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A Biologically Inspired Spatial Computer that Learns to See and Act

Paul Robertson, Robert Laddaga
BBN Technologies, Inc., Cambridge, MA 02138, USA

Vision and motor control are usually studied as segrate phenomenon. They perform very different funtions, they are performed by
different regions of the brain, and one is perceptin while the other is actuation. The two structure did, however, co-evolve. While
they are different structures they work together inreasoning about and manipulating the outside world Both structures have some
similar attributes. For example both the motor corex and the visual cortex are laid out in a mannerhat preserves topological
adjacency and the hippocampus, where positional aweness is represented also represents places in tverld through a topological
map. In all case the layout of the areas suggestigorithms that depend upon propagation through a knd of spatial computer in order
to solve navigational tasks that combine perceptigractuation, and spatial awareness. In this papere take the position that it makes
sense to study the computational aspects of learginto perform such tasks together rather than as sepate disciplines and that by
observing the similarities of the layouts of the a®ciated areas we can gain some insight into a gealelearning engine that utilizes
spatial computing principles in order to achieve cmplex behaviors in a complex world that can only benodeled imprecisely. This

paper describes such an approach embedded withimngple robotic devices.

Index Terms— Biomorphic Computing, Computer Vision, Memory-Based Learning, Spatial Computing.

|l. INTRODUCTION

Much is known about the biological neuronal stroesuthat
constitute the human vision system [1] as wellreg bf other

animals such as frogs[2], cats, and macaque moBkey[

Schematic diagrams of brain function are well doentad for
studied species [3, 4] and experimentation haslgtkh level
of understanding of what is computed by the blockthese
diagrams. Some researchers are in the process ildingu
simulations of these building blocks of visual pFssing.
These schematics are often presented as if theg wistuit
diagrams resulting from millions of years of evalut—as
rigid in their structure and as common among irdliels as
are kidneys, hands and feet. Computer vision rebees strive
to find the right operators and the right repreatons
necessary to reproduce the capabilities of the huwisual
system. In this paper we present a different petspgeon the
human visual system that suggests placing a greatphasis
on structures that can learn representations, mdtten on
designing the representations.

We are developing an architecture [5, 6] for lergrtio see
and act that is based on engineered emergence.ourn
approach the solution is engineered by connectaagning
components into a spatial computer. Perceptionaatuhtion
procedures are learned within the spatial comphased upon
the location where information converges within tpatial
computer and the perceptual history of the locahponents
within the computer.
implementations of these ideas encouraging reshitge
already been obtained.

results are found in order of the Euclidean distawihin the
spatial computer spanned by the strings. Earlycgssing
stages lay out memory elements in space that raitrer real
world. Abstract layers are formed on top of thigeers and
the positions of learned abstractions are choserassdo
minimize the distances to all of the lower levehtibutors.
Search distance through the spatial layout of themary
elements crucially drives the performance of theteay.

The paper is divided into three sections: Firstpwevide a
very brief overview of what is known about biologiiczision
systems to the extent that it is relevant to théswksion; Next
we outline a view of the human (and other animagjon
systems as spatial computers; Finally we discusy @ark
with an artificial spatial computer’s attempt tade to see and
act.

Il. BIOLOGICAL VISION SYSTEMS

The major components of the human vision systensisbof
the eyes, the lateral geniculate nucleus (LGN), thedvisual
cortex. The newest part of the system residekancerebral
cortex—the visual cortex—and occupies approximatahg
third of our brain mass depending upon where oevsiithe
line between visual processing and higher levekarig
about vision.

