ii) increases concentration of service, so as to provide a
positive feedback to contrast the negative one of decay—this
rule resembling the prey-predator system described by Lotka-
Volterra equations [10], [6]. We refer to use rate of a couple
service/request as r use multiplied by match degree as usual.

Consider a scenario with two services s1 and s2 matching
the same requests: both with decay rate 0.01 and use rate
0.05, but initially having concentration of 2000 and 3000
respectively. The example reported in Figure 2 (left) shows
that, upon a fixed incoming rate of requests (50 per time unit in
this case), the two services remain in equilibrium at the initial
state.1 Such an equilibrium is however unlikely in practise,
unless the two services are really identical, i.e. two instances of
the same service. In fact, if the services feature even a slightly
different use rate, then one of the two loses and starts fading
until completely vanishing, as shown in Figure 2 (right) where
the use rates for s1 and s2 are 0.06 and 0.04, respectively.

B. Spatial competition

Now suppose that instead of a single tuple space, we have
a network of tuple spaces, all programmed with the above set

1For the sake of our exploration, we developed a prototype ad-hoc simulator
directly implementing Gillespie’s algorithm, and charted simulation results by
using tools like gnuplot.

of chemical laws plus a simple diffusion law for service tuples
(where no gradient information is specified):

(DIFFUSE) SERV
r diff
7−−−→ firing(SERV,null,0)

The resulting system can be used to support a pervasive
computing scenario in which the infrastructure coordinates
users and services, such that when a service is injected into
a node of the network (e.g. the node where service developer
resides), it starts diffusing around on a step-by-step basis,
until possibly covering the whole network—hence becoming
a global service.

In particular, we are interested in observing the dynamics
by which the injection of a new and improved service (an
upgrade) may eventually result in a complete replacement of
previous version. In the following we assume as a reference
a torus-like network of 15 × 15 nodes (namely, a grid where
nodes on the boundary are actually connected to nodes on the
other side, so that every node features 4 neighbouring nodes)
with link rate equal to 106 and noise equal to 10−4—in next
sections a 20×20 torus is used instead. In every node, requests
for using a service are supposed to arrive at a fixed rate for
simplicity – though in actual systems we should expect such
a rate to be highly context-dependent – and a service called
s1 is the only available to match the requests. In particular, in
every node we consider a situation featuring a concentration
of approximately 5000 s1, in spite of diffusion.

Another service s2 is at some point developed that can
serve the same requests of s1 with use rate 0.1 instead of
0.05 (the use rate of s1), namely, it is a service developed to
more effectively serve requests. This service is injected into
a randomly chosen node of the network, according to a very
low concentration (10 in our experiments). Figure 3 shows in
each column a different snapshot (from left to right), reporting
concentration of s1 on top row and s2 on bottom row: we
can observe that s2 starts diffusing where it is injected, until
completely overcoming service s1.

Note that in our model, as soon as a service vanishes, it
serves requests with decreasing rate, until getting completely
unused. Put it simply, service tuples are a reification of
the spatial service state as enacted by the coordination infras-
tructure: the resulting system features self-adaptation (the best
service actually wins), self-optimisation (unused services fade
and are sort of garbage-collected), context-awareness (success
of a service in a location depends on requests there), and
opennes (the arrival of new services is not foreseen at design
time).

C. Field-based Attraction

We now consider a typical retrieval scenario of spatial
computing (see e.g. [1]). A device d located in a node
(modelling the availability of a device there) pumps a signal
f that locally diffuses so as to create a field; a requester r
situated elsewhere is attracted by the device (in order to use it),
and ascends the field to retrieve it. This behaviour is obtained

Fig. 4. Field-based attraction: a service enacts a field (top) used by requests
to reach a device (down).

