Efficient multi-variate abstraction using an array representation for combinators

Antoni Diller
University of Birmingham, School of Computer Science, Birmingham, UK B15 2 TT

Received 15 February 2000; received in revised form 26 April 2002
Communicated by F.B. Schneider

Keywords: Bracket abstraction; Combinatory logic; Compilers; Functional programming

1. Introduction

Turner [9] showed how a pure functional programming language could be implemented using combinatory logic in a practicable way. This method is currently out of fashion, but for some time I have believed that its full potential is still to be realized. This belief was partially vindicated by Stevens [7] who developed a family of interesting algorithms which use a novel notation for combinators. The work reported here was inspired by that of Stevens, but is significantly different. (Additional information about the motivation behind the current research can be found elsewhere [2, pp. 2-5].)

2. Fixing terminology

There are several systems of combinatory logic. The one used here is weak combinatory logic. On the whole, standard terminology is used [4].

Assume given an infinite sequence of symbols called variables and two constants, K and S , called

[^0]basic combinators. The letters v, w, x, y and z, sometimes decorated with subscripts or superscripts, are used for variables. A term is defined thus:
(a) Every variable is a term;
(b) Every constant is a term;
(c) If P and Q are terms, then so is $(P Q)$.

The letters P, Q, R, S, T and X, sometimes decorated with subscripts or superscripts, are used for terms. An atom is a variable or a constant. A term of the form $(P Q)$ is an application, but the outermost pair of parentheses is usually omitted. Normally, no space is left between the terms of an application, but sometimes one will be inserted for clarity and readability. Application associates to the left, so $P Q R S T$ is the same as $(((P Q) R) S) T$. The symbol \equiv represents syntactic identity: $P \equiv Q$ means that P and Q are exactly the same term.

A subterm is defined thus: P is a subterm of $P ; P$ is a subterm of $Q R$ if P is a subterm of Q or P is a subterm of R. Every term P can be uniquely expressed in the form $P_{1} P_{2} \ldots P_{m}$, where P_{1} is an atom and $m \geqslant 1$. The P_{i} are know as the primal components of P. The non-standard notion of a subprimal component
is defined thus: P is a subprimal component of $P ; P$ is a subprimal component of Q if P is a subprimal component of one of the primal components of Q. For example, the subprimal components of $v w(x(y z))$ are: $v w(x(y z)), v, w, x(y z), x, y z, y$ and z.

Because combinatory logic contains no variablebinding operators every variable in a term is free: $F V(P)$ represents the set of free variables in P. The length of P, written \# P, is the number of occurrences of atoms in P. Substituting P for every occurrence of x in X, written $[P / x] X$, is defined thus:
(a) $[P / x] x \equiv x$;
(b) $[P / x] Y \equiv Y$, if Y is an atom distinct from x;
(c) $[P / x] Q R=([P / x] Q)([P / x] R)$.

A term of the form $K P Q$ or $S P Q R$ is a redex. Contracting an instance of a redex in a term S means replacing one occurrence of $K P Q$ by P or one occurrence of $S P Q R$ by $P R(Q R)$. Let the result be T. Then we say that S contracts to T, written $S \rightarrow_{1} T$, and that T is the contractum. S is said to reduce to T, written $S \rightarrow T$, iff T results from S by carrying out a finite (possibly zero) number of contractions. Combinators B, C and I can be defined in terms of K and S :
$B \wedge S(K S) K, \quad C \hat{=} S(B B S)(K K) \quad$ and $\quad I \wedge S K K$.
These contract thus:
$B P Q R \rightarrow P(Q R)$,
$C P Q R \rightarrow P R Q$ and $I P \rightarrow P$.
Uni-variate bracket abstraction is a syntactic operation which removes a variable x from a term X, written $[x] X$, satisfying the property that $([x] X) P \rightarrow$ $[P / x] X$. If $[x] X \equiv Q$, then X is the input term and Q the abstract. Usually, in combinatory logic, multivariate abstraction $\left[x_{1}, x_{2}, \ldots, x_{a}\right] X$ is defined to be the same as $\left[x_{1}\right]\left(\left[x_{2}\right]\left(\ldots\left(\left[x_{a-1}\right]\left(\left[x_{a}\right] X\right)\right) \ldots\right)\right)$. In this paper, however, it represents an operation that removes several variables simultaneously. Furthermore, all the variables in the bracket prefix $\left[x_{1}, x_{2}, \ldots, x_{a}\right]$ are assumed to be distinct.

Two non-standard notations for combinators are introduced here, namely as strings of the letters y and n , called yn-strings, and as arrays or matrices of the letters y and n , called yn-arrays. The letters γ and δ are used for arbitrary yn -arrays and β for a yn-string.
$\operatorname{size}(\beta)$ is the number of occurrences of y and n in β and β_{i}, for $1 \leqslant i \leqslant \operatorname{size}(\beta)$, is the i th letter in β. String concatenation is represented by juxtaposition. If γ is an $a \times m$ yn-array, then $\gamma_{i, j}$, for $1 \leqslant i \leqslant a$ and $1 \leqslant j \leqslant m$, is the j th letter in row i. Note that if β is a yn-string, it is assumed that $\# \beta=1$. Similarly, if γ is an yn-array, it is assumed that $\# \gamma=1$, but this assumption is discussed in the conclusion.

