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• Parallelism and Spatial Computing: 
if two computations occur simultaneously,
they must take place at different location

 taking space into account

• Parallelism as an operational vs a semantic property

• Three ways to express parallelism : 
• - parallelism is expressed through the data: data parallelism
• - parallelism is expressed through the control: control parallelism
• - parallelism is expressed through a mix of data and control: pipe-line

• An alternative classification:

Data Parallelism

0 INSTRUCTION 

COUNTER

Declarative languages

1 INSTRUCTION 

COUNTER

Sequential languages

n INSTRUCTIONS 

COUNTER

Concurrent languages

SCALAR SISAL, ID, LAU, Actors Fortran, Pascal, C Adda, Occam

COLLECTION Gamma, 81/2, MGS, PROTO
APL

*Lisp, HPF, CMFortran
CMFortran + multi-threadings
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The global (spatial, intensional) vs. the local (PE) view

PE1 PE2 PE3 PE4
Local view
(PE point of view)

(intensional point of view on spatially distributed objects and processes)
Global view
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From Arrays, Data Fields and GBF to Chain

[0,d1]× ... ×[0,dn] Val
ARRAY
(Total Function)

Data Field
(Partial Function) Zn Val

GBF (Group based Fields)
(Partial Function) Group Val

Chain:
(Partial Function) Cellular complex Val
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• Alpha extension

Intentional operations

f f f f f f ff ^
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• Alpha extension

• Beta reduction

Intentional operations

f f \



SCW’09 – IBISC / CNRS, University of Evry, Genopole 8

• Alpha extension

• Beta reduction

• Scan

Intentional operations

f f \\ butterfly

1 2 3 4 5 6
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• A 8,5 program is a set of definitions: 

Declarative definition

• Definitions can be recursive

X = 0 # (1 + x:[3])

where

• constant are polymorphic

• # is the concatenation

• :[] is the cut operation

A = B + C

C = (max \ B) * (+\\ B)

B[4] =  +\\ (!1)

A = [4, 14, 27, 44]

C = 4 * [1, 3, 6, 10] =[4, 12, 24, 40] 

B = [1, 2, 3, 4]
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• Infer the geometry

• Check that the solution is a priori maximal

• Compute the solution by (a smart) fixed point iteration

Solving a recursive definition

0 # :[3] )(1 +( )= 1+? 1+? 1+?

0 0 # 1 +( )= 0 :[3]

0 1 0 # 1 +( )= 0 1 :[3]

0 1 2 0 # 1 +( )= 0 1 2 :[3]

0 1 2 3 0 # 1 +( )= 0 1 2 3 :[3]
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Inferring the geometry

A = 1 # A

B = [1, B]

C = 1 # (2  #2  C:[2])

1 1 1 1 1 1 1 1 …

1 1 1 …

1 2

1

2

2

1

= 1 2

1

2

2

1

#

#2
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Declarative control : stream

A

A  =  0 ,  1 ,  2 ,  3 ,  4 ,  3 ,  2 ,  1 ,  0 ,  1 ,  2 ,  3  …

B

B  =  0 ,  1 ,  2 ,  3 ,  4 ,  3 ,  2 ,  1 ,  0 ,  1 ,  2 ,  3  …

A 0 1 2 3 4 3 2 1 0 1 2

B 0 1 2 3 4 3
time

¤ ¤ ¤ ¤ ¤

Introduction of hiaton: from data flow to synchronous data flow

clock(B) = true, false, true, false, true, false, true, false, true, false, true, false …

tick… tock …
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A logic of signal vs. a logic of state

A 1 1 1 1 1 1 1

B 2 2 2 2 2 2

A = B + C 3 3 3 3

A 1 1 1 1 1 1 1

B 2 2 2 2 2 2

A = B + C 3 3 3 3 3 3 3 3 3

A logic of signal

ERROR
An input is missing

A logic of state

a

b

c

a

b c

OK
The result is the combination 
of the last seen values.
A result is computed if there 
is a change in one input.
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Synchronous stream algebra
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• X = $X + 1

Recursive stream definitions

• X@0 = 1
X = $X + 1

• X@0 = 0
X = $X + 1 when Clock1

(the empty stream)
Hint : what is the initial value of the stream ?

1

1 2 ¤ 4 ¤ …

t f t f …

clock(Clock1)

Hint : at which pace the counter increase ?
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The wlumf : a reactive animat

System wlumf = {

glycemia@0 = 6;

glycemia = if eating 

then 12

else max(0, $glycemia -1)when Clock

eating@0 = false;

eating = $hungry && environment.food;

hungry@0 = false;

hungry = (glycemia < 6);

}

System Environment = {

food = ((t%2) == 0);

t@0 = 0; 

t = $t+1 when Clock(-2); 

}
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Fabric = stream of collection = collection of stream
(for static geometry)

Fabric = stream(collection) = collection(stream)
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Fabric = a “space-time” data
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U@0 = …

U = a(begin # inside):[n]  +  (1-2a)inside  +  a (inside # end):[-n]

inside = $U when Clock

begin = 0

end = 0

Heat diffusion in a thin rod
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Mapping and (cyclic) scheduling
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Example of a growing collection
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• a C compiler to a sequential architecture
• Parallel mapping and scheduling on:

– CM
– MPI (paragon, network of workstation)

• efficient compilation if static

• Spatial computing: YES but
– Simple model of underlying space (but can be extended)
– Synchronous time: 

atomic, event-driven, synchronization costs
– Crystalline computation
– Intensional approach = working with spatial object as a whole
– NO support for amorphous computing: 

• Locality can be enforced through a tailored set of operations
• no robustness
• Dynamic space are difficult to handle

Conclusions