While this paper covers earlyrhe visual cortex is at the back of the brain andivided into

left and right parts. Projections from both eyesch both left
and right parts of the visual cortex and commuidcat
between the left and right sides can occur thrahghcorpus

The memory architecture described implements arédalye callosum. Over the years experiments with animaisl a

spatial computer where the key operations on thapcder
involve (1) looking up near matches that are regmbrh order
of their Euclidean distance in spatial compute spand (2)
searching memorized sequences in a manner in wthieh
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observation of humans, particularly those sufferibigin
damage resulting from stroke or otherwise inducesiohs,
have resulted in a significant understanding of streicture
and functional nature of the visual cortex.
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Figure 1 (left) shows the position of the visualrte® in
relation to other functional areas in the humanrbrédigure 2
(right) shows the, now famous, functional schematfiwisual
cortex due to Van Essen et. al. [3, 4].

It is beyond the scope of this paper to describdetail the
structure of the functional blocks of the visuaites. What is
important for the current discussion is that threctture of the
visual cortex consists of functional blocks thatceaige

projections from other functional blocks within thaésual

cortex and from outside the visual cortex (suchihasLGN).

These projections tend to be topographical. Ptiojes from

the retina map onto areas in V1 so as to retaiologjcal

adjacency. The mapping from the retina onto V1 besn

demonstrated and the map is readily understoock filitther

up the chain one goes the less obvious the mapy@Engmes
as adjacency is less closely tied to the retinalgenand more
related to semantic features.

I1l. BIOLOGICAL SPATIAL COMPUTER FOR VISION

What is computed within the visual cortex is detieed by its
physical location within the structure. There isgit place to
compute low-level attributes of the visual fieldsbd upon
where the inputs that pertain to that field projecto the
cortex. The basic wiring diagram of the visualterras well
as the nature of projections between functionatsuand the
density of neurons in those areas is likely deteeahi by
genetic encoding—resulting from a long period oblation.
The process implemented by the functional blocksydver, is
quite likely more plastic and driven by experience.

There is some reason to believe that the functidatks,
rather than implementing hardwired and specificcfioms,
instead provide a spatial learning engine thatnkeapecific
functions as a result of (1) the spatial positidrthe blocks
within the biological spatial computer, (2) the inp that are
projected into that region, and (3) attributes lué physical
world that the cortex is exposed to. Two resultparticular
support this view, one involves the deliberate tation of
visual experience during development and the oitiaslves
experiments that rewire the optic pathways. Sitleese
findings are important to the premise of this paperprovide
a very brief overview of the results below.

orientation were presented had visual corticesdithhot have
cells sensitive to edged orientations that theyrditiobserve.
These experiments support the notion that structuréhe
primary visual cortex is, at least to some extlarned.

In other experiments, rewiring the optic pathways that
visual information is redirected to another braieaa not
associated with vision, have shown that visual bditias
develop in the new area. While there is clearly samlue to
the large scale structure of visual cortex andgtaections
between the functional units, the function of thaits
themselves is largely driven by the informationtttieey are
exposed to by virtue of afferent projections.

The visual cortex can be thought of as a spatiahpeder

wherewhat is learned depends upon the environment to which

it is exposed, andvhere it is learned depends upon the
connectivity of the functional units.

IV. AN ARTIFICIAL SPATIAL COMPUTER FOR VISION

To experiment with a spatial learning computervision we
implemented a memory-based learning [8] componbat t
could be replicated in a topological map such amdoin
projections into the primary visual cortex's V1. héke
components receive projections from a small circudaion
from a specific place in an image. When an imaggrient
falls upon the region the distribution of light énsities is
recorded without preprocessing except for intensatyd
distribution normalization. When an image fragmelatsely
matches one that has already been stored the disgon
memories are recalled via nearest neighbor loolgipguk-d
trees. After exposing the components to a cobtiactif image
fragments clusters of memories in the k-d treeslbgvthat
respond to the common features found in the imagesmely
no edges present and edges at different oriensatidithout
deletion the size of memory rapidly grows and the tkees
develop dense populations of memories of frequently
reoccurring edge orientations. When memories becom
excessively huge localized regions within the kreles are
taken and replaced by a single entry at the cémtean) of the
cluster and with a count indicating the number @&nmories
that were originally there and a histogram represgnthe
distribution of the replaced memories. Subseqimates that
fall on the component use the count and histogasinulate
the response that would have resulted from a ptpolaf
memories.

