Spatial Computing in MGS Lecture III – MGS & Applications

Antoine Spicher¹ & Olivier Michel¹ & Jean-Louis Giavitto²

mgs.spatial-computing.org/ www.spatial-computing.org/mgs:tutorial

¹LACL, University Paris Est Créteil ²IRCAM, CNRS – UPMC UCNC'12 – Sept. 2012

MGS Rule Application Strategies

"Last But Not Least" Example

Rule Application Strategy

MGS Pattern Matching Process

Computation of the set of *all the sub-collections* matching a pattern

$$\frac{\partial \operatorname{div}}{\partial p} (G, K, \emptyset) = \{\Pi\}$$
(1)

$$\frac{\partial P}{\partial p} (G, K, \emptyset) = \emptyset \quad \text{provided that } k \neq \operatorname{div}$$
(2)

$$\frac{\partial \operatorname{div}}{\partial p} (G, K, \emptyset) = \emptyset \quad \text{provided that } k \neq \operatorname{div}$$
(2)

$$\frac{\partial \operatorname{div}}{\partial p} (G, K, \emptyset) = \Im^{p} \operatorname{excl}(K + [\operatorname{id} \to p], G, \operatorname{exp}(p)) \operatorname{divor}\{\{p\}\} \operatorname{eleve} \emptyset$$
(3)

$$\frac{\partial \operatorname{div}}{\partial p} (G, K, \emptyset) = \{\Pi\} \cup \frac{\partial (\operatorname{id}/\operatorname{excl} \operatorname{div} \partial \Psi)}{\partial p} (G, K, \emptyset) \quad \text{where id is a fitch variable (P)}$$

$$\frac{\partial \operatorname{div}}{\partial p} (G, K, \emptyset) = \operatorname{Ind}_{K} K' = K + [\operatorname{id} \to p] \quad \operatorname{roud}_{K} \cup V = \operatorname{id} - p$$
(3)

$$\frac{\partial \operatorname{div}_{K} (\mathfrak{s}, K, \emptyset)}{\partial p} (G, K, \emptyset) = \operatorname{Ind}_{K} K' = K + [\operatorname{id} \to p] \quad \operatorname{roud}_{K} \cup V = \operatorname{id} - p$$
(3)

$$\frac{\partial \operatorname{div}_{K} (\mathfrak{s}, K, \emptyset)}{\partial p} (G, K, \emptyset) = \operatorname{Ind}_{K} K' = K + [\operatorname{id} \to p] \quad \operatorname{roud}_{K} \cup V = \operatorname{id} - p$$
(3)

$$\frac{\partial \operatorname{div}_{K} (\mathfrak{s}, K, \emptyset)}{\partial p} (G, K, \emptyset) = \operatorname{Ind}_{K} K' = K + [\operatorname{id} \to p] \quad \operatorname{roud}_{K} \cup V = \operatorname{id} - p$$
(4)

$$\frac{\partial \operatorname{div}_{K} (\mathfrak{s}, K, \emptyset)}{\partial p} (G, K, \emptyset) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s}, \mathfrak{s}) = \operatorname{Ind}_{K} (\mathfrak{s},$$

Inspired by the Brzozowski's derivation of rational expressions

Rule Application Strategy

Rewriting of non-intersecting sub-collections

- □ Role of the rule application strategy
- □ Hard-coded MGS strategies
 - Maximal-Parallel (no more matched sub-collection in the remaining sub-coll.)
 - Default: priority given to the first rules over the last ones
 - SingleStochastic: randomly chosen between rules
 - MultiStochastic: no priority between rules
 - Sequential strategies (only one rule is applied at each application)
 - Stochastic: random choice of the rule w.r.t. a given probability
 - □ Gillespie-based: random choice of the rule w.r.t. a given *kinetics*
 - inspired by the chemical stochastic simulation algorithm of Gillespie
 - only allowed for constant patterns on complete graph topology
 - □ Sooner strategy: the sooner rule is chosen w.r.t. a given *date*

MGS Rule Application Strategies

"Last But Not Least" Example

(Unconventional) Computation vs. MGS

MGS programming of a *model of computation*

- **Topological collection type** modeling the *used data structure*
- **Specific kind of transformation rules** specifying the *computation rules*

Examples

□ L systems

Sequence & MGS rules encoding the grammar productions

□ Chemical computations (Gamma, CHAM)

Bag/set & MGS rules encoding the chemical interactions

□ *P systems*

Nested bag/set & MGS rules encoding transports and chemical interactions

□ Cellular automata

GBF collection (regular space) & MGS rules encoding the local evolution function

□ Signal Machines ??

Sequence of signals & MGS rules encoding the collision rules

Signal Machines in MGS

Source used for this example

Massively Parallel Automata in Euclidean Space-Time D. Duchier, J. Durant-Lose, M. Senot, SCW'10, Budapest

Signal Machines

- Extension of CA into continuous space and time
- □ Space/time diagrams, *signals* and *collisions*

Signal Machines in MGS

Example of a Signal Machine

Geometrically computing the middle"

Signal Machines in MGS

Example of a Signal Machine

□ MGS Collection Type (a sequence of signal)

record	metasignal	<pre>= { name:symbol, speed:float }</pre>	and
record	location	<pre>= { position:float, date:float }</pre>	and
record	signal	= metasignal + location	and
collection	machine_state	e = [<i>signal</i>]seq ;;	

Signal Machine Collision Specification (a transformation rule)
 s1: signal, s2: signal / (s1. speed > s2. speed)

 ={ D = signal_intersection(s1,s2).date }=>
 let loc = signal_intersection(s1,s2) in
 map(make_signal(loc), collision(s1,s2))

 Middle Computation Specification

 fun collisions(s1,s2) =

W	:= {	name =	`₩,	speed =	0	}	<pre>switch (s1.name, s2.name)</pre>		
	•			speed =		•		(`div,`w):	-
	-		•	speed =		-		(`lo, `w):	. , , .
	•		•	speed =		•		(`hi, `back):	
back	:= {	name =	`back,	speed =	-3	}		lt:	