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Vision and motor control are usually studied as separate phenomenon.  They perform very different functions, they are performed by 
different regions of the brain, and one is perception while the other is actuation.  The two structures did, however, co-evolve.  While 
they are different structures they work together in reasoning about and manipulating the outside world.  Both structures have some 
similar attributes. For example both the motor cortex and the visual cortex are laid out in a manner that preserves topological 
adjacency and the hippocampus, where positional awareness is represented also represents places in the world through a topological 
map.  In all case the layout of the areas suggests algorithms that depend upon propagation through a kind of spatial computer in order 
to solve navigational tasks that combine perception, actuation, and spatial awareness.  In this paper we take the position that it makes 
sense to study the computational aspects of learning to perform such tasks together rather than as separate disciplines and that by 
observing the similarities of the layouts of the associated areas we can gain some insight into a general learning engine that utilizes 
spatial computing principles in order to achieve complex behaviors in a complex world that can only be modeled imprecisely.  This 
paper describes such an approach embedded within simple robotic devices. 
 

Index Terms— Biomorphic Computing, Computer Vision, Memory-Based Learning, Spatial Computing.  
 

I. INTRODUCTION 

Much is known about the biological neuronal structures that 
constitute the human vision system [1] as well as that of other 
animals such as frogs[2], cats, and macaque monkey[3]. 
Schematic diagrams of brain function are well documented for 
studied species [3, 4] and experimentation has yielded a level 
of understanding of what is computed by the blocks in these 
diagrams. Some researchers are in the process of building 
simulations of these building blocks of visual processing. 
These schematics are often presented as if they were circuit 
diagrams resulting from millions of years of evolution—as 
rigid in their structure and as common among individuals as 
are kidneys, hands and feet. Computer vision researchers strive 
to find the right operators and the right representations 
necessary to reproduce the capabilities of the human visual 
system. In this paper we present a different perspective on the 
human visual system that suggests placing a greater emphasis 
on structures that can learn representations, rather than on 
designing the representations.   

We are developing an architecture [5, 6] for learning to see 
and act that is based on engineered emergence.  In our 
approach the solution is engineered by connecting learning 
components into a spatial computer.  Perception and actuation 
procedures are learned within the spatial computer based upon 
the location where information converges within the spatial 
computer and the perceptual history of the local components 
within the computer.  While this paper covers early 
implementations of these ideas encouraging results have 
already been obtained. 
 
The memory architecture described implements a layered 
spatial computer where the key operations on the computer 
involve (1) looking up near matches that are reported in order 
of their Euclidean distance in spatial compute space; and (2) 
searching memorized sequences in a manner in which the 

results are found in order of the Euclidean distance within the 
spatial computer spanned by the strings.  Early processing 
stages lay out memory elements in space that mirrors the real 
world.  Abstract layers are formed on top of these layers and 
the positions of learned abstractions are chosen so as to 
minimize the distances to all of the lower level contributors.  
Search distance through the spatial layout of the memory 
elements crucially drives the performance of the system. 
 
The paper is divided into three sections: First we provide a 
very brief overview of what is known about biological vision 
systems to the extent that it is relevant to this discussion; Next 
we outline a view of the human (and other animal) vision 
systems as spatial computers; Finally we discuss early work 
with an artificial spatial computer’s attempt to learn to see and 
act. 
 

II.  BIOLOGICAL VISION SYSTEMS 

The major components of the human vision system consist of 
the eyes, the lateral geniculate nucleus (LGN), and the visual 
cortex.  The newest part of the system resides in the cerebral 
cortex—the visual cortex—and occupies approximately one 
third of our brain mass depending upon where one draws the 
line between visual processing and higher level reasoning 
about vision. 
 
The visual cortex is at the back of the brain and is divided into 
left and right parts.  Projections from both eyes reach both left 
and right parts of the visual cortex and communication 
between the left and right sides can occur through the corpus 
callosum. Over the years experiments with animals and 
observation of humans, particularly those suffering brain 
damage resulting from stroke or otherwise induced lesions, 
have resulted in a significant understanding of the structure 
and functional nature of the visual cortex. 
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Figure 1: Major Divisions of the Human Crebral Cortex 

 
Figure 1 (left) shows the position of the visual cortex in 
relation to other functional areas in the human brain.  Figure 2 
(right) shows the, now famous, functional schematic of visual 
cortex due to Van Essen et. al. [3, 4].   
 
