Spatial Computing

Jacob Beal & Olivier Michel, Marco Mamei, Bill Butera

Spatial Computing Workshop @ IEEE SASO 2009

Previous Meetings

- Computing Media and Languages for Space-Oriented Computation (Dagstuhl, 2006)
- French Workshop on Amorphous Computing (Paris, 2007)
- From Amorphous to Spatial Computing Workshop (Paris, 2008)
- Spatial Computing Workshop (SASO, 2008)

Spatial Computers

Robot Swarms

Biological Computing

Sensor Networks

Modular Robotics

More formally...

- A spatial computer is a collection of computational devices distributed through a physical space in which:
 - the difficulty of moving information between any two devices is strongly dependent on the distance between them, and
 - the "functional goals" of the system are generally defined in terms of the system's spatial structure

More formally...

- A spatial computer is a collection of computational devices distributed through a physical space in which:
 - the difficulty of moving information between any two devices is strongly dependent on the distance between them, and
 - the "functional goals" of the system are generally defined in terms of the system's spatial structure

Notice the ambiguities in the definition

⁽w. Dan Yamins)

⁽w. Dan Yamins)

(w. Dan Yamins)

Space/Network Duality

How well does the network cover space?

What space is covered well by the network?

Tentative Mathematical Definition

- A spatial computer is any set of n devices s.t.
 - Graph {*V*,*E*} with edge weights $w(v_1, v_2)$
 - Manifold *M*, with distance function *d*
 - *M* is compact, Riemannian (may be stronger than needed)
 - Position function p: $V \rightarrow M$
 - $W(v_1, v_2) = O(1/d(p(v_1), p(v_2)))$

Examples: unit disc network, chemical diffusion

Questions for the Workshop

- What is special about computation over space?
- What techniques or metrics do we share?
- How can a spatial view help us move results and algorithms from one domain to another?
- How do we apply spatial insights?

Schedule

- Introduction & Opening Discussion
- "Spatial Computing as Intentional Data Parallelism" (Spicher et al.)

15 minute break

- Dynamically Def ned Processes for Spatial Computers (Beal)
- Spatial Coordination of Pervasive Systems through Chemical-inspired Tuple Spaces (Viroli et al.)
- Discussion: Theory & Unifying Frameworks

lunch (ends at 1:30pm)

• Molecular Self-assembly for Nanoscale Spatial Computation (Dwyer)

15 minute break

- A Biologically Inspired Spatial Computer that Learns to See and Act (Robertson & Laddaga)
- Discussion: Applications & Future Directions