Let β be a yn-string. Then a β-redex is any term of the form $\beta P_{1} P_{2} \ldots P_{m+1}$, where $m=\operatorname{size}(\beta)$. Contracting an instance of a β-redex in a term S means replacing one occurrence of $\beta P_{1} P_{2} \ldots P_{m+1}$ by $Q_{1} Q_{2} \ldots Q_{m}$, where, for $1 \leqslant i \leqslant m$,
$Q_{i} \equiv \begin{cases}P_{i} P_{m+1}, & \text { if } \beta_{i}=\mathrm{y} ; \\ P_{i}, & \text { if } \beta_{i}=\mathrm{n} .\end{cases}$
Let $[\vec{x}]=\left[x_{1}, x_{2}, \ldots, x_{a}\right]$. Then $\operatorname{rpv}([\vec{x}], P)$ is the number of distinct non-atomic subprimal components of P, other than P itself, which contain at least one of the variables $x_{1}, x_{2}, \ldots, x_{a}$. There is an alternative characterization of $r p v$. Let P be represented using the fewest possible parentheses. Then $\operatorname{rpv}([\vec{x}], P)$ is half the number of parentheses that enclose subterms containing at least one of the variables $x_{1}, x_{2}, \ldots, x_{a}$. Thus,
$\operatorname{rpv}([x, y, z], x(y z)(w v) z)=1 \quad$ and
$\operatorname{rpv}([x, y], x(y(w v))(w(x v)))=3$.
Let $P \equiv P_{1} P_{2} \ldots P_{m}$, where P_{1} is an atom. Then
$\operatorname{rpv}([\vec{x}], P)=\sum_{j=1}^{m} \mathbf{i f}(\forall i \in 1 . . a) x_{i} \notin F V\left(P_{j}\right)$ or

$$
\begin{aligned}
& (\exists i \in 1 . . a) x_{i} \equiv P_{j} \\
& \text { then } 0 \text { else } 1+\operatorname{rpv}\left([\vec{x}], P_{j}\right),
\end{aligned}
$$

where $(\forall i \in 1 . . a)$ means 'for all i such that $1 \leqslant i \leqslant a$ ' and $(\exists i \in 1 . . a)$ means 'for some i such that $1 \leqslant i \leqslant$ a^{\prime}. Putting a conditional inside a summation may be unusual, but its meaning is straightforward. Let $\Gamma(j)$ be a Boolean-valued function and let $f(j)$ and $g(j)$ be integer-valued ones. Then

$$
\begin{aligned}
\sum_{j=1}^{m} & \text { if } \Gamma(j) \text { then } f(j) \text { else } g(j) \\
= & (\text { if } \Gamma(1) \text { then } f(1) \text { else } g(1)) \\
& +(\text { if } \Gamma(2) \text { then } f(2) \text { else } g(2))+\cdots \\
& +(\text { if } \Gamma(m) \text { then } f(m) \text { else } g(m)) .
\end{aligned}
$$

3. Contraction

In order to explain how yn-arrays are contracted two functions have to be defined on yn-strings: $y c(\beta)$ is the number of occurrences of the letter y in β and $\operatorname{posy}(i, \beta)$ is the position of the i th occurrence of y in β, where $1 \leqslant i \leqslant y c(\beta)$; if $i>y c(\beta)$, then $\operatorname{posy}(i, \beta)$ is not defined. For example, $y c($ ynnynyy $)=$ $4, \operatorname{posy}(1, y n n y n y y)=1$ and $\operatorname{posy}(2$, ynnynyy $)=4$. Let γ be an $a \times m$ yn-array. Then it contracts thus:
$\gamma P_{1} P_{2} \ldots P_{m} P_{m+1} \ldots P_{m+a} \rightarrow_{1} Q_{1} Q_{2} \ldots Q_{m}$,
where, for $1 \leqslant j \leqslant m, Q_{j} \equiv P_{j} P_{g_{j}(1)} P_{g_{j}(2)} \ldots$ $P_{g_{j}\left(s_{j}\right)}$, where $s_{j}=y c\left(\gamma_{1, j} \gamma_{2, j} \cdots \gamma_{a, j}\right)$ and, for $1 \leqslant$ $k \leqslant s_{j}, g_{j}(k)=m+\operatorname{posy}\left(k, \gamma_{1, j} \gamma_{2, j} \cdots \gamma_{a, j}\right)$. For example,

$$
\begin{aligned}
& \left|\begin{array}{lccc}
\mathrm{n} & \mathrm{n} & \mathrm{y} & \mathrm{n} \\
\mathrm{y} & \mathrm{n} & \mathrm{y} & \mathrm{n} \\
\mathrm{n} & \mathrm{n} & \mathrm{y} & \mathrm{y}
\end{array}\right| P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} \\
& \quad \rightarrow{ }_{1} P_{1} P_{6} P_{2}\left(P_{3} P_{5} P_{6} P_{7}\right)\left(P_{4} P_{7}\right)
\end{aligned}
$$

