
Dynamically Defined Processes for Spatial
Computers

Jacob Beal
BBN Technologies

Cambridge, MA 02138
Email: jakebeal@bbn.com

Abstract—A program executing on a spatial computer must
be able to react to changes in its environment. For example,
a sensor network tracking flocks of birds needs to be able to
create a spatially-extended tracking process for each flock that it
detects, and these processes should not interfere with one another.
When dynamically defined processes are identified using fixed
equivalence classes (e.g. UIDs), however, the independent creation
dilemma means that no algorithm can safely create processes in
less than O(diameter/c) time, where c is the speed of information
propagating through the network. This dilemma can be evaded by
defining the extent of a process with a comparator that does not
form an equivalence class. I an example of the dilemma and its
resolution using the example of a sensor network tracking flocks
of birds, as well as proposing an extension of the Proto spatial
computing language[1] to handle dynamically defined processes.

I. INTRODUCTION

An increasing number of systems being designed or de-
ployed may be viewed as spatial computers—potentially large
collections of devices distributed to fill some space, such
that the difficulty of moving information between devices is
strongly dependent on the distance separating them. Examples
of spatial computers include sensor networks, robotic swarms,
colonies of engineered bacteria, and peer-to-peer wireless
networks.

The program on a spatial computer is often intimately tied
to its environment. For example, a sensor network might be
emplaced to observe the nesting grounds of a rare species
of bird, or a robotic swarm dispatched to search for injured
people in a disaster area.

In many situations, a programmer would naturally wish
for the program to react to changes in the environment by
dynamically defining new state elements, such as objects or
processes. For example, when the sensor network spots a flock
of birds taking off, it might create a data object representing
the flock and spawn a process that follows the flock around,
recording observations. Likewise, when the robotic swarm
spots an injured person, it might create a report of the person’s
location and condition and send this report in search of a
nearby available rescue team.

If the program were executing on a centralized system,
dynamically defining state in cases like these would be trivial.
When a program is executing distributed across the devices
of a spatial computer, however, we are placed on the horns
of a dilemma. This independent creation dilemma means

(a) Independent detection of the same flock

(b) Observation of two different flocks

Fig. 1. An example of the independent creation dilemma: in a sensor network,
device A and device B each observe part of a flock of birds and immediately
create a tracking process that spreads out in space to follow the flock. If
A and B are observing the same flock (a), then when the processes they
launched encounter one another, they should merge. If, however, A and B
are observing different flocks (b) the processes should stay separate. When
there is space-like separation between the creation of the processes, it is not
possible to determine whether the processes should merge at the time of their
creation.

that when state elements are identified conventionally, any
algorithm that can dynamically define state elements in less
than O(diameter/c) time must risk either creating duplicate
state elements or creating state elements that interfere with
one another (Figure 1).

I first lay out the abstractions to be used in this discussion,
then define the independent creation dilemma and prove that
the dilemma applies whenever state element identifiers form
an equivalence class. I then give examples of how more
general tests for process membership can be used to resolve
the dilemma in the case of tracking flocks of birds, as well
as proposing an extension of the Proto spatial computing
language[1] to handle dynamically defined processes.

A. Related Work

Processes that are created, distributed, and destroyed dy-
namically are fundamental to the family of viral approaches to
spatial computing. Notable such approaches include TOTA[2],
paintable computing[3], and Smart Messages[4]. In all of these
approaches, however, the programmer acts at the level of the



individual device and must build their own approach to the
independent creation dilemma from scratch.

Other spatial languages, such as the current version of
Proto[1], [5] and pattern languages like Growing Point
Language[6] and Origami Shape Language[7], generally avoid
the dilemma by requiring all processes to be identified at
compile time. The logical language Meld[8] is an exception, in
that the logical assertions it produces could be used to produce
dynamically defined processes, but has not been designed to
support this and suffers from the same limitations as the viral
approaches.

Data aggregation in sensor networks is a highly restricted
version of the problem, where there is generally one destina-
tion and the question is when and how to merge independently
created datums moving toward that destination. Data flows
and decisions on when to aggregate are often dynamically
determined (see for example, greedy incremental trees[9] or
the structure-free approach in [10]), but there is generally little
dynamism in where the program gathers what kinds of data,
except via the intervention of a human user.