It is beyond the scope of this paper to describe in detail the 
structure of the functional blocks of the visual cortex. What is 
important for the current discussion is that the structure of the 
visual cortex consists of functional blocks that receive 
projections from other functional blocks within the visual 
cortex and from outside the visual cortex (such as the LGN).  
These projections tend to be topographical.  Projections from 
the retina map onto areas in V1 so as to retain topological 
adjacency.  The mapping from the retina onto V1 has been 
demonstrated and the map is readily understood.  The further 
up the chain one goes the less obvious the mapping becomes 
as adjacency is less closely tied to the retinal image and more 
related to semantic features.  

III.  BIOLOGICAL SPATIAL COMPUTER FOR VISION 

What is computed within the visual cortex is determined by its 
physical location within the structure.  There is a right place to 
compute low-level attributes of the visual field based upon 
where the inputs that pertain to that field project onto the 
cortex.  The basic wiring diagram of the visual cortex as well 
as the nature of projections between functional units and the 
density of neurons in those areas is likely determined by 
genetic encoding—resulting from a long period of evolution.  
The process implemented by the functional blocks, however, is 
quite likely more plastic and driven by experience. 
 
There is some reason to believe that the functional blocks, 
rather than implementing hardwired and specific functions, 
instead provide a spatial learning engine that learns specific 
functions as a result of (1) the spatial position of the blocks 
within the biological spatial computer, (2) the inputs that are 
projected into that region, and (3) attributes of the physical 
world that the cortex is exposed to.  Two results in particular 
support this view, one involves the deliberate limitation of 
visual experience during development and the other involves 
experiments that rewire the optic pathways.  Since these 
findings are important to the premise of this paper we provide 
a very brief overview of the results below. 
 
In 1970 Blakemore and Cooper[7] reported experimental 
results that showed that kittens that had lived their entire lives 
in a controlled environment in which only edges of a  certain 

orientation were presented had visual cortices that did not have 
cells sensitive to edged orientations that they did not observe.  
These experiments support the notion that structure in the 
primary visual cortex is, at least to some extent, learned. 
 
In other experiments, rewiring the optic pathways so that 
visual information is redirected to another brain area, not 
associated with vision, have shown that visual capabilities 
develop in the new area. While there is clearly some value to 
the large scale structure of visual cortex and the projections 
between the functional units, the function of the units 
themselves is largely driven by the information that they are 
exposed to by virtue of afferent projections.   
 
The visual cortex can be thought of as a spatial computer 
where what is learned depends upon the environment to which 
it is exposed, and where it is learned depends upon the 
connectivity of the functional units. 

IV.  AN ARTIFICIAL SPATIAL COMPUTER FOR VISION 

To experiment with a spatial learning computer for vision we 
implemented a memory-based learning [8] component that 
could be replicated in a topological map such as found in 
projections into the primary visual cortex’s V1.  These 
components receive projections from a small circular region 
from a specific place in an image.  When an image fragment 
falls upon the region the distribution of light intensities is 
recorded without preprocessing except for intensity and 
distribution normalization.  When an image fragment closely 
matches one that has already been stored the responding 
memories are recalled via nearest neighbor lookup using k-d 
trees.  After exposing the components to a collection of image 
fragments clusters of memories in the k-d trees develop that 
respond to the common features found in the images – namely 
no edges present and edges at different orientations.  Without 
deletion the size of memory rapidly grows and the k-d trees 
develop dense populations of memories of frequently 
reoccurring edge orientations.  When memories become 
excessively huge localized regions within the k-d trees are 
taken and replaced by a single entry at the center (mean) of the 
cluster and with a count indicating the number of memories 
that were originally there and a histogram representing the 
distribution of the replaced memories.  Subsequent images that 
fall on the component use the count and histogram to simulate 
the response that would have resulted from a population of 
memories.  
 
The system self-organizes its memory so that it resembles 
receptive cells in V1.  This organization depends upon (a) very 
simple rules for distributing, spatially, parts of an image, (b) 
large memory for recording instances of patterns that fall upon 
the components, and (c) a strategy for collapsing multiple 
representations of similar memories. 
 
By connecting up projective pathways in ways similar to 
Figure 2, we believe that a structure of components sensitive to 
color (V4), motion (MT), etc. could be learned from exposure 
to colored images containing moving objects.  This latter 
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experiment has not been performed yet partly because of the 
computation cost and partly because we were more interested 
in extending the learning paradigm to support intrinsic 
motivation [9, 10] by extending the system to include action as 
well as perception.   
 