The system self-organizes its memory so that iermddes
receptive cells in V1. This organization depengplsru(a) very
simple rules for distributing, spatially, parts ai image, (b)
large memory for recording instances of patteras &l upon
the components, and (c) a strategy for collapsingtiphe

representations of similar memories.

By connecting up projective pathways in ways simita

In 1970 Blakemore and Cooper[7] reported experiaentFigure 2, we believe that a structure of componseisitive to

results that showed that kittens that had lived thetire lives
in a controlled environment in which only edgesaofcertain

color (V4), motion (MT), etc. could blearned from exposure
to colored images containing moving objects. Thitter
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experiment has not been performed yet partly becafithe

computation cost and partly because we were maeeeisted
in extending the learning paradigm to support msidg

motivation [9, 10] by extending the system to imgwaction as
well as perception.

For the most part animals don’t exist as passieatares that
observe the world. They exist as creatures thatadot with
their world and simultaneously learn to act in gefceive
their environment. By allowing action as well asrgeption,

An overhead camera maps the experimental setup by
interpreting blue objects are barriers, green dbjas targets,
and identifying the position and orientation of ttveo bugs
based upon the two colored dots on their backsggurgi4
shows a simple experimental setup with two bugs atarting
position. The computer display of the images frdime
overhead camera is shown with interpretation oicrban the
images. The blue rectangles around the blue baiiridicates
interpretation of the blue strips as barriers,gteen ‘+' marks

the learning process can be enhanced by the ahiity On the green patches indicate targets and thedingise backs

manipulate the world.

Experimental Desktop Robotic Platform

In a system that can “act and see” the resultstidras impacts
what is perceived. This correlation between actemd

perception must be learned by the spatial compuatevhich

the action spaces as well as the perceptual spaedaid out
as topological maps within the spatial computer.e Wave
implemented a very simple desktop robotic platfoupon

which to develop our early experiments with the tigpha
learning system.

of the bugs indicates the position and orientatibthe bugs.
From the camera images and the interpretation efthjects
in the scene the system synthesizes a bug'’s vietveofvorld
from the perspective of each bug that the bugs heash to
interpret. The bugs must learn to play actuationcedures
that get them from their current position to theipon where
the targets are located. All computation is pernfed on a
desktop computer that simulates the spatial compaurtd the
bugs are controlled by a control interface pictureHigure 5.

=

Figure 5: Control interface for the robotic bug$he interface controls the
handheld remote control devices that double agyesr

Figure 3: Robotic bug with synthesized vision fram overhead camera and 1N€ €xample of learning that we described abovevhich

four actuation spaces corresponding to turn left) tight, move forward, and
move backward.

The platform consists of two robotic bugs pictunedrigure 3
that have a small number of control actions. Toay move
forward and backward and can turn left and right Some
duration of time. The legs slip on the surfacedtipng a noise
component into the actuation procedures forcingight t
perception/a _ cotro Ioo

targets.

simple edge detectors were learned passively from
observations in an unsupervised manner required no
motivation.

Commands Emotional Driver

I /
>
Perception,
Model Building
Actuation

/

BugBot vision synthesizer

<@

Operations
Center
(old simulator)

java

1: Track bugbots

Ceiling Camera o h
verhea BugBot )
:[>— d controlle — e %
vision r
e c+

Movies

Figure 6: Schematic of the desktop robotic platform

Figure 4: Experimental setup. Blue objects areiéxarand green objects are OUr  extended —experiment requires that we introduce

motivation. Two forms of motivation are observed the
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robotic bugs: extrinsic motivation — where we pd®ian
explicit goal — and intrinsic motivation which is tauilt-in
desire to experiment in poorly understood areathefevent
space. From the beginning these two forms of ratitw are
in conflict. The intrinsic motivation pushes thebods to
experiment while the extrinsic motivation pushes tabots to
complete their task. In our initial experiments wged a crude
hardwired resolution to this conflict. In upcomiegperiments
we are introducing a learning system of somatickerar [19]
to mediate this conflict.

