
Spatial Computing in MGS
Lecture III – MGS & Applications

Antoine Spicher1 & Olivier Michel1 & Jean-Louis Giavitto2

mgs.spatial-computing.org/

www.spatial-computing.org/mgs:tutorial

1LACL, University Paris Est Créteil

2IRCAM, CNRS – UPMC

UCNC’12 – Sept. 2012

Outline

 MGS Rule Application Strategies

 “Last But Not Least” Example

UCNC'12 - Spatial Computing in MGS - Lecture II 2

Rule Application Strategy

 MGS Pattern Matching Process
Computation of the set of all the sub-collections matching a pattern

UCNC'12 - Spatial Computing in MGS - Lecture II 3

Inspired by the Brzozowski’s derivation of rational expressions

Rule Application Strategy

 Rewriting of non-intersecting sub-collections
 Role of the rule application strategy

 Hard-coded MGS strategies

 Maximal-Parallel (no more matched sub-collection in the remaining sub-coll.)

 Default: priority given to the first rules over the last ones

 SingleStochastic: randomly chosen between rules

 MultiStochastic: no priority between rules

 Sequential strategies (only one rule is applied at each application)

 Stochastic: random choice of the rule w.r.t. a given probability

 Gillespie-based: random choice of the rule w.r.t. a given kinetics

 - inspired by the chemical stochastic simulation algorithm of Gillespie

 - only allowed for constant patterns on complete graph topology

 Sooner strategy: the sooner rule is chosen w.r.t. a given date

UCNC'12 - Spatial Computing in MGS - Lecture II 4

Outline

 MGS Rule Application Strategies

 “Last But Not Least” Example

UCNC'12 - Spatial Computing in MGS - Lecture II 5

(Unconventional) Computation vs. MGS

 MGS programming of a model of computation
 Topological collection type modeling the used data structure

 Specific kind of transformation rules specifying the computation rules

 Examples
 L systems

Sequence & MGS rules encoding the grammar productions

 Chemical computations (Gamma, CHAM)

Bag/set & MGS rules encoding the chemical interactions

 P systems

Nested bag/set & MGS rules encoding transports and chemical interactions

 Cellular automata

GBF collection (regular space) & MGS rules encoding the local evolution function

 Signal Machines ??

Sequence of signals & MGS rules encoding the collision rules

UCNC'12 - Spatial Computing in MGS - Lecture II 6

Signal Machines in MGS

 Source used for this example
Massively Parallel Automata in Euclidean Space-Time

D. Duchier, J. Durant-Lose, M. Senot, SCW’10, Budapest

 Signal Machines
 Extension of CA into continuous space and time

 Space/time diagrams, signals and collisions

UCNC'12 - Spatial Computing in MGS - Lecture II 7

signals

collisions
=>

Signal Machines in MGS

 Example of a Signal Machine
 “Geometrically computing the middle”

UCNC'12 - Spatial Computing in MGS - Lecture II 8

[w, w, w]

[w, hi, back, w]

[w, hi, lo, w]

[div, w, w]

Signal Machines in MGS

 Example of a Signal Machine

 MGS Collection Type (a sequence of signal)

 Signal Machine Collision Specification (a transformation rule)

 Middle Computation Specification

UCNC'12 - Spatial Computing in MGS - Lecture II 9

record metasignal = { name:symbol, speed:float } and

record location = { position:float, date:float } and

record signal = metasignal + location and

collection machine_state = [signal]seq ;;

s1:signal, s2:signal / (s1.speed > s2.speed)

 ={ D = signal_intersection(s1,s2).date }=>

 let loc = signal_intersection(s1,s2) in

 map(make_signal(loc), collision(s1,s2))

w := { name = `w, speed = 0 }

div := { name = `div, speed = 3 }

hi := { name = `hi, speed = 1 }

lo := { name = `lo, speed = 3 }

back := { name = `back, speed = -3 }

fun collisions(s1,s2) =

 switch (s1.name,s2.name)

 case (`div,`w): (w,hi,lo)

 case (`lo, `w): (back,w)

 case (`hi, `back): (w)

 default: (s2,s1)