For the most part animals don’t exist as passive creatures that 
observe the world.  They exist as creatures that interact with 
their world and simultaneously learn to act in and perceive 
their environment.  By allowing action as well as perception, 
the learning process can be enhanced by the ability to 
manipulate the world.    
 
Experimental Desktop Robotic Platform 
In a system that can “act and see” the results of actions impacts 
what is perceived.  This correlation between action and 
perception must be learned by the spatial computer in which 
the action spaces as well as the perceptual spaces are laid out 
as topological maps within the spatial computer.  We have 
implemented a very simple desktop robotic platform upon 
which to develop our early experiments with the spatial 
learning system. 
 

 
Figure 3: Robotic bug with synthesized vision from an overhead camera and 
four actuation spaces corresponding to turn left, turn right, move forward, and 
move backward. 
 

The platform consists of two robotic bugs pictured in Figure 3 
that have a small number of control actions.  They can move 
forward and backward and can turn left and right for some 
duration of time.  The legs slip on the surface injecting a noise 
component into the actuation procedures forcing a tight 
perception/action control loop. 

 
Figure 4: Experimental setup.  Blue objects are barriers and green objects are 
targets. 

 

An overhead camera maps the experimental setup by 
interpreting blue objects are barriers, green objects as targets, 
and identifying the position and orientation of the two bugs 
based upon the two colored dots on their backs.  Figure 4 
shows a simple experimental setup with two bugs in a starting 
position.  The computer display of the images from the 
overhead camera is shown with interpretation overlaid on the 
images.  The blue rectangles around the blue barriers indicates 
interpretation of the blue strips as barriers, the green ‘+’ marks 
on the green patches indicate targets and the lines on the backs 
of the bugs indicates the  position and orientation of the bugs.  
From the camera images and the interpretation of the objects 
in the scene the system synthesizes a bug’s view of the world 
from the perspective of each bug that the bugs must learn to 
interpret. The bugs must learn to play actuation procedures 
that get them from their current position to the position where 
the targets are located.  All computation is performed on a 
desktop computer that simulates the spatial computer and the 
bugs are controlled by a control interface pictured in Figure 5. 

 
Figure 5: Control interface for the robotic bugs.  The interface controls the 

handheld remote control devices that double as chargers. 
 
The example of learning that we described above in which 
simple edge detectors were learned passively from 
observations in an unsupervised manner required no 
motivation.   
 

 
Figure 6: Schematic of the desktop robotic platform 

 
Our extended experiment requires that we introduce 
motivation. Two forms of motivation are observed by the 
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robotic bugs: extrinsic motivation – where we provide an 
explicit goal – and intrinsic motivation which is a built-in 
desire to experiment in poorly understood areas of the event 
space.  From the beginning these two forms of motivation are 
in conflict. The intrinsic motivation pushes the robots to 
experiment while the extrinsic motivation pushes the robots to 
complete their task.  In our initial experiments we used a crude 
hardwired resolution to this conflict.  In upcoming experiments 
we are introducing a learning system of somatic markers [19] 
to mediate this conflict.  
 
Extrinsic motivation takes the form of goal states that are 
given to the robotics bugs (that are implemented as separate 
entities).  A goal state is given as the synthesized view that the 
robot will see when it has reached its target, in this case the 
view that the bug will see when it is on top of the target. 
 
Cached Event-String Automata 
In Sciences of the Artificial [17], Herb Simon introduced us to 
the idea that an ant walking through a complex environment 
may exhibit complex behavior but that the complex behavior is 
largely a result of the environment and that the ant may 
implement rather simple control laws. Rod Brooks [13] 
described a hierarchical architecture that would allow the 
implementation of simple control laws that interact with the 
environment to produce complex and robust behavior. Brooks 
argued against models by claiming that the best model of the 
world was the world itself. Richard Feynman [14] gave us an 
anecdote about an early, informal, experiment that he 
performed with ants in order to understand how they learned 
efficient routes between food and colony even though the 
process of discovering the food resulted from a random 
exploration process. The key involved the use of pheromones 
that would be left in the environment that the ants could follow 
to and from the food. Errors made by ants in following the 
correct path would sometimes lead to an ant taking a shortcut 
and accidentally getting back on the path. Such shorter paths 
would be reinforced by pheromone trails and so the path 
would gradually be optimized over time and sooner or later 
would look fairly optimal. Feynman’s ants used the world as 
their model in the Brooks sense and learned paths by 
annotating the world using chemicals. It should be noted that 
much more is now known about the mechanisms used by ants 
in navigating their world [18]. 
 