Finally, the distributed theory community has dealt with
related problems on general networks, particularly in the
case of IP networks, overlay networks, and relatively small
mobile networks. The relatively low diameter of such net-
works, however, has favored the development of consensus-
based algorithms such as RAMBO[11] and Virtual Mobile
Nodes[12], that avoid the problem by letting the network act
as though it were a single device.

II. PROCESSES ON A SPATIAL COMPUTER

In order to have a clear discussion of dynamic state on a
spatial computer, we first need a clear definition of spatially-
extended state. Using the amorphous medium abstraction of a
spatial computer, I define spatially-extended processes in terms
of the sets of communicating local program instances. Any
other spatially-extended state element may then be defined in
terms of such a process: for example, a data object may be
equivalently expressed as a process that holds a piece of state,
and operations on the object may be expressed as the response
of the process to a stream of “operate” messages.

A. Amorphous Medium Abstraction

My definition of spatially-extended processes uses the amor-
phous medium abstraction of a spatial computer[13]. This
continuous space abstraction is useful because many different
varieties of spatial computer can all be viewed as discrete
approximations of an amorphous medium.

An amorphous medium is a manifold M with an indepen-
dent computing device at every point m ∈ M in the manifold
(Figure 2(a)). For simplicity, we assume this manifold is
compact and Riemannian, though these conditions may be
stronger than necessary.

Each point m in the manifold is associated with a neighbor-
hood N(m) ⊆ M , which contains at least some ε−ball around
m. That is, given m we can choose some small number ε such
that every point within ε of m is in the neighborhood N(m).

neighborhood of p

p

(a) Amorphous Medium

T
im

e

P

Space

Neighborhood of P

Futu
re 

lig
ht 

co
ne

Past light cone

(b) Information Propagation

(c) Discrete Network

Fig. 2. An amorphous medium is a manifold where every point is a
computational device that shares state with a neighborhood of other nearby
devices. Information propagates through an amorphous medium at a fixed rate,
so each device has access only to values in the intersection of its neighborhood
and past light cone. An amorphous medium may be approximated by a mesh-
like discrete network.

For simplicity, let us also assume that every neighborhood
is also connected and compact, though again these conditions
may be stronger than necessary. Information flows through the
amorphous medium at a fixed velocity c, and each point m
has access to the most recent information that has propagated
to it from its neighbors.

The choice of c to indicate the speed of information
is a deliberate echo of relativistic notation. Adding a time
dimension, we may consider a space-time volume M × T ,
where T is a time interval. The space-time interval between
any two points (m, t) and (m′, t′) in this volume is defined
as s2 = c2(t − t′)2 − d(m,m′)2. When s2 < 0, the interval
is space-like, meaning that events at (m, t) cannot influence
events at (m′, t′). When the interval is light-like (s2 = 0) or
time-like (s2 > 0), then the earlier event can influence the later
event. The set of accessible neighbor values may thus also be
defined as those lying in the intersection of the neighborhood
N(m) and the past light cone of m at time t (Figure 2(b)).

A program p for an amorphous medium may thus be de-
fined, without reference to any particular amorphous medium
M , as a rule for evolving a value at a generic point m
with respect to the most recently arrived information from
its neighborhood N(m), beginning at an initial time t0. When
p is computed on M , the value p|M(m, t) of every point m
evolves as specified by p.

Another way to look at computation is to make the di-
mension of time explicit. A valid computation of p on M
for the time interval T is thus any assignment of state to the
space-time volume M×T that is consistent with the evolution
specified by p.

There are other, more complex formulations of the amor-



creation
co

m
pu

ta
ti

on
growth

termination

Space

T
im

e process

Fig. 3. Space-time anatomy of a process: a process (grey region) is initially
created at one or more locations (green minima and space-like bottom edge),
then may grow along time-like trajectories (red edges). Computation at a
device takes place along a vertical line (e.g. purple arrow) and at any point
can potentially be influenced by any values in the process with past time-like
separation. The process can terminate independently at any point (blue edge).

phous medium that consider moving devices, a changing
volume of space, or information that flows at a variable rate
bounded by minimum c− and maximum c+. We will not
consider these more complex cases in this discussion, but
expect that it is possible to extend the results herein.

While an amorphous medium cannot, of course, be con-
structed, any actual spatial computer can be viewed as a
discrete approximation of an amorphous medium for the space
that it fills (Figure 2(c)). If programs are formulated with
continuous units of measure, such as meters and seconds,
and an appropriate conversion is made between continuous
and discrete units, then a continuous-space program can be
executed approximately on the discrete network, and it is
possible to predict the quality of the discrete approximation
of the continuous program—see, for example [14] and [15].