Extrinsic motivation takes the form of goal stathst are
given to the robotics bugs (that are implementedegmrate
entities). A goal state is given as the synthekizew that the
robot will see when it has reached its target,his tase the
view that the bug will see when it is on top of tagget.

Cached Event-String Automata

In Sciences of the Artificial [17], Herb Simon iattuced us to
the idea that an ant walking through a complex remvhent
may exhibit complex behavior but that the compleRdvior is
largely a result of the environment and that the wkuay
implement rather simple control laws. Rod Brooks3][1
described a hierarchical architecture that woulkbvalthe
implementation of simple control laws that interagth the
environment to produce complex and robust behaBoroks
argued against models by claiming that the besteinofithe
world was the world itself. Richard Feynman [14ygaus an
anecdote about an early, informal, experiment that
performed with ants in order to understand how tlegyned
efficient routes between food and colony even thotige
process of discovering the food resulted from adoam
exploration process. The key involved the use @frpimones
that would be left in the environment that the amusld follow
to and from the food. Errors made by ants in folf@yvthe
correct path would sometimes lead to an ant takisportcut
and accidentally getting back on the path. Suchtshgaths
would be reinforced by pheromone trails and so pla¢h
would gradually be optimized over time and soonetater
would look fairly optimal. Feynman’s ants used therld as
their model in the Brooks sense and learned paths
annotating the world using chemicals. It shouldnbéed that
much more is now known about the mechanisms usezhtsy
in navigating their world [18].

By remembering the perceived world as sequences

Our approach uses a memory based learning app{8adm
which memories of sensory inputs and actions arerded for
later use (in a cache). These memories are hiécatlyh
organized and generalized. Skills are applied to siuations
by finding relevant memories and replaying them.

The cache is populated both from action/event ssmpse
resulting from goal directed behavior and self-weatibn [9,
10] driven by a meta-strategy of exploration in o
represented parts of the event space as a lowtpniwocess.

In the following discussion we introduce 'CacheceB/String

Automata’ (CESA), describe algorithms that permSA to

learn behavioral skills in real world environmentmd discuss
performance implications of the approach.

Sequences of sensor inputs such as a visual ineggposition
feedback and haptics; and actions such as actuadibmands
are recorded. A goal is specified by presentinglati®n in
perceptual terms with relevant details of the gate present.
We refer to these sequences of perceptual andtiactievents
as event strings — or strings for short. Our apgnostores
event strings in a manner that permits rapid redtief close
matches and new complex activities are formed bghstg
together fragments of generalizations of priomsfsi

String Stitching
String stitching looks up previously learned seaasnthat
when joined together get from the current statéhto final

state. Anyaction taken by the robot represents a choice on the

part of the robot to perform that action. Strings therefore
hinged at action points. We consider sequences €0 b
Markovian in that it doesn’'t matter how a robotised at a
given state.

Our learning approach depends upon reusing fragmadrdld
skills in order to build new ones. The approachrdfure
depends upon there being pre-existing skills. Ampartant
guestion therefore is 'where do the initial skitisme from?’
bhere are a number of potential solutions to thablem of
prior skills:

1. The initial sequences could be hand generated;
2. The robot could be tele-operated through a iceshill a
mfimber of times — each time recording the sequendes

perceptions and actions we can simulate the prooéss observations and actions; and

learning described by Feynman and by doing so lgarn
perform skills. By remembering everything, we camd fwhat
we need when we need it. While this kind of leagninay
seem inefficient it has many advantages. David Ma#H]
noted:

“... the problem is not totally intractable desghe huge sizes of all
the relevant event spaces. The reason is that @nkery small
proportion of the possible events can ever actuadiyur, simply
because of the length of time for which a brairdivThis means,
first, that the memory can be quite coarse; andratlg, that if
anything much happens twice, it is almost certaibé significant.”