By remembering the perceived world as sequences of 
perceptions and actions we can simulate the process of 
learning described by Feynman and by doing so learn to 
perform skills. By remembering everything, we can find what 
we need when we need it. While this kind of learning may 
seem inefficient it has many advantages. David Marr [15] 
noted: 
 

“... the problem is not totally intractable despite the huge sizes of all 
the relevant event spaces. The reason is that only a very small 
proportion of the possible events can ever actually occur, simply 
because of the length of time for which a brain lives. This means, 
first, that the memory can be quite coarse; and secondly, that if 
anything much happens twice, it is almost certain to be significant.” 

 
Our approach uses a memory based learning approach [8] in 
which memories of sensory inputs and actions are recorded for 
later use (in a cache). These memories are hierarchically 
organized and generalized. Skills are applied to new situations 
by finding relevant memories and replaying them. 
 
The cache is populated both from action/event sequences 
resulting from goal directed behavior and self-motivation [9, 
10] driven by a meta-strategy of exploration in poorly 
represented parts of the event space as a low priority process. 
 
In the following discussion we introduce ’Cached Event String 
Automata’ (CESA), describe algorithms that permit CESA to 
learn behavioral skills in real world environments,  and discuss 
performance implications of the approach. 
 
Sequences of sensor inputs such as a visual image, leg position 
feedback and haptics; and actions such as actuation commands 
are recorded. A goal is specified by presenting a solution in 
perceptual terms with relevant details of the goal state present. 
We refer to these sequences of perceptual and actuation events 
as event strings – or strings for short. Our approach stores 
event strings in a manner that permits rapid retrieval of close 
matches and new complex activities are formed by stitching 
together fragments of generalizations of prior strings. 
 
String Stitching 
String stitching looks up previously learned sequences that 
when joined together get from the current state to the final 
state. Any action taken by the robot represents a choice on the 
part of the robot to perform that action. Strings are therefore 
hinged at action points. We consider sequences to be 
Markovian in that it doesn’t matter how a robot arrived at a 
given state. 
 
Our learning approach depends upon reusing fragments of old 
skills in order to build new ones. The approach therefore 
depends upon there being pre-existing skills. An important 
question therefore is ’where do the initial skills come from?’ 
There are a number of potential solutions to the problem of 
prior skills: 
 
1. The initial sequences could be hand generated; 
2. The robot could be tele-operated through a certain skill a 
number of times – each time recording the sequences of 
observations and actions; and 
3. The robot could explore its world by itself. 
 
(1) is probably not feasible; (2) is potentially very useful and is 
similar to the way we teach humans; and (3) provides a way 
for the robot to automatically adapt when the environment 
changes. 
 
Our experiments to date have focused mostly on (3). Current 
experiments with sensory-motor learning with a humanoid 
robot are exploring (2). 
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Intrinsic Motivation driven by Surprise 
Surprise-based learning is implemented as a low-priority 
process that is used to soak up free time resources such as 
when the robot is already in a goal state and is thus free to 
play. As mentioned earlier, a somatic marker based mechanism 
will be introduced later to allow experimentation to occur at 
more opportune moments while being extrinsically motivated 
if such experimentation doesn’t interfere with the completion 
of it main goal.  This approach will permit the robot to stop 
and smell the roses along the way, as it were, and to benefit 
from learning whenever a learning opportunity arises if time 
permits.  The currently implemented system however operated 
as described below.  
 
When in a goal state (i.e.: nothing to do) the robot randomly 
(weighted by interest) chooses to: 
 
1. Do nothing. 
2. Pick one of the available actions. 
 
Existing strings predict an outcome (next element on the 
string). If the string base accurately predicts the outcome the 
interest level in the action is decreased. Otherwise the interest 
level (Surprise) is increased. When the robot encounters the 
opportunity to make an action for which it has a high interest it 
may decide to experiment with the action with increased 
probability proportional to the level of interest that has 
accumulated from prior encounters. As the robot experiments 
with actions of interest the cache fills up with strings that 
predict the outcomes of the actions and as they become more 
accurate the level of interest is decreased and the system 
gradually settles down to no exploration because of lack of 
surprise. 
 
Whenever an action yields an unpredicted response the 
surprise is noted and later when the context is appropriate 
exploration will take place. 
 