Fig. 5. Path-driven relocation: the target enacts a field (down), which attracts
the source field (top).

by the chemical rules:

(PUMP) DEV
r pump7−−−−→ DEV | FIELD

(DECAY-F) FIELD
r decay7−−−−→ 0

(DIFFUSE-F) FIELD
r diff7−−−→ firing(FIELD,null,0)

(DIFFUSE-R) REQ
r attr7−−−→ firing(REQ,FIELD,f)

A sample evolution corresponding to this scenario is depicted
in Figure 4: in particular, the bottom row reports field diffu-
sion, while the top row shows request relocation—the adopted
simulation parameters are: f = 10.0, rdiff = rattr = 0.01,
rdecay = 0.0099, rpump = 10, initial request concentration
= 5000. Rules (PUMP,DECAY-F,DIFFUSE-F) are responsible
for creating the field: the device acts as a catalyst producing
field molecules that diffuse around and decay until leading
to a stable (though noisy) spatial structure—more extensive
simulation results show that the number of molecules of a
field tends to r pump/(rdiff − rdecay), and that r pump
drives the the field amplitude in its pumping origin, while
rdiff − rdecay drives the field horizon. Rule (DIFFUSE-R) is
instead responsible of moving requests on a step-by-step basis
so as to ascend the field—namely, at each step it is more likely
to move to a node with a higher field value. Once reached the
node containing the device, a specific instance of (USE) rule
is used to make requests exploit the device.

Note that the above rules are presented as specialised to
the attraction case for the sake of understanding, but the same
behaviour can be supported by general rules of pumping, de-
caying and diffusion, automatically and adaptively instantiated
to the application at hand thanks to semantic matching.

Fig. 6. Self-adaptive segregation based on a descending gradient diffusion.

D. Path-driven Relocation

A symmetric variant of the above case is the pattern in
which a stable path from a source to a target location is to
be created that can be used by services that has to move back
and/or forth to reach the context-dependent information (or
resource) available in the endpoints. This is achieved by letting
both source and target pump fields, and by having source’s be
attracted by the target’s, creating a true trail that can be either
ascended or descended depending on the direction to be taken.
See Figure 5.

Note that both fields and paths in these examples are self-
healing, in the sense that they automatically self-adapt to
changes in the network topology (if any), movements of source
(resp. target), and so on.

E. Service Segregation

Consider now the case in which a network is to be adap-
tively divided in two (or generally more) regions, creating
different contextual niches—useful e.g. to cluster data. This
can be achieved by injecting different contextual information
in the network, namely, two contextual services s1 and s2 that
should logically divide the network in two segregated regions.
This behaviour is obtained as shown in Figure 6.

Two locations on the opposite side of the network are
supposed to be elected as centres of the two regions: from
them, s1 and s2 are pumped as if they where fields. However,
reaction rules are to be designed such that s1 and s2 descend
each other’s field. The result is that, although they diffuse due
to the noise management (recall chemical transfer model in
Section II-B) they will stay well separated. Note that the size
of the two regions can be tuned by properly choosing diffusion
rates, e.g., creating asymmetric regions.

V. CONCLUSIONS

The proposed chemical-oriented extension of the tuple space
model can be regarded as a ground for building self-organising
coordination infrastructures for open, spatial-oriented service
systems. This infrastructure could be seen as a distributed
virtual machine playing the role of an exact biochemical ex-
ecutor [6], which enacts semantic-oriented chemical reactions
that evolve the representation of state/interface/structure of
pervasive services.

In this paper we showed examples of field creation and
climb that very much resemble physical metaphors as in
[1] and of path creation and region segregation that more
resembles biological approaches as of stigmergy [17], [18]: the
biochemical approach presented in this paper seemingly ap-
pears to be able to cover the expressiveness of both metaphors
along with the chemical one. In future works, we plan to
further study and investigate on such self-organisation patterns:
the main goal is to tackle concrete application domains in
pervasive service ecosystems as also envisioned in [19].

REFERENCES

[1] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: The tota approach,” ACM Trans. Softw. Eng.
Methodol., vol. 18, no. 4, pp. 1–56, 2009.