B. Process Definition

On a single computing device, a process is an instance of a
program being executed. If we consider that device as a single
point m in an amorphous medium, then a program instance p
on m is a single-device process spanning the sub-space m×
[t0, tΩ], where the program instance is created on m at time
t0 and terminates at time tΩ.

The extent of a process P that spans many devices may then
be defined in terms of information flow: if a device m ∈ M
is running a program instance p at time t, then a program
instance p′ on its neighbor m′ ∈ N(m) is part of the same
process if and only if p can incorporate state from p′ at time
t− d(m,m′)/c into its computation.

Note that since we assume that m′ is a neighbor of m,
there is no physical obstacle to p and p′ being part of the same
process—it is only a question of which local program instances
are specified to share state and which program instances are
not. Note that the set of devices over which a process P
extends need not be connected at any given point in time—
it is enough that the program instances have the potential to

communicate at some time in the past or future.
What do we need to know in order to describe the behavior

of a process? Consider a collection of program instances across
space and time that form a process P . Figure 3 shows an
example process as a region of space-time. The points in this
region can be categorized into four classes:

• The process is created independently on individual de-
vices by other programs. Creation occurs at all minima
of the region and any portion where the minimum-time
edge is space-like.

• The process grows outward from devices where it was
created to their neighbors along light-like or time-like
trajectories.

• The process is terminated on devices independently,
forming the maximum-time edges of the region.

• In the interior, the process evolves with respect to a point
(m, t) and the state of neighboring program instances of
P in its past light cone.

A process P may thus be fully specified by five values:
conditions for creation, growth, and termination, a function
specifying evolution, and a test for whether two neighboring
program instances are part of the same process.

It is tempting to strengthen this definition slightly, such
that the set of program instances in a process P form an
equivalence class. In this case, given any chain of program
instances that share state, p0, p1, ..., pk, we may assume that
if p0 and pk are on neighboring devices, that they will
communicate. This stronger definition is also equivalent to
identifying a process by a unique identifier and determining
if program instances can communicate by comparing their
UIDs. As we will see, however, this strengthening of the
definition leads to problems when it is not known at the time of
creation whether information should be able to flow between
two program instances.

III. INDEPENDENT CREATION DILEMMA

The independent creation dilemma is a problem of identity
that tends to emerge whenever we have many devices acting
independently. Let us explain it by means of an illustrative
example.

Assume we have a sensor network emplaced to observe the
nesting grounds of a rare species of bird. Each time a flock of
birds takes off and begins to fly around the area, we want to
launch a distributed process that follows along with the flock
and tracks its motion (Figure 1).

When a number of birds take off and begin to flock, they
may be observed by many devices at once. This should result
in one tracking process, not a vast number of duplicates. On
the other hand, two different groups of birds might take off and
begin to flock in different places at approximately the same
time. This should result in two different tracking processes
that will not merge or interfere with one another with one
another (assuming communication, memory, and processing
resources are not scarce) if the flocks later cross paths but do
not combine into one larger flock.



The straightforward way to ensure that the local program
instances form the desired processes is to associate each
process with an equivalence class, such as a unique identifier
(UID). Every program instance in a process then holds a copy
of the unique identifier for the process. When a device sends a
message about a flock tracking process to a neighbor, including
the UID for that flock, the neighbor can compare UIDs with
the program instances already executing on it to determine
whether to route the incoming message to one of its current
program instances or to treat the message as part of a novel,
as yet unseen process.

On a single-processor system, UIDs are usually assigned
explicitly to processes in the form of a numeric identifier and
implicitly to objects as the address of the object in memory.
Conventional multi-processor systems operate essentially the
same way, as do most distributed systems, though the unique
identifiers (e.g. IP addresses, URIs, email addresses) often
have meaningful substructure. The rules for comparing them,
however, remain essentially the same.

On a spatial computer, however, we cannot assign UIDs
to processes appropriately unless we make process creation
very slow. At the time when a device observes a flock of
birds taking off and the flock extends to the edge of its sensor
range, it cannot know whether there are other devices far away
observing the same flock, because it cannot directly observe
the extent of the flock and there has not been enough time for
messages to carry that information to it from elsewhere.