String Hinge Spreading Activation  
A string is an instantiation of a path through a (Markov 
Decision Process) MDP. Actions represent decisions to follow 
a path through an MDP. A string can therefore be cut at any 
action (hinge) along the string. Take a string, select its hinges 
and find follow on strings from the hinges and recursively 
repeat this process until the goal is reached. This simple 
algorithm finds solutions in order of least number of splices. 
Solutions are collected until an adequate solution is found then 
the best solution found up to that point is invoked resulting in 
the robot performing an action.  An adequate solution is one 
that meets certain constraints whose nature we will not 
elaborate in this paper.  An import point, however, is that the 
solutions are found in order of string splicing complexity (least 
number of splices) and are not necessarily optimal in any other 
sense.  By allowing a few solutions to be collected before 
choosing one there is the possibility of selecting a more 
optimal solution.  It is not necessary to find the optimal 

solution because over time incrementally better solutions will 
be collected which will tend to improve to a local optima. 
 
A CESA is a 5-tuple < ω1, ωg, A, Ω, SAω > where: ω1 ∈ Ω is 
the initial observation ωg ∈ Ω is the goal observation A is the 
set of actions, Ω is the set of observations, SAω is a set of 
cached strings whose elements ei ∈ A ∪ Ω , Learning takes a 
CESA and produces a new CESA’ that changes the SAω by 
adding, removing and or otherwise modifying the entries. 
 
We have already mentioned that the strings stored in the CESA 
memory are Markovian in nature and that actions in a string 
represent decision points. Each recorded string represents a 
path taken through a Hidden Markov Model (HMM). If there 
were a sufficient number of them the probabilities of 
transitions at the decision points could be calculated. A CESA 
then evolves into a non-compact representation of an HMM. If 
the environment changes the structure of the HMM can change 
as new sequences are experienced. By not compactly 
representing the HMM we are able to adapt to a changing 
environment without additional mechanism. 
 
A single string allows the activity represented by that string to 
be learned. Generalization is performed by performing nearest 
neighbor matching. When there is only one string the nearest 
neighbor will be that string but as more strings are cached the 
nearest neighbor match becomes more accurate and string 
splicing allows for learned fragments to be assembled into 
complex activities. As more strings are learned the 
probabilities at decision points are gradually estimated. 
 
The approach described above resembles spreading activation 
[11] and motor procedures encoded in human Basal Ganglia 
[12]. Experiments to date have successfully demonstrated the 
ability for a simple insect-like robot to simultaneously learn 
motor procedures, image interpretation procedures, and a 
cognitive map so that the robots can avoid obstacles as seen 
through their vision inputs and get from a starting position to a 
target position through a maze after sufficient trials in the 
maze. 

V. CONCLUSIONS AND FUTURE WORK 

In a spatial computer the layout of the computing elements 
determines in some way the performance of the system.  The 
system described in this paper draws heavily on this principle.  
Nearest neighbor search finds entry points into the learned 
structure, new memories are laid out in locations that will 
allow them to be found by nearest neighbor search, and paths 
through strings of recorded events and actions are searched for 
in order of Euclidean distance through the spatial computer in 
a manner that returns the solutions in order of increasing total 
distance.  While the current implementation utilizes a 
simulation on a sequential computer that is decidedly not 
spatial, the architecture lends itself to straightforward and 
efficient implementation using simple hardware blocks, such 
as using an FPGA, or on other highly parallel platforms.  
Distance can be computed by propagating broadcasts that 
naturally return matches in order of distance. 
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The overwhelming majority of research into computer vision 
has focused on implementing visual operators and designing 
representations that are well suited to the image processing 
task.  Sometimes these operators and representations are 
closely related to neurological findings and sometimes they are 
more closely related to understandings of the physics of the 
image formation process.  While there is a lot of evidence that 
some of these operators and representations are similar to 
those found experimentally in animal visual systems it seems 
likely to the authors that these operators and representations 
are extremely complex; and more importantly highly 
dependent, perhaps inevitable, consequences of the spatial 
computer and specific projections.  The authors propose that 
the endeavor of reverse engineering the visual cortex may be 
an unmanageably hard task and that focusing on a learning 
spatial computer may lead to faster progress towards usable 
artificial vision systems and may also lead to massively 
parallel implementations that will support the computing 
requirements of visual systems for complex scenes. 
 
While the computational cost of simulating the structures 
described in this paper on a single sequential computer are 
prohibitive the local distributed nature of the spatial computing 
formulation of the solution suggests that a massively 
distributed implementation using existing technology, such as 
FPGAs is feasible. 
 