3. The robot could explore its world by itself.

(1) is probably not feasible; (2) is potentiallyy@seful and is
similar to the way we teach humans; and (3) pravidevay
for the robot to automatically adapt when the emwvinent
changes.

Our experiments to date have focused mostly onG8jrent
experiments with sensory-motor learning with a hooid
robot are exploring (2).
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Intrinsic Motivation driven by Surprise

Surprise-based learning is implemented as a lowripyi
process that is used to soak up free time resowsgels as
when the robot is already in a goal state and us firee to
play. As mentioned earlier, a somatic marker basechanism
will be introduced later to allow experimentatiam dccur at
more opportune moments while being extrinsicallytivaded
if such experimentation doesn't interfere with twmpletion
of it main goal. This approach will permit the oalio stop
and smell the roses along the way, as it were,tarfienefit
from learning whenever a learning opportunity ariffietime
permits. The currently implemented system howexsrated
as described below.

When in a goal state (i.e.: nothing to do) the tatamdomly
(weighted by interest) chooses to:

1. Do nothing.
2. Pick one of the available actions.

Existing strings predict an outcome (next element the
string). If the string base accurately predicts dliecome the
interest level in the action is decreased. Othentlig interest
level (Surprise) is increased. When the robot ents the
opportunity to make an action for which it has ghhinterest it
may decide to experiment with the action with imged
probability proportional to the level of intereshat has
accumulated from prior encounters. As the roboteerpents
with actions of interest the cache fills up withirggs that
predict the outcomes of the actions and as thegrbeanore
accurate the level of interest is decreased andstistem
gradually settles down to no exploration becauséack of
surprise.

Whenever an action yields an unpredicted respoihse
surprise is noted and later when the context israpjate
exploration will take place.

String Hinge Spreading Activation

A string is an instantiation of a path through aafkbv

Decision Process) MDP. Actions represent decisiorisllow

a path through an MDP. A string can therefore beatwany
action (hinge) along the string. Take a stringeskits hinges
and find follow on strings from the hinges and msotely

repeat this process until the goal is reached. Eimgple

algorithm finds solutions in order of least numioérsplices.

Solutions are collected until adlequate solution is found then
the best solution found up to that point is invokedulting in

the robot performing an action. An adequate smiuts one
that meets certain constraints whose nature we ol

elaborate in this paper. An import point, howeverthat the
solutions are found in order of string splicing gexity (least
number of splices) and are not necessarily optimahy other
sense. By allowing a few solutions to be collechedore

choosing one there is the possibility of selectamgmore
optimal solution. It is not necessary to find thptimal

solution because over time incrementally betteutgmis will
be collected which will tend to improve to a loogtima.

A CESA is a 5-tuple <, wy, A, Q, Su, > where:wy 0 Q is
the initial observationy, O Q is the goal observation A is the
set of actionsQ is the set of observations,Sis a set of
cached strings whose element$leA 0 Q , Learning takes a
CESA and produces a new CESA’ that changes Hheb$
adding, removing and or otherwise modifying theiest

We have already mentioned that the strings stardidei CESA
memory are Markovian in nature and that actionsa istring
represent decision points. Each recorded stringesemts a
path taken through a Hidden Markov Model (HMM) there
were a sufficient number of them the probabilities

transitions at the decision points could be catedaA CESA
then evolves into a non-compact representatiomaidM. If

the environment changes the structure of the HMMd®nge

as new sequences are experienced. By not compactly

representing the HMM we are able to adapt to a gihgn
environment without additional mechanism.

A single string allows the activity representedtbat string to
be learned. Generalization is performed by perfogmearest
neighbor matching. When there is only one strirg ibarest
neighbor will be that string but as more strings eached the
nearest neighbor match becomes more accurate angd st
splicing allows for learned fragments to be assechkihto
complex activities. As more strings are learned
probabilities at decision points are graduallyreated.