An $a \times m$ yn-array γ has to be followed by at least $a+m$ terms in order for a contraction to be possible. Informally, the first m terms following γ can be thought of as functions and the next a can be seen as their possible arguments. The yn-array tells us which of these are going to be passed to the functions to become their actual arguments. Thus, the j th column tells us which of $P_{m+1}, P_{m+2}, \ldots, P_{m+a}$ follow P_{j} in the contractum of the yn-array: P_{m+i} only occurs if $\gamma_{i, j}$ is y. For example, the 4th column of the yn-array used in the example is nny. This tells us which of the terms P_{5}, P_{6} and P_{7} follow P_{4} in the contractum. As only the last letter of nny is y , only P_{7} does. This means that $\left(P_{4} P_{7}\right)$ occurs in the contractum.

4. Translation

Many people, on first encountering yn-strings, think that they are similar to director strings [6]. Director strings, however, are not combinators. They are elements of a new formal system called 'the director string calculus' whose properties have to be established from scratch. yn-strings and yn-arrays, by contrast, are just alternative notations for combinators, just as Roman and Arabic numerals are alternative representations for numbers. This can be established
by translating them into the usual notation for combinators. This is achieved by the function Trans which employs trans which translates yn-strings into standard combinators. The function trans uses the series of combinators B_{i}, for $i \geqslant 1$, defined thus:
$\mathrm{B}_{i} \triangleq \begin{cases}\mathrm{~B}, & \text { if } i=1, \\ \mathrm{BB}_{i-1} \mathrm{~B}, & \text { if } i>1 .\end{cases}$
Note that each B_{i}, for $i \geqslant 1$, has the same effect as the B^{i} defined in [1, pp. 163-164]. The function trans is defined thus:

$$
\begin{aligned}
& \operatorname{trans}(\mathrm{y}) \triangleq \mathrm{BI} \\
& \operatorname{trans}(\mathrm{n}) \triangleq \mathrm{K} \\
& \begin{aligned}
\operatorname{trans}(\beta \mathrm{y}) & \wedge \\
\operatorname{trans}(\beta \mathrm{n}) & \triangleq \mathrm{B}_{i} \mathrm{~S} \operatorname{trans}(\beta), \quad \text { if } \operatorname{size}(\beta) \geqslant 1 \\
\mathrm{C} & \operatorname{trans}(\beta), \quad \text { if } \operatorname{size}(\beta) \geqslant 1
\end{aligned} \\
& \text { where } i=\operatorname{size}(\beta) . \text { For example, } \\
& \qquad \begin{aligned}
\operatorname{trans}(\mathrm{nny}) & =\mathrm{B}_{2} \mathrm{~S} \operatorname{trans}(\mathrm{nn}) \\
& =\mathrm{B}_{2} \mathrm{~S}\left(\mathrm{~B}_{1} \mathrm{C} \operatorname{trans}(\mathrm{n})\right) \\
& =\mathrm{B}_{2} \mathrm{~S}\left(\mathrm{~B}_{1} \mathrm{CK}\right)
\end{aligned}
\end{aligned}
$$

The function trans is correct if trans $(\beta) P_{1} P_{2} \ldots P_{m}$ $P_{m+1} \rightarrow Q$, where $m=\operatorname{size}(\beta)$ and Q is the result of contracting $\beta P_{1} P_{2} \ldots P_{m} P_{m+1}$. That trans is correct is proved elsewhere [2, pp. 9-10].

The function Trans is defined thus:

$$
\begin{aligned}
\operatorname{Trans}(\gamma) \triangleq & \overbrace{\operatorname{trans}(\underbrace{\mathrm{nn} \ldots \mathrm{n}}_{a-1 \text { times }} \gamma_{1,1} \gamma_{1,2} \ldots \gamma_{1, m})}^{t_{a}} \\
& \overbrace{\operatorname{trans}(\underbrace{\left.\mathrm{nn} \ldots \mathrm{n} \gamma_{2,1} \gamma_{2,2} \ldots \gamma_{2, m}\right)}_{a-2 \text { times }}}^{t_{a-1}} \cdots \\
& \overbrace{\operatorname{trans}\left(\mathrm{n} \gamma_{a-1,1} \gamma_{a-1,2} \ldots \gamma_{a-1, m}\right)}^{t_{2}} \\
& \overbrace{\operatorname{trans}\left(\gamma_{a, 1} \gamma_{a, 2} \ldots \gamma_{a, m}\right)}^{t_{1}}
\end{aligned}
$$