As a result, the device cannot distinguish between the case
of one large flock and two disconnected flocks unless it waits
for at least long enough for information to propagate across the
diameter of the flock. While this may be a reasonable time to
wait on some networks, it is not on a spatial computer, because
the diameter of the spatial computer may be high due to the
number of devices involved and the locality of communication
and the flock may span an appreciable fraction of the diameter.

We are thus faced with a dilemma caused by the fact that
some devices must decide independently on the UID for a
flock process: either creating a process takes a potentially long
time, or the system must cope with processes having different
UIDs when they should have the same UIDs, or else cope
with processes having the same UID when they should have
different UIDs.

Let us generalize this with a definition of the safe creation
of a process identified by an equivalence class ∼. For such
a process to be safely created, every independent creation
of a program instance in the process must choose the same
equivalence class ∼ and no program instance of a different
process can choose the same equivalence class. If the first
condition is violated, then processes can be duplicated. If the
second condition is violated, then processes can interfere.

Given this definition, we can prove that it is in general im-
possible to both quickly and safely create a process identified
by an equivalence class:

Theorem 3.1: If the program instances of each process
P form an equivalence class ∼, no algorithm for creating
program instances exists that can guarantee safe creation of

a process in less than O(diameter/c) time.
Proof: Assume we have an algorithm that is guaranteed to

safely create a program instance in less than O(diameter/c)
time. Since it executes in less than O(diameter/c) time, then
for any amorphous medium M , it must be possible to choose
two points (m, t) and (m′, t′) in the space-time volume M ×
T such that executions of the algorithm beginning at these
points have space-like separation. Now consider the algorithm
executed at these two points in one of three conditions, either
both creating the program instances in process P , both creating
program instances in process P ′, or (m, t) creating an instance
of P and (m′, t′) creating an instance of P ′.

When the algorithm begins to run at a point, its choice of
equivalence class can only be influenced by points in M × T
that are causally related to the execution of the algorithm
and that causally relate to some point in the execution of
the algorithm. Because (m, t) and (m′, t′) have space-like
separation, the regions of space-time that influence the choice
of equivalence class cannot overlap. Thus it is not possible for
both (m, t) to distinguish between the all-P and the mixed
case and for (m′, t′) to distinguish between the all-P ′ case
and the mixed case. Thus, by symmetry, the algorithm must
fail in at least one of the three cases.

Thus we see that it is not possible to create processes
both safely and efficiently when the membership of program
instances in the same process is determined using fixed unique
identifiers or other equivalence-class based systems.

Note that even O(diameter/c) is a highly optimistic time
bound: on any spatial computer with non-trivial commu-
nication or device failures, choosing an equivalence class
becomes a consensus problem, subject to the wide variety
of impossibility results and poor time bounds for distributed
consensus algorithms.

IV. SPECIFYING DYNAMIC PROCESSES

Processes can avoid the independent creation dilemma by
avoiding or deferring commitment to a particular identifier.
There are many different ways in which this might be done,
and which of the many ways is appropriate depends on
the particulars of the program. Let us now illustrate how a
programmer may handle the independent creation dilemma
using two examples in our bird monitoring domain: tracking
a flock of birds and reporting the movements of flocks to a
base station.

These examples as expressed using an extension I propose
for Proto. Proto[1], [5] is a LISP-like functional language
for programming spatial computers based on the amorphous
medium. In Proto, the programmer specifies a computation
globally using four families of space-time operations. The
computation is then compiled to a local program suitable for
execution on an amorphous medium, and may be approxi-
mated discretely on the devices of spatial computer.

A. The procs Operator

The current version of Proto requires that the complete
structure of a program be determinable at compile-time. To



allow for dynamically defined processes, I propose a new
construct, procs, on which a new family of Proto operators
dealing with dynamic state can begin to be constructed:

(procs (elt sources)
((var init evolve) ...)

(same? run? &optional terminate?)
body-expr ...)

Each appearance of the procs construct in a Proto program
implies a family of processes. Every device in the spatial
computer stores a set of program instances, which it shares
with its neighbors.

The first expression declares the sources of new pro-
gram instances—a stream of sets of potential new program
instances— and a variable elt for accessing values within
any particular instance under consideration.

The second expression, a set of (var init evolve)
declarations, creates and maintains state for a program instance
(equivalent to a standard Proto letfed): state variable var
is initialized to the value of the init expression and evolves
forward in arbitrarily small steps of time dt according to
the expression evolve. Any state variable can appear in
evolve, where it receives its prior value. Other state can be
established within the body of the process, but these state
variables are lexically scoped to be usable in determining
which program instances run where, while state within the
body expression is not.