The spatial computer described above in support of the 
experiments in learning to see and act was laid out by hand. 
While this was appropriate for an initial experiment it is clear 
that achieving interesting intelligent learning systems requires 
that more intricate spatial computers be specified.  To this end, 
we propose to implement a graphical language for specifying 
functional areas, the projections between functional areas 
along with distributions.   
 
We have described an architecture that learns complex 
collections of visual operators that can adjust as the 
environment changes.  For some applications it may be 
appropriate and even preferable to freeze the state of learning 
and to prevent further adaptation.  Such freezing of the learned 
state could lead to significant performance improvements – or 
the ability to run on a less powerful platform – and the ability 
to test the performance of the system with the knowledge that 
it is not going to change.  To accomplish this, a more 
aggressive clustering approach would be appropriate. 

REFERENCES 

[1] M. J. Farrah “The Cognitive Neuroscience of Vision” John Wiley. 2000. 
[2] J. Y. Lettvin, H. R. Maturana, W. S. McCulloch and W. H. Pitts “What 

the Frog’s Eye Tells the Frog’s Brain”. “The Mind: Biological 
Approaches t its Functions” Eds. W. C. Corning, M. Balaban 1968 
pp233-258  

[3] J. H. R Maunsell and D. C. Van Essen “The connections of the middle 
temporal visual area (MT) and their relationship to a cortical hierarchy 
in the macaque monkey” J. Neuroscience Vol 3 #12 pp2563-2586. Dec 
1993. 

[4] D. C. Van Essen and J. H. R. Maunsell “Hierarchical Organization and 
the Functional Streams in the Visual Cortex. TINS September 1983 
pp370-375. 

[5] P. Robertson, S. Reece, and J. M. Brady “Algorithms for Adaptation in 
Aerial Surveillance.”, AFRL-IF-RS-TR-2002-52. 2002 

[6] P. Robertson and R. Laddaga. “GRAVA: An Architecture Supporting 
Automatic Context Transitions and its Application to Robust Computer 
Vision”, Proceedings of the 4th International and Interdisciplinary 
Conference CONTEXT 2003, Stanford, CA 

[7] C. Blakemore and G. F. Cooper “Development of the brain depends on 
the visual environment” Nature Oct 31; 228(5270) pp477-478, 1970. 

[8] A. Moore. A tutorial on kd-trees. Extract from PhD Thesis, 1991.     
Available from http://www.cs.cmu.edu/simawm/papers.html. 

[9] F. Kaplan P. Oudeyer and V.V. Hafner. Intrinsic motivation systems for 
autonomous mental development. IEEE Transactions on Evolutionary 
Computation, 11, April 2007. 

[10] S. Sing A. G. Barto and N. Chentanez. Intrinsically motivated learning 
of hierarchical collections of skills. In Proceedings of the 3rd 
International Conference on Developmental Learning (ICDL 04), 2004. 

[11] J. R. Anderson. A spreading activation theory of memory. Journal of 
Verbal Learning and Verbal Behavior, 22:261–295, 1983. 

[12] G. S. Berns and T. J. Sejnowski. A computational model of how the 
basal ganglia produce sequences. Journal of Cognitive Neuroscience, 
10. 

[13] R.A. Brooks. A robust layered control system for a mobile robot. IEEE 
Journal of Robotics and Automation, RA-2:14–23, 1986. 

[14] R.P. Feynman. ’Surely You’re Joking, Mr. Feynman!’ (Adventures of a 
Curious Character). W. W. Norton and Company, 1985. 

[15] D. Marr. A theory for cerebral neocortex. Proceedings of the Royal 
Society of London B, 176:161–234, 1970. 

[16] D. Precup R. S. Sutton and S. Singh. Between mdps and semi-mdps: A 
framework for temporal abstraction in reinforcement learning. Artificial 
Intelligence, 112:181–211, 1999. 

[17] H.A. Simon. Sciences of the Artificial. MIT Press, 1996. 
[18] M. V. Srinivasan “Animal Behavior: Homing in on Ant Navigation.”, 

nature 411, pp752-753 June 2001 
[19] A.R Damasio, D. Tranel, and H. Damasio, "Somatic markers and the 

guidance of behaviour: theory and preliminary testing" pp. 217-229. In 
H.S. Levin, H.M. Eisenberg & A.L. Benton (Eds.). Frontal lobe 
function and dysfunction. New York: Oxford University Press. (1991). 

 
 


