Spatial Computing in MGS

Lecture III - MGS \& Applications

Antoine Spicher ${ }^{1}$ \& Olivier Michel ${ }^{1}$ \& Jean-Louis Giavitto²

mgs.spatial-computing.org/
www.spatial-computing.org/mgs:tutorial
${ }^{1}$ LACL, University Paris Est Créteil ${ }^{2}$ IRCAM, CNRS - UPMC
UCNC'12 - Sept. 2012

Outline

■ MGS Rule Application Strategies

"Last But Not Least" Example

Rule Application Strategy

■ MGS Pattern Matching Process

Computation of the set of all the sub-collections matching a pattern

Inspired by the Brzozowski's derivation of rational expressions

Rule Application Strategy

■ Rewriting of non-intersecting sub-collections

\square Role of the rule application strategy
\square Hard-coded MGS strategies

- Maximal-Parallel (no more matched sub-collection in the remaining sub-coll.)
\square Default: priority given to the first rules over the last ones
\square SingleStochastic: randomly chosen between rules
\square MultiStochastic: no priority between rules
- Sequential strategies (only one rule is applied at each application)
\square Stochastic: random choice of the rule w.r.t. a given probability
\square Gillespie-based: random choice of the rule w.r.t. a given kinetics
- inspired by the chemical stochastic simulation algorithm of Gillespie
- only allowed for constant patterns on complete graph topology
\square Sooner strategy: the sooner rule is chosen w.r.t. a given date

Outline

■ MGS Rule Application Strategies

"Last But Not Least" Example

(Unconventional) Computation vs. MGS

- MGS programming of a model of computation
\square Topological collection type modeling the used data structure
\square Specific kind of transformation rules specifying the computation rules
- Examples
\square L systems
Sequence \& MGS rules encoding the grammar productions
\square Chemical computations (Gamma, CHAM)
Bag/set \& MGS rules encoding the chemical interactions
$\square \quad P$ systems
Nested bag/set \& MGS rules encoding transports and chemical interactions
\square Cellular automata
GBF collection (regular space) \& MGS rules encoding the local evolution function
\square Signal Machines ??
Sequence of signals \& MGS rules encoding the collision rules

Signal Machines in MGS

- Source used for this example

Massively Parallel Automata in Euclidean Space-Time
D. Duchier, J. Durant-Lose, M. Senot, SCW'10, Budapest

- Signal Machines
\square Extension of CA into continuous space and time
\square Space/time diagrams, signals and collisions

Signal Machines in MGS

■ Example of a Signal Machine
\square "Geometrically computing the middle"

Meta-Signals | Speed |
| ---: |
| $\overrightarrow{\mathrm{div}}, \stackrel{\mathrm{W}}{\overrightarrow{\mathrm{lo}}}$ |
| $\overrightarrow{\mathrm{hi}}$ |
| $\stackrel{\mathrm{back}}{2}$ |

Collision rules

$\{\mathrm{w}, \overrightarrow{\mathrm{div}}\}$	$\rightarrow\{\mathrm{w}, \overrightarrow{\mathrm{hi}}, \overrightarrow{\mathrm{lo}}\}$
$\{\overrightarrow{\mathrm{lo}}, \mathrm{w}\}$	$\rightarrow\{\overleftarrow{\text { back }}, \mathrm{w}\}$
$\{\overrightarrow{\mathrm{hi}}, \stackrel{\text { back }}{ }\}$	$\rightarrow\{w\}$

Signal Machines in MGS

- Example of a Signal Machine

\square MGS Collection Type (a sequence of signal)

```
record metasignal = { name:symbol, speed:float } and
record location = { position:float, date:float } and
record signal = metasignal + location and
collection machine_state = [signal]seq ;;
```

\square Signal Machine Collision Specification (a transformation rule)

```
s1:signal, s2:signal / (s1.speed > s2.speed)
={ D = signal_intersection(s1,s2).date }=>
let loc = signal_intersection(s1,s2) in
    map( make_signal(loc), collision(s1,s2) )
```

\square Middle Computation Specification