[2] A. P. Barros and M. Dumas, “The rise of web service ecosystems,” IT
Professional, vol. 8, no. 5, pp. 31–37, 2006.

[3] J. Beal and J. Bachrach, “Infrastructure for engineered emergence on
sensor/actuator networks,” IEEE Intelligent Systems, vol. 21, no. 2, pp.
10–19, 2006.

[4] G. Agha, “Computing in pervasive cyberspace,” Commun. ACM, vol. 51,
no. 1, pp. 68–70, 2008.

[5] C. Villalba, A. Rosi, M. Viroli, and F. Zambonelli, “Nature-inspired
spatial metaphors for pervasive service ecosystems,” in Workshop on
Spatial Computing, Venice Italy, Oct. 2008, informal Proceedings.

[6] D. T. Gillespie, “Exact stochastic simulation of coupled chemical
reactions,” The Journal of Physical Chemistry, vol. 81, no. 25, pp. 2340–
2361, 1977.

[7] J. Fisher and T. A. Henzinger, “Executable cell biology,” Nature Biotech-
nology, vol. 25, pp. 1239–1249, Nov. 2007.

[8] R. Menezes and R. Tolksdorf, “Adaptiveness in linda-based coordination
models,” in Engineering Self-Organising Systems: Nature-Inspired Ap-
proaches to Software Engineering, ser. LNAI. Springer, January 2004,
vol. 2977, pp. 212–232.

[9] M. Viroli and M. Casadei, “Biochemical tuple spaces for self-organising
coordination,” in Coordination Languages and Models, ser. LNCS.
Springer-Verlag, Jun. 2009, vol. 5521, pp. 143–162.

[10] A. A. Berryman, “The origins and evolution of predator-prey theory,”
Ecology, vol. 73, no. 5, pp. 1530–1535, October 1992.

[11] A. Bandara, T. R. Payne, D. D. Roure, N. Gibbins, and T. Lewis,
“A pragmatic approach for the semantic description and matching of
pervasive resources,” in Advances in Grid and Pervasive Computing,
ser. LNCS, vol. 5036. Springer, 2008, pp. 434–446.

[12] F. Bobillo and U. Straccia, “fuzzyDL: An expressive fuzzy description
logic reasoner,” in 2008 International Conference on Fuzzy Systems
(FUZZ-08). IEEE Computer Society, 2008, pp. 923–930.

[13] M. A. Gibson and J. Bruck, “Efficient exact stochastic simulation of
chemical systems with many species and many channels,” J. Phys. Chem.
A, vol. 104, no. 9, pp. 1876–1889, March 2000.

[14] L. Cardelli, “Artificial biochemistry,” 2006, technical Report TR-08-
2006, University of Trento Centre for Computational and Systems
Biology.

[15] J.-P. Bonâtre and D. Le Métayer, “Gamma and the chemical reaction
model: Ten years after,” in Coordination Programming. Imperial
College Press London, UK, 1996, pp. 3–41.

[16] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter,
Molecular Biology of the Cell, 4th ed., ser. Garland Science Textbooks.
Garland Science, Jun. 2002.

[17] M. Casadei, M. Viroli, and L. Gardelli, “On the collective sort problem
for distributed tuple spaces,” Science of Computer Programming, vol. 74,
no. 9, pp. 702–722, 2009.

[18] M. Mamei, R. Menezes, R. Tolksdorf, and F. Zambonelli, “Case studies
for self-organization in computer science,” Journal of Systems Architec-
ture, vol. 52, no. 8-9, pp. 443–460, 2006.

[19] F. Zambonelli and M. Viroli, “Architecture and metaphors for eternally
adaptive service ecosystems,” in IDC’08, ser. Studies in Computational
Intelligence. Springer Berlin / Heidelberg, September 2008, vol.
162/2008, pp. 23–32.