The approach described above resembles spreadingtian
[11] and motor procedures encoded in human Basablza
[12]. Experiments to date have successfully dematedd the
ability for a simple insect-like robot to simultanesly learn

Imotor procedures, image interpretation proceduses] a

cognitive map so that the robots can avoid obsiaate seen
through their vision inputs and get from a starfigition to a
target position through a maze after sufficienalriin the
maze.

V. CONCLUSIONS AND FUTURE WORK

In a spatial computer the layout of the computihgments
determines in some way the performance of the syst€he
system described in this paper draws heavily asghinciple.
Nearest neighbor search finds entry points into l#ened
structure, new memories are laid out in locatiomat twill

allow them to be found by nearest neighbor seaand, paths
through strings of recorded events and actionseaeched for
in order of Euclidean distance through the spatimhputer in
a manner that returns the solutions in order afeiasing total
distance.  While the current implementation utdize
simulation on a sequential computer that is dedjdedbt

spatial, the architecture lends itself to straightiard and
efficient implementation using simple hardware kkcsuch
as using an FPGA, or on other highly parallel pilatfs.

Distance can be computed by propagating broaddhsts
naturally return matches in order of distance.

the
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The overwhelming majority of research into computision

has focused on implementing visual operators arsigding

representations that are well suited to the imagegssing
task. Sometimes these operators and represerstation
closely related to neurological findings and somes they are
more closely related to understandings of the mlsysi the
image formation process. While there is a lot\waflence that
some of these operators and representations aiarsio

those found experimentally in animal visual systetrseems
likely to the authors that these operators andessprtations

[4] D. C. Van Essen and J. H. R. Maunsell “Hierarch@ejanization and
the Functional Streams in the Visual Cortex. TIN&t®8mber 1983
pp370-375.

[5] P. Robertson, S. Reece, and J. M. Brady “AlgoritfionsAdaptation in
Aerial Surveillance.”, AFRL-IF-RS-TR-2002-52. 2002

[6] P. Robertson and R. Laddaga. “GRAVA: An ArchiteetiBupporting
Automatic Context Transitions and its ApplicatianRobust Computer
Vision”, Proceedings of the 4th International anmuetdisciplinary
Conference CONTEXT 2003, Stanford, CA

[7] C. Blakemore and G. F. Cooper “Development of trerbdepends on
the visual environment” Nature Oct 31; 228(52703 pp-478, 1970.

[8] A. Moore. A tutorial on kd-trees. Extract from PhDhesis, 1991.
Available from http://www.cs.cmu.edu/simawm/papletis..

9] F. Kaplan P. Oudeyer and V.V. Hafner. Intrinsic ivation systems for

g 9]
are extremely complex; and more importantly highly = autonomous mental development. IEEE Transaction&miutionary

dependent, perhaps inevitable, consequences ofphéal
computer and specific projections. The authorppse that
the endeavor of reverse engineering the visuakgaray be
an unmanageably hard task and that focusing orarmnife
spatial computer may lead to faster progress tosvashble
artificial vision systems and may also lead to rvadg
parallel implementations that will support the cautipg
requirements of visual systems for complex scenes.

While the computational cost of simulating the stuwes
described in this paper on a single sequential cbenpare
prohibitive the local distributed nature of the tiglacomputing
formulation of the solution suggests that a madgive
distributed implementation using existing techngloguch as
FPGAs is feasible.

The spatial computer described above in supportthef
experiments in learning to see and act was laidbguthand.
While this was appropriate for an initial experirhéris clear
that achieving interesting intelligent learningteyss requires
that more intricate spatial computers be specifi€éd.this end,
we propose to implement a graphical language fecigpng

functional areas, the projections between functioaeas
along with distributions.

We have described an architecture that learns empl
collections of visual operators that can adjust the
environment changes. For some applications it rhay
appropriate and even preferable to freeze the efdearning
and to prevent further adaptation. Such freezirpelearned
state could lead to significant performance improgets — or
the ability to run on a less powerful platform -dahe ability
to test the performance of the system with the kaedge that

it is not going to change. To accomplish this, aren
aggressive clustering approach would be appropriate
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