Trans produces quite complicated terms as the following example shows:

$$
\begin{aligned}
\operatorname{Trans} S & \left|\begin{array}{lll}
\mathrm{y} & \mathrm{n} & \mathrm{y} \\
\mathrm{n} & \mathrm{y} & \mathrm{y} \\
\mathrm{n} & \mathrm{n} & \mathrm{y}
\end{array}\right| \\
= & \operatorname{trans}(\mathrm{nnyny}) \operatorname{trans}(\mathrm{nnyy}) \operatorname{trans}(\mathrm{nny}) \\
= & \mathrm{B}_{4} \mathrm{~S}\left(\mathrm{~B}_{3} \mathrm{C}\left(\mathrm{~B}_{2} \mathrm{~S}\left(\mathrm{~B}_{1} \mathrm{CK}\right)\right)\right) \\
& \left(\mathrm{B}_{3} \mathrm{~S}\left(\mathrm{~B}_{2} \mathrm{~S}\left(\mathrm{~B}_{1} \mathrm{CK}\right)\right)\right)\left(\mathrm{B}_{2} \mathrm{~S}\left(\mathrm{~B}_{1} \mathrm{CK}\right)\right)
\end{aligned}
$$

Proposition 1. The function Trans is correct in the sense that if
$\gamma P_{1} P_{2} \ldots P_{m} P_{m+1} \ldots P_{m+a} \rightarrow Q_{1} Q_{2} \ldots Q_{m}$,
where γ is a yn-array and the Q_{j}, for $1 \leqslant j \leqslant m$, are as specified by the way γ contracts, then

$$
\begin{aligned}
& \operatorname{Trans}(\gamma) P_{1} P_{2} \ldots P_{m} P_{m+1} \ldots P_{m+a} \\
& \quad \rightarrow Q_{1} Q_{2} \ldots Q_{m} .
\end{aligned}
$$

Proof. Let t_{i}, for $1 \leqslant i \leqslant a$, be as shown above and let $P_{i}^{1} \equiv P_{i}$, for $1 \leqslant i \leqslant m$. Then

$$
\begin{aligned}
& t_{a} \ldots t_{1} P_{1}^{1} P_{2}^{1} \ldots P_{m}^{1} P_{m+1} \ldots P_{m+a} \\
& \quad \rightarrow t_{a-1} \ldots t_{1} P_{1}^{2} P_{2}^{2} \ldots P_{m}^{2} P_{m+2} \ldots P_{m+a}
\end{aligned}
$$

where $P_{j}^{2} \equiv P_{j}^{1} P_{m+1}$, if $\gamma_{1, j}=\mathrm{y}$, and $P_{j}^{2} \equiv P_{j}^{1}$, if $\gamma_{1, j}=\mathrm{n}$, because t_{a} is a yn-string which contracts in this way,

$$
\rightarrow t_{a-2} \ldots t_{1} P_{1}^{3} P_{2}^{3} \ldots P_{m}^{3} P_{m+3} \ldots P_{m+a}
$$

where $P_{j}^{3}=P_{j}^{2} P_{m+2}$, if $\gamma_{2, j}=\mathrm{y}$, and $P_{j}^{3} \equiv P_{j}^{2}$, if $\gamma_{2, j}=\mathrm{n}$, because t_{a-1} is a yn-string,

$$
\begin{aligned}
& \rightarrow \cdots \\
& \rightarrow P_{1}^{a+1} P_{2}^{a+1} \ldots P_{m}^{a+1},
\end{aligned}
$$

where $P_{j}^{a+1} \equiv P_{j}^{a} P_{m+a}$, if $\gamma_{a, j}=\mathrm{y}$, and $P_{j}^{a+1} \equiv P_{j}^{a}$, if $\gamma_{a, j}=\mathrm{n}$, because t_{1} is a yn-string. Thus,
$P_{j}^{a+1} \equiv P_{j}^{1} P_{h_{j}(1)} P_{h_{j}(2)} \ldots P_{h_{j}\left(r_{j}\right)}$,
where $P_{h_{j}(1)}$ is the $h_{j}(1)$ th term in the list P_{m+1}, P_{m+2}, \ldots, P_{m+a}, where $h_{j}(1)$ is the position of the first occurrence of the letter y in $\gamma_{1, j} \gamma_{2, j} \ldots \gamma_{a, j}$, and $P_{h_{j}(2)}$ is the $h_{j}(2)$ th term in the same list, where $h_{j}(2)$ is the position of the second occurrence of the letter y in $\gamma_{1, j} \gamma_{2, j} \ldots \gamma_{a, j}$ and so on. $h_{j}\left(r_{j}\right)$ is the position of the final occurrence of y in $\gamma_{1, j} \gamma_{2, j} \ldots \gamma_{a, j}$. Thus, r_{j} is the total number of occurrences of y in $\gamma_{1, j} \gamma_{2, j} \ldots \gamma_{a, j}$. Thus, $r_{j}=y c\left(\gamma_{1, j} \gamma_{2, j} \ldots \gamma_{a, j}\right)$ and, for $1 \leqslant k \leqslant r_{j}, h_{j}(k)=g_{j}(k)$, where $g_{j}(k)$ is the function defined in the context of explaining how yn-arrays contract, namely $g_{j}(k)=a+$ $\operatorname{posy}\left(k, \gamma_{1, j} \gamma_{2, j} \ldots \gamma_{a, j}\right)$.