The same?, run?, and optional terminate? expres-
sions are used to manage the extent of processes. If
terminate? is not supplied, then it is assumed to be (not
run?). Within these expressions, the nbr operator pulls
values from all other program instances in the neighborhood,
including other instances at the same device. At each instant
of execution, a device updates its set of program instances as
follows:

1) A potential new program instance is created for each
element of sources, and its tentative state is set by
init values for the state variable vars. If the new
instance is not same? as any existing local program
instance, and if the run? expression returns true, it is
added to the set of local program instances.

2) Each program instance on a neighbor is compared with
the local set of program instances. If it is not same?
as any local instances, then a potential new program
instance is created. If the run? expression returns
true, it is added to the set of local program instances.
Otherwise, it is discarded.

3) For each local program instance, the terminate?
expression is evaluated. If it returns true, the program
instance is removed from the set of local program
instances.

4) Finally, the evolve and body expressions are evalu-
ated for each program instance in the updated local set
of program instances. The values produced by the body
evaluations are collected into a set, which is the value
produced by the whole procs expression.

Fig. 4. The extent of a process tracking a flock is defined to be the set of
birds moving in approximately the same direction.

(a) Self-crossing flock

di
am

et
er

(b) Coherent motion

diam
eter

(c) Equivalence class

Fig. 5. Defining a flock in terms of coherent bird motion means that the
extent of the tracking process matches closely with our intuitions about flocks
even in extreme circumstances, such as when the leading portion of the
flock crosses over the trailing portion of the flock (a). The coherent motion
definition leads to a process that overlaps itself (b), while an equivalence class
definition leads to the head and tail portions of the flock merging (c), giving
the tracking process a difference shape than the flock being tracked. The
difference between these two cases is highlighted by indicating the diameter
of the process with a red arrow.

B. Example: Tracking a Flock

A flock of birds is a coherent group of birds moving together
in approximately the same direction and velocity. We can use
this definition of a flock to define the extent of a process that
tracks flocks:

(def close-vec (base other err)
(< (len (- base other)) (* err (len base))))

(def track-flocks ()
(procs (bird-vec bird-vecs)

((flock-vec
bird-vec
(average (filter

(lambda (v) (close-vec flock-vec v 0.1))
bird-vecs))))

((close-vec flock-vec (nbr flock-vec) 0.1)
(find-if (lambda (v) (close-vec flock-vec v 0.1))

bird-vecs))
(measure-shape)))

where bird-vecs is a sensor field that returns the ve-
locities of nearby birds observed from this device and
measure-shape is some function for estimating the size
and shape of a flock.

Here, the extent of a flock process is defined in terms of
the average motion of birds in the flock. A device attempts
to launch a program instance for each of the birds it sees.
These combine together to form one program instance for each
collection of birds moving within 10% of the same vector,
which run as long as similarly moving birds are observed. A
tracking process for a flock thus extends over any collection
of birds where birds are locally moving in approximately the
same direction (Figure 4).



Fig. 6. When reporting tracking data from a flock to a base station, the flock
must be given an identifier so that its tracking data can be distinguished from
that of other flocks.

Defining a flock in terms of coherent bird motion means
that the extent of the tracking process matches closely with
our intuitions about flocks even in extreme circumstances.
For example, if the leading portion of a flock loops back
and crosses over its tail (Figure 5(a)), the definition from
coherent motion means that the head and tail cross over one
another without interacting, putting two program instances
from the same process at the intersection (Figure 5(b)). If
processes were defined using an equivalence class like a UID,
on the other hand, the head and tail would merge, giving the
tracking process a different shape than the flock being tracked
(Figure 5(c)). Likewise, if the flock splits in two or if two
separate flocks come together and merge, the tracking process
will do so as well.

C. Example: Reporting on a Flock

In the example of tracking a flock, the identity of the flock
process is entirely implicit and locally defined. If we wish to
report the tracking data gathered from a flock to some base
station, on the other hand, we need to give an identifier to a
whole flock so that devices that are far away from the flock
can distinguish between it and other far away flocks.

This does not invoke the independent creation dilemma,
however, since the identifier need not be available until re-
porting data from the flock is also available. Assuming we
have a self-stabilizing algorithm for generating a probably-
unique identifier (meaning that if the flock splits or merges,
the UID will eventually adjust appropriately), we can run this
algorithm in each flock process and produce a tuple of this
unique identifier and the tracking data for the flock.

