
Spatial Computing
as
Intensional Data Parallelism

1

Antoine Spicher
Olivier Michel
Jean-Louis Giavitto

IBISC
Computer Science, Integrative Biology & Complex Systems
CNRS - University of Evry - Genopole

http://mgs.spatial-computing.org

SCW’09 – IBISC / CNRS, University of Evry, Genopole

• Motivations : data-parallelism and spatial computing

• Intensionnal Spatial Operations

• Dataflow

• Examples

• Compilation

• Conclusions

TOC

2

SCW’09 – IBISC / CNRS, University of Evry, Genopole 3

• Parallelism and Spatial Computing:
if two computations occur simultaneously,
they must take place at different location

 taking space into account

• Parallelism as an operational vs a semantic property

• Three ways to express parallelism :
• - parallelism is expressed through the data: data parallelism
• - parallelism is expressed through the control: control parallelism
• - parallelism is expressed through a mix of data and control: pipe-line

• An alternative classification:

Data Parallelism

0 INSTRUCTION

COUNTER

Declarative languages

1 INSTRUCTION

COUNTER

Sequential languages

n INSTRUCTIONS

COUNTER

Concurrent languages

SCALAR SISAL, ID, LAU, Actors Fortran, Pascal, C Adda, Occam

COLLECTION Gamma, 81/2, MGS, PROTO
APL

*Lisp, HPF, CMFortran
CMFortran + multi-threadings

SCW’09 – IBISC / CNRS, University of Evry, Genopole

10 20 30 40C := +\ A B

+ + + ++!

1 2 3 4A

10 20 30 40B

4

The global (spatial, intensional) vs. the local (PE) view

PE1 PE2 PE3 PE4
Local view
(PE point of view)

(intensional point of view on spatially distributed objects and processes)
Global view

SCW’09 – IBISC / CNRS, University of Evry, Genopole 5

From Arrays, Data Fields and GBF to Chain

[0,d1]× ... ×[0,dn] Val
ARRAY
(Total Function)

Data Field
(Partial Function) Zn Val

GBF (Group based Fields)
(Partial Function) Group Val

Chain:
(Partial Function) Cellular complex Val

SCW’09 – IBISC / CNRS, University of Evry, Genopole 6

• Alpha extension

Intentional operations

f f f f f f ff ^

SCW’09 – IBISC / CNRS, University of Evry, Genopole 7

• Alpha extension

• Beta reduction

Intentional operations

f f \

SCW’09 – IBISC / CNRS, University of Evry, Genopole 8

• Alpha extension

• Beta reduction

• Scan

Intentional operations

f f \\ butterfly

1 2 3 4 5 6

1 3 6 10 15 21

L
o
g
(
s
i
z
e
(
c
o
l
l
e
c
t
i
o
n
)
)

SCW’09 – IBISC / CNRS, University of Evry, Genopole 9

• A 8,5 program is a set of definitions:

Declarative definition

• Definitions can be recursive

X = 0 # (1 + x:[3])

where

• constant are polymorphic

• # is the concatenation

• :[] is the cut operation

A = B + C

C = (max \ B) * (+\\ B)

B[4] = +\\ (!1)

A = [4, 14, 27, 44]

C = 4 * [1, 3, 6, 10] =[4, 12, 24, 40]

B = [1, 2, 3, 4]

SCW’09 – IBISC / CNRS, University of Evry, Genopole 10

• Infer the geometry

• Check that the solution is a priori maximal

• Compute the solution by (a smart) fixed point iteration

Solving a recursive definition

0 # :[3])(1 +()= 1+? 1+? 1+?

0 0 # 1 +()= 0 :[3]

0 1 0 # 1 +()= 0 1 :[3]

0 1 2 0 # 1 +()= 0 1 2 :[3]

0 1 2 3 0 # 1 +()= 0 1 2 3 :[3]

SCW’09 – IBISC / CNRS, University of Evry, Genopole 11

Inferring the geometry

A = 1 # A

B = [1, B]

C = 1 # (2 #2 C:[2])

1 1 1 1 1 1 1 1 …

1 1 1 …

1 2

1

2

2

1

= 1 2

1

2

2

1

#

#2

SCW’09 – IBISC / CNRS, University of Evry, Genopole 12

Declarative control : stream

A

A = 0 , 1 , 2 , 3 , 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 …

B

B = 0 , 1 , 2 , 3 , 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 …

A 0 1 2 3 4 3 2 1 0 1 2

B 0 1 2 3 4 3
time

¤ ¤ ¤ ¤ ¤

Introduction of hiaton: from data flow to synchronous data flow

clock(B) = true, false, true, false, true, false, true, false, true, false, true, false …

tick… tock …

SCW’09 – IBISC / CNRS, University of Evry, Genopole 13

A logic of signal vs. a logic of state

A 1 1 1 1 1 1 1

B 2 2 2 2 2 2

A = B + C 3 3 3 3

A 1 1 1 1 1 1 1

B 2 2 2 2 2 2

A = B + C 3 3 3 3 3 3 3 3 3

A logic of signal

ERROR
An input is missing

A logic of state

a

b

c

a

b c

OK
The result is the combination
of the last seen values.
A result is computed if there
is a change in one input.

SCW’09 – IBISC / CNRS, University of Evry, Genopole 14

Synchronous stream algebra

SCW’09 – IBISC / CNRS, University of Evry, Genopole 15

• X = $X + 1

Recursive stream definitions

• X@0 = 1
X = $X + 1

• X@0 = 0
X = $X + 1 when Clock1

(the empty stream)
Hint : what is the initial value of the stream ?

1

1 2 ¤ 4 ¤ …

t f t f …

clock(Clock1)

Hint : at which pace the counter increase ?

SCW’09 – IBISC / CNRS, University of Evry, Genopole 16

The wlumf : a reactive animat

System wlumf = {

glycemia@0 = 6;

glycemia = if eating

then 12

else max(0, $glycemia -1)when Clock

eating@0 = false;

eating = $hungry && environment.food;

hungry@0 = false;

hungry = (glycemia < 6);

}

System Environment = {

food = ((t%2) == 0);

t@0 = 0;

t = $t+1 when Clock(-2);

}

SCW’09 – IBISC / CNRS, University of Evry, Genopole 17

Fabric = stream of collection = collection of stream
(for static geometry)

Fabric = stream(collection) = collection(stream)

SCW’09 – IBISC / CNRS, University of Evry, Genopole 18

Fabric = a “space-time” data

SCW’09 – IBISC / CNRS, University of Evry, Genopole 19

U@0 = …

U = a(begin # inside):[n] + (1-2a)inside + a (inside # end):[-n]

inside = $U when Clock

begin = 0

end = 0

Heat diffusion in a thin rod

SCW’09 – IBISC / CNRS, University of Evry, Genopole 20

Mapping and (cyclic) scheduling

SCW’09 – IBISC / CNRS, University of Evry, Genopole 21

Example of a growing collection

SCW’09 – IBISC / CNRS, University of Evry, Genopole 22

• a C compiler to a sequential architecture
• Parallel mapping and scheduling on:

– CM
– MPI (paragon, network of workstation)

• efficient compilation if static

• Spatial computing: YES but
– Simple model of underlying space (but can be extended)
– Synchronous time:

atomic, event-driven, synchronization costs
– Crystalline computation
– Intensional approach = working with spatial object as a whole
– NO support for amorphous computing:

• Locality can be enforced through a tailored set of operations
• no robustness
• Dynamic space are difficult to handle

Conclusions