5. Abstraction

In order to present an abstraction algorithm that produces abstracts containing yn-arrays two functions have to be defined: $\operatorname{tv}([\vec{x}], P)$ returns the total number of variables in the list \vec{x} occurring in P and inx $(i,[\vec{x}], P)$ returns the index of the i th variable in the list \vec{x} occurring in P. For example, $\operatorname{tv}\left(\left[x_{1}, x_{2}, x_{3}\right], x_{1} x_{3}\right)=2$ and $\operatorname{inx}\left(1,\left[x_{1}, x_{2}, x_{3}\right]\right.$, $\left.x_{2} x_{3}\left(x_{1} x_{2}\right)\right)=2$. Algorithm (M) is shown in Fig. 1 . Note that a different algorithm would result if it was not a requirement for P_{1} to be an atom. The element $\gamma_{i, j}$ of the yn-array γ tells us whether or not x_{i} occurs in P_{j}. A letter y says that it does and n that it does not. An example of (M) should clarify its operation:

$$
\begin{aligned}
& {\left[x_{1}, x_{2}, x_{3}\right] x_{1}\left(x_{2} x_{1}\right)\left(x_{3} x_{1}\right) x_{2}} \\
& =\left|\begin{array}{llll}
\mathrm{y} & \mathrm{y} & \mathrm{y} & \mathrm{n} \\
\mathrm{n} & \mathrm{y} & \mathrm{n} & \mathrm{y} \\
\mathrm{n} & \mathrm{n} & \mathrm{y} & \mathrm{n}
\end{array}\right| \text { I }\left(\left[x_{1}, x_{2}\right] x_{2} x_{1}\right)\left(\left[x_{1}, x_{3}\right] x_{3} x_{1}\right) । \\
& =\left|\begin{array}{llll}
y & y & y & n \\
n & y & n & y \\
n & n & y & n
\end{array}\right| \prime\left(\left|\begin{array}{ll}
n & y \\
y & n
\end{array}\right| ı\right)\left(\left|\begin{array}{ll}
n & y \\
y & n
\end{array}\right| ॥\right) \text {. }
\end{aligned}
$$

The top row yyyn of the 3×4 yn-array shows the pattern of occurrences of the variable x_{1} in the primal components of the input term. Similarly, the second row nyny shows the pattern of occurrences of the variable x_{2} in the primal components of the input term and the third row does the same for the variable x_{3}.

Algorithm (M) has the property that $([\vec{x}] P) \vec{x} \rightarrow P$. This is Proposition 2 and the proof is by induction on $\phi(a, r p v([\vec{x}], P))$, where $\phi: \mathbb{N}_{1} \times \mathbb{N} \rightarrow \mathbb{N}_{1}$ is a total bijection. $(\mathbb{N}$ is the set of all non-negative whole numbers and \mathbb{N}_{1} is the set of all positive whole numbers.) The function ϕ is defined thus:
$\phi(x, y) \wedge \begin{cases}x^{2}, & x=y+1 ; \\ (x-1)^{2}+y+1, & x>y+1 ; \\ y^{2}+y+x, & x<y+1 .\end{cases}$
Proposition 2. $([\vec{x}] P) \vec{x} \rightarrow P$.
Proof. Let $[\vec{x}]=\left[x_{1}, x_{2}, \ldots, x_{a}\right]$ and $P \equiv P_{1} P_{2} \ldots P_{m}$, where P_{1} is an atom. The proof is by induction on $\phi(a, r p v([\vec{x}], P))$.

In the base case $\phi(a, \operatorname{rpv}([\vec{x}], P))=1$. Thus, $a=$ 1 and $\operatorname{rpv}([\vec{x}], P)=0$. We have that $\left(\left[x_{1}\right] P\right) x_{1} \equiv$ $\gamma Q_{1} Q_{2} \ldots Q_{m} x_{1}$, where γ and the Q_{j}, for $1 \leqslant j \leqslant$