Tracking data can then be relayed back to a base station by a
program that uses the unique identifier to distinguish between
streams of data:

(report-data-stream (data-set base)
(procs (data data-set)
((uid (1st data) uid)
(src true (find uid (map 1st data-set)) diameter))

((= uid (nbr uid))
(dilate src diameter))

(channelcast
src base 2
(2nd (find uid data-set :key 1st)))))

Here each flock becomes a region where src is true. The
process then spreads throughout the space to find a base
to report to, and relays the data to it via a spatial channel
2 meters wide. The dilate expression restricts the process
to run only so long as it is within diameter units of the

source: when a flock disappears, the estimated distance of
other locations to the source rises steadily and this expression
thus assures that the reporting process will be eliminated
within O(diameter/c) of the time when the flock disappears.
This function can thus be used to send non-interfering reports
of flocks back to a base station.

V. CONCLUSION

Dynamically defined processes on a spatial computer cannot
be safely and quickly created when their identity is determined
using fixed equivalence classes such as UIDs. Processes can
avoid this problem, however, by avoiding or deferring commit-
ment to a particular identifier. I have illustrated this an example
of tracking a flock of birds, and proposed an extension of
the Proto spatial computing language to support dynamically
defined processes. Future work includes integration of the
procs command with the Proto compiler and virtual machine.
Looking farther ahead, the procs command may serve as the
foundation for a family of new dynamic state operations in
Proto and, more generally, a new synthesis of techniques for
understanding and implementing dynamic processes on spatial
computers.

REFERENCES

[1] J. Beal and J. Bachrach, “Infrastructure for engineered emergence
in sensor/actuator networks,” IEEE Intelligent Systems, pp. 10–19,
March/April 2006.

[2] M. Mamei and F. Zambonelli, “Programming pervasive and mobile
computing applications: the TOTA approach,” ACM Transactions on
Software Engineering and Methodology, 2008.

[3] W. Butera, “Programming a paintable computer,” Ph.D. dissertation,
MIT, 2002.

[4] C. Borcea, D. Iyer, P. Kang, A. Saxena, and L. Iftode, “Spatial pro-
gramming using smart messages: Design and implementation,” in IEEE
International Conference on Distributed Computing Systems, 2004.

[5] J. Bachrach, J. Beal, and T. Fujiwara, “Continuous space-time semantics
allow adaptive program execution,” in IEEE SASO 2007, July 2007.

[6] D. Coore, “Botanical computing: A developmental approach to gen-
erating inter connect topologies on an amorphous computer,” Ph.D.
dissertation, MIT, 1999.

[7] R. Nagpal, “Programmable self-assembly: Constructing global shape
using biologically-inspired local interactions and origami mathematics,”
Ph.D. dissertation, MIT, 2001.

[8] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and
P. Pillai, “Meld: A declarative approach to programming ensembles,”
in IEEE International Conference on Intelligent Robots and Systems
(IROS ’07), 2007.

[9] C. Intanagonwiwat, D. Estrin, and R. Goviindan, “Impact of network
density on data aggregation in wireless sensor networks,” University of
Southern California, Tech. Rep. 01-750, November 2001.

[10] K.-W. Kai-Wei Fan, S. Liu, and P. Sinha, “Structure-free data aggre-
gation in sensor networks,” IEEE Transactions on Mobile Computing,
vol. 6, no. 8, pp. 929–942, August 2007.

[11] N. Lynch and A. Shvartsman., “RAMBO: A reconfigurable atomic
memory service for dynamic networks,” in DISC, 2002, pp. 173–190.

[12] S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. A. Shvartsman, and
J. L. Welch, “Virtual mobile nodes for mobile ad hoc networks,” in
DISC, 2004.

[13] J. Beal, “Programming an amorphous computational medium,” in Un-
conventional Programming Paradigms International Workshop, Septem-
ber 2004.

[14] J. Bachrach, J. Beal, J. Horowitz, and D. Qumsiyeh, “Empirical charac-
terization of discretization error in gradient-based algorithms,” in IEEE
International Conference on Self-Adaptive and Self-Organizing Systems
(SASO) 2008, October 2008.

[15] J. Beal, J. Bachrach, and M. Tobenkin, “Constraint and restoring force,”
MIT CSAIL, Tech. Rep. MIT-CSAIL-TR-2007-044, August 2007.