In this algorithm P_{1} must be an atom.
$\left[x_{1}, x_{2}, \ldots, x_{a}\right] P_{1} P_{2} \ldots P_{m} \equiv \gamma Q_{1} Q_{2} \ldots Q_{m}$,
where γ is a yn-array and, for $1 \leqslant i \leqslant a$ and $1 \leqslant j \leqslant m$,
$\gamma_{i, j}= \begin{cases}\mathrm{y}, & \text { if } x_{i} \in F V\left(P_{j}\right), \\ \mathrm{n}, & \text { otherwise; }\end{cases}$
and, for $1 \leqslant j \leqslant m$,
$Q_{j} \equiv \begin{cases}\mathrm{I}, & \text { if } P_{j} \equiv x_{i}, \text { for some } i \text { such that } 1 \leqslant i \leqslant a, \\ P_{j}, & \text { if } x_{i} \notin F V\left(P_{j}\right), \text { for any } i \text { such that } 1 \leqslant i \leqslant a, \\ {\left[x_{f_{j}(1)}, x_{f_{j}(2)}, \ldots, x_{f_{j}\left(q_{j}\right)}\right] P_{j},} & \text { otherwise; }\end{cases}$
where $q_{j}=t v\left(\left[x_{1}, \ldots, x_{a}\right], P_{j}\right)$ and, for $1 \leqslant k \leqslant q_{j}, f_{j}(k)=\operatorname{inx}\left(k,\left[x_{1}, \ldots, x_{a}\right], P_{j}\right)$.
Fig. 1. Algorithm (M).
m, are as specified by (M). As $\operatorname{rpv}([\vec{x}], P)=0$, either $P_{j} \equiv x_{1}$ or $x_{1} \notin F V\left(P_{j}\right)$, for $1 \leqslant j \leqslant m$. If $P_{j} \equiv x_{1}$, then $\gamma_{1, j}=\mathrm{y}$ and $Q_{j} \equiv \mathrm{I}$. If $x_{1} \notin F V\left(P_{j}\right)$, then $\gamma_{1, j}=\mathrm{n}$ and $Q_{j} \equiv P_{j}$. Thus, $\gamma Q_{1} Q_{2} \ldots Q_{m}$ $x_{1} \rightarrow R_{1} R_{2} \ldots R_{m}$, as specified by the way yn-arrays contract. If $\gamma_{1, j}=\mathrm{y}$, then $R_{j} \equiv Q_{j} x_{1} \equiv \mathrm{I} x_{1} \rightarrow x_{1}$. If $\gamma_{1, j}=\mathrm{n}$, then $R_{j} \equiv Q_{j} \equiv P_{j}$. So, $R_{1} R_{2} \ldots R_{m} \rightarrow$ $P_{1} P_{2} \ldots P_{m} \equiv P$. This establishes the base case.

In the inductive step $\phi(a, \operatorname{rpv}([\vec{x}], P))>1$. So,

$$
\begin{aligned}
& \left(\left[x_{1}, x_{2}, \ldots, x_{a}\right] P\right) x_{1} x_{2} \ldots x_{a} \\
& \quad \equiv \gamma Q_{1} Q_{2} \ldots Q_{m} x_{1} x_{2} \ldots x_{a}
\end{aligned}
$$

where γ and the Q_{j}, for $1 \leqslant j \leqslant m$, are as specified by (M),

$$
\rightarrow R_{1} R_{2} \ldots R_{m},
$$

where the R_{j}, for $1 \leqslant j \leqslant m$, are determined by the way yn-arrays contract. First, consider the case when $(\forall i \in 1 . . a)(\forall j \in 1 . . m) x_{i} \notin F V\left(P_{j}\right)$. Then, $\gamma_{i, j}=\mathrm{n}$, $Q_{j} \equiv P_{j}$ and $R_{j} \equiv Q_{j}$. Thus, $R_{j} \equiv P_{j}$. Next, consider the case when $(\exists i \in 1 . . a)(\exists j \in 1 . . m) x_{i} \in$ $F V\left(P_{j}\right)$. Then, $\gamma_{i, j}=\mathrm{y}$ and either P_{j} is a variable or a term. If $P_{j} \equiv x_{i}$, for some i, then $Q_{j} \equiv \mathrm{I}$. If P_{j} is a term, then $Q_{j} \equiv\left[x_{f_{j}(1)}, \ldots, x_{f_{j}\left(q_{j}\right)}\right] P_{j}$. When $\gamma_{i, j}=$ y , then $R_{j} \equiv Q_{j} x_{g_{j}(1)}, \ldots, x_{g_{j}\left(s_{j}\right)}$, where $f_{j}(k)=$ $\operatorname{inx}\left(k, \vec{x}, P_{j}\right)$ and $g_{j}(k)=\operatorname{posy}\left(k, \gamma_{1, j} \gamma_{2, j} \ldots \gamma_{a, j}\right)$. Thus, $f_{j}(k)=g_{j}(k)$, for all k. Also, $f_{j}\left(q_{j}\right) \leqslant a$, for all j, and $r p v\left(\left[x_{f_{j}(1)}, \ldots, x_{f_{j}\left(q_{j}\right)}\right], P_{j}\right)<r p v([\vec{x}], P)$. Thus,

$$
\begin{aligned}
& \phi\left(f_{j}\left(q_{j}\right), \operatorname{rpv}\left(\left[x_{f_{j}(1)}, \ldots, x_{f_{j}\left(q_{j}\right)}\right], P_{j}\right)\right) \\
& \quad<\phi(a, r p v([\vec{x}], P)) .
\end{aligned}
$$

Therefore, $R_{j} \rightarrow P_{j}$, by the inductive hypothesis. The result follows by induction.

The proof of Proposition 4 makes use of a lemma. Informally, this states that the length of an abstract produced by (M) is not affected by adding extra variables to the bracket prefix which do not occur in the input term.

Lemma 3. Let $[\vec{x}]=\left[x_{1}, x_{2}, \ldots, x_{a}\right]$ and $[\vec{y}]=\left[y_{1}\right.$, $\left.y_{2}, \ldots, y_{b}\right]$. Then if $b \leqslant a$ and $(\forall k \in 1 . . b)(\exists i \in$ $1 . . a)\left(x_{i} \equiv y_{k}\right)$ and $(\forall k, l \in 1 . . b)(\forall i, j \in 1 . . a)\left(\right.$ if $x_{i} \equiv$ y_{k} and $x_{j} \equiv y_{l}$ and $i<j$, then $\left.k<l\right)$ and $(\forall i \in$ 1..a) (if $x_{i} \in F V(P)$, then $(\exists k \in 1 . . b)\left(x_{i} \equiv y_{k}\right)$), then $\#([\vec{x}] P)=\#([\vec{y}] P)$.

Proof. Let $P \equiv P_{1} P_{2} \ldots P_{m}$, where P_{i} is an atom. Then $[\vec{x}] P \equiv \gamma Q_{1} Q_{2} \ldots Q_{m}$, where γ and the Q_{j}, for $1 \leqslant j \leqslant m$, are as specified by (M) and $[\vec{y}] P \equiv$ $\delta R_{1} R_{2} \ldots R_{m}$, where δ and the R_{j}, for $1 \leqslant j \leqslant m$, are also as specified by (M).

To establish that $(\forall j \in 1 . . m) Q_{j} \equiv R_{j}$ we consider two cases. (1) If P_{j} contains none of the abstraction variables, then $Q_{j} \equiv P_{j}$ and $R_{j} \equiv P_{j}$, both by (M). (2) When (M) is applied recursively only those variables that actually occur in the primal component P_{j} are included in the bracket prefix that is passed to the recursive call of the algorithm. Thus, again, $Q_{j} \equiv R_{j}$.

The only difference between the abstracts is that γ is an $a \times m$ yn-array, whereas δ is an $b \times m$ yn-array. If $b<a$, then γ has $a-b$ extra rows each of which consists entirely of occurrences of n . These correspond to the extra variables in the bracket prefix $[\vec{x}]$ which,
ex hypothesi, do not occur in P. As $\# \gamma=\# \delta$, we have that $\#([\vec{x}] P)=\#([\vec{y}] P)$.

Proposition 4. $\#([\vec{x}] P)=1+\# P+r p v([\vec{x}], P)$.
Proof. Let $[\vec{x}]=\left[x_{1}, x_{2}, \ldots, x_{a}\right]$ and $P \equiv P_{1} P_{2} \ldots P_{m}$, where P_{i} is an atom. The proof is by induction on $r p v([\vec{x}], P)$.

In the base case $\operatorname{rpv}([\vec{x}], P)=0$. Thus, for $1 \leqslant$ $j \leqslant m$, either $P_{j} \equiv x_{i}$, for some i such that $1 \leqslant i \leqslant$ a, or $x_{i} \notin F V\left(P_{j}\right)$, for any i such that $1 \leqslant i \leqslant a$. Also, $[\vec{x}] P \equiv \gamma Q_{1} Q_{2} \ldots Q_{m}$, where γ and the Q_{j}, for $1 \leqslant j \leqslant m$, are as specified by (M). If $P_{j} \equiv x_{i}$, then $Q_{j} \equiv \mathrm{I}$. If $x_{i} \notin F V\left(P_{j}\right)$, then $Q_{j} \equiv P_{j}$. Thus,
$\#([\vec{x}] P)=1+\sum_{j=1}^{m} \# P_{j}=1+\# P+\operatorname{rpv}([\vec{x}], P)$.
This establishes the base case.
In the inductive step, we have that $[\vec{x}] P \equiv \gamma Q_{1} Q_{2}$ $\ldots Q_{m}$, where γ and the Q_{j}, for $1 \leqslant j \leqslant m$, are as specified by (M). For $1 \leqslant j \leqslant m$, if $P_{j} \equiv x_{i}$, for some i such that $1 \leqslant i \leqslant a$, or $x_{i} \notin F V\left(P_{j}\right)$, for any i such that $1 \leqslant i \leqslant a$, then $\# Q_{j} \equiv \# P_{j}$. Thus,

$$
\begin{aligned}
& \#([\vec{x}] P) \\
& =1+\sum_{j=1}^{m} \mathbf{i f}(\exists i \in 1 . . a) x_{i} \in F V\left(P_{j}\right) \quad \text { and } \\
& (\forall i \in 1 . . a) x_{i} \neq P_{j} \\
& \text { then \#([x } \left.\left.x_{f_{j}(1)}, x_{f_{j}(2)}, \ldots, x_{f_{j}\left(q_{j}\right)}\right] P_{j}\right) \\
& \quad \text { else \# } P_{j} \\
& =1+\sum_{j=1}^{m} \text { if }(\exists i \in 1 . . a) x_{i} \in F V\left(P_{j}\right) \quad \text { and } \\
& (\forall i \in 1 . . a) x_{i} \neq P_{j} \\
& \text { then } \#\left([\vec{x}] P_{j}\right) \text { else } \# P_{j},
\end{aligned}
$$

by Lemma 3,

$$
\begin{aligned}
=1+\sum_{j=1}^{m} & \text { if }(\exists i \in 1 . . a) x_{i} \in F V\left(P_{j}\right) \quad \text { and } \\
& (\forall i \in 1 . . a) x_{i} \neq P_{j} \\
& \text { then } 1+\# P_{j}+r p v\left([\vec{x}], P_{j}\right) \text { else } \# P_{j}
\end{aligned}
$$

by the inductive hypothesis,

$$
\begin{aligned}
& =1+\sum_{j=1}^{m} \# P_{j}+\sum_{j=1}^{m} \mathbf{i f}(\exists i \in 1 . . a) x_{i} \in F V\left(P_{j}\right) \\
& \text { and }(\forall i \in 1 . . a) x_{i} \neq P_{j} \\
& \text { then } 1+\operatorname{rpv}\left([\vec{x}], P_{j}\right) \text { else } 0 \\
& =1+\# P+\operatorname{rpv}([\vec{x}], P) \text {, }
\end{aligned}
$$

by the property of $r p v$ mentioned above. This establishes the inductive step. The result follows by induction.

6. Conclusion

The most popular way of judging the efficiency of an abstraction algorithm is by considering the length of the abstract produced. It has been correctly argued, in my opinion, that by itself this is a very crude measure of efficiency [8, pp. 148-159]. It is, therefore, only one of the factors that we need to take into account when comparing algorithms. If (M) is applied to P, the length of the abstract produced is $1+\# P+\operatorname{rpv}([\vec{x}], P)$. This assumes that the length of a yn-array is 1 . This is reasonable if a and m are small, as they usually are when the algorithm is used to implement a functional language, but the larger a and m become the more problematic this assumption becomes. The number of yn-arrays in an abstract is $1+\operatorname{rpv}([\vec{x}], P)$ and the largest of these is an $a \times m$ bit array. The maximum value that $\operatorname{rpv}([\vec{x}], P)$ can take, if $\# P \geqslant 2$, is $\# P-2$. Thus, the space required to store these arrays is not greater than $(\# P-1)(a \times$ m) bits. Joy, Rayward-Smith and Burton [5, Table 1, p. 216] present the lengths of abstracts produced by various algorithms and (M) is comparable to the best of them. The way in which (M) operates is, however, considerably simpler than its rivals.

It should be noted that $1+\operatorname{rpv}([\vec{x}], P)$ is also the number of times that (M) is called. This is relevant when considering the length of time needed to produce the abstract. Similar information for other algorithms is not readily available, but my experience with some of the best known suggests that they are called many more times than this when applied to the same input terms. This is an area where more research needs to be done. It would also be useful to know how (M) performs in practice and how it compares empirically
with other abstraction methods and with other ways of implementing a functional language.

Even if it turns out that yn-arrays are not a practicable way of implementing a functional language, they do have a certain theoretical interest and many fascinating and unusual properties, as I am beginning to discover [3].

References

[1] H.B. Curry, R. Feys, in: Combinatory Logic, Vol. 1, NorthHolland, Amsterdam, 1958.
[2] A. Diller, Making abstraction behave by representing combinators, Research Report CSR-99-12, School of Computer Science, University of Birmingham, 1999.
[3] A. Diller, Investigations into iconic representations of combinators, in: J. Blanco (Ed.), Argentine Workshop on Theoretical

Computer Science (WAIT2000) Proceedings: Tandil, September 4-9, 2000, SADIO, Buenos Aires, 2000, pp. 52-62.
[4] J.R. Hindley, J.P. Seldin, Introduction to Combinators and λ-calculus, Cambridge University Press, Cambridge, 1986.
[5] M.S. Joy, V.J. Rayward-Smith, F.W. Burton, Efficient combinator code, Comput. Languages 10 (1985) 211-224.
[6] J.R. Kennaway, M.R. Sleep, Variable abstraction in $\mathrm{O}(n \log n)$ space, Inform. Process. Lett. 24 (1987) 343-349.
[7] D. Stevens, Variable substitution with iconic combinators, in: A.M. Borzyszkowski, S. Sokołowski (Eds.), Mathematical Foundations of Computer Science, in: Lecture Notes in Computer Science, Vol. 711, Springer, Berlin, 1993, pp. 724-733.
[8] D. Stevens, A generalization of Turner's combinator-based technique for implementing a functional language, PhD thesis, School of Computer Science, University of Birmingham, 1996.
[9] D.A. Turner, A new implementation technique for applicative languages, Software—Practice and Experience 9 (1979) 31-49.

[^0]: E-mail address: a.r.diller@cs.bham.ac.uk (A. Diller).

