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 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-shape growth 
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MGS Formalism: Collection 

 Topological Collection 
 Structure 

 A collection of (topological) cells 

 An neighborhood relationship 

 Data associated with the cells 
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MGS Formalism: Collection 

 Abstract Cellular Complex (ACC) 
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Let (S𝑛) be a family of disjoint sets of symbols called topological cells. 

The dimension 𝑛 of a cell 𝜎 ∈ S𝑛 is denoted dim(𝜎). We write S =  (S𝑛)𝑛 . 

Let (S𝑛) be a family of disjoint sets of symbols called topological cells. 

The dimension 𝑛 of a cell 𝜎 ∈ S𝑛 is denoted dim(𝜎). We write S =  (S𝑛)𝑛 . 

An abstract cellular complex 𝓚 on S is a couple (𝑆, ≺) such that 

• 𝑆 ⊂ S is a set of topological cells, 

• ≺⊂ 𝑆 × 𝑆 is a partial order on 𝑆, called the incidence relation, 

• the dimension is monotone for ≺: 𝜎1 ≺ 𝜎2⟹ dim 𝜎1 < dim 𝜎2 . 

An abstract cellular complex 𝓚 on S is a couple (𝑆, ≺) such that 

• 𝑆 ⊂ S is a set of topological cells, 

• ≺⊂ 𝑆 × 𝑆 is a partial order on 𝑆, called the incidence relation, 

• the dimension is monotone for ≺: 𝜎1 ≺ 𝜎2⟹ dim 𝜎1 < dim 𝜎2 . 
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MGS Formalism: Collection 

 Some neighborhoods on ACC 
 Face/Coface relationship (<, >) 
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Let 𝒦 be an ACC and let 𝜎 and 𝜏 be two cells of 𝒦. 

The cell 𝜏 is called face of  𝜎 if 𝜏 ≺ 𝜎 and dim 𝜏 = dim 𝜎 − 1. 

The cell 𝜎 is called coface of  𝜏. This relation is denoted by 𝜏 < 𝜎. 

Let 𝒦 be an ACC and let 𝜎 and 𝜏 be two cells of 𝒦. 

The cell 𝜏 is called face of  𝜎 if 𝜏 ≺ 𝜎 and dim 𝜏 = dim 𝜎 − 1. 

The cell 𝜎 is called coface of  𝜏. This relation is denoted by 𝜏 < 𝜎. 
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MGS Formalism: Collection 

 Some neighborhoods on ACC 
 Face/Coface relationship (<, >) 

 𝑝-Neighborhood ( ,p ) 
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Let 𝒦 be an ACC, 𝜏1 and 𝜏2 two 𝑛-cells of 𝒦 and 𝑝 an integer. 

The cells 𝜏1 and 𝜏2 are said 𝒑-neighbors if there exists 𝜎 ∈ 𝒦 such that 

• 𝜏1 ≻ 𝜎 and 𝜏2 ≻ 𝜎 if 𝑛 > 𝑝, or 

• 𝜏1 ≺ 𝜎 and 𝜏2 ≺ 𝜎 if 𝑛 < 𝑝 

This relation is denoted by a comma: 𝜏1,𝑝 𝜏2. 

Let 𝒦 be an ACC, 𝜏1 and 𝜏2 two 𝑛-cells of 𝒦 and 𝑝 an integer. 

The cells 𝜏1 and 𝜏2 are said 𝒑-neighbors if there exists 𝜎 ∈ 𝒦 such that 

• 𝜏1 ≻ 𝜎 and 𝜏2 ≻ 𝜎 if 𝑛 > 𝑝, or 

• 𝜏1 ≺ 𝜎 and 𝜏2 ≺ 𝜎 if 𝑛 < 𝑝 

This relation is denoted by a comma: 𝜏1,𝑝 𝜏2. 
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MGS Formalism: Collection 

 Labeling of an ACC 
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c = (0,4).v1 + (3,0).v2 + (-3,0).v3 + 5.e1 + 6.e2 + 5.e3 + 12.f 

Let 𝒦 be an ACC and let V be an arbitrary set of values. 

A topological collection over 𝓚 with values in V is a partial function from 

𝓚 to V. 𝑪S V  denotes the set of collections with values in V. 

Let 𝒦 be an ACC and let V be an arbitrary set of values. 

A topological collection over 𝓚 with values in V is a partial function from 

𝓚 to V. 𝑪S V  denotes the set of collections with values in V. 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Records (equivalent to a C struct) 

 Let ℱ be the set of fields 

 𝒦 = (𝐹, ∅) with 𝐹 ⊂ ℱ, a totally disconnected space  
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{ a = 1, b = 2.0, c = “trois” } 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Monoidal collections 

 Collections builds from singleton and join operator 

 Topology depends on the properties of the join operator 

 Sequence (associative): linear graph 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Monoidal collections 

 Collections builds from singleton and join operator 

 Topology depends on the properties of the join operator 

 Sequence (associative): linear graph 

 Bag (associative/commutative): complete graph 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Monoidal collections 

 Collections builds from singleton and join operator 

 Topology depends on the properties of the join operator 

 Sequence (associative): linear graph 

 Bag (associative/commutative): complete graph 

 Set (associative/commutative/idempotent): complete graph 
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(1, 2, 5, 3, 1, 2, 4):set 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 GBF collections 

 Let 𝐺 = 𝑑1, 𝑑2, …|𝑟1, 𝑟2, …  be a finitely generated group 

 𝒦 = 𝐺,  𝑔,1 𝑔 ± 𝑑𝑖 |𝑔 ∈ 𝐺 , the Cayley’s graph of 𝐺 
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gbf NEWS = < north, east, west, south ; 

             north = -south, east = -west > ;; 
 

c = ( 

  ( 1, 2 ), 

  ( 2, 3, 4), 

  ( 3, 4, 5, 6 ), 

  ( 4, 5, 6, 7, 8 ) 

) following 

    |south>, |east> ;; 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Delaunay collections 

 Built from a Voronoi tessellation of a set of points 

 Association of a region of space with each node 
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MGS Formalism: Transformation 

 Transformation 
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Topological Collection Topological Collection 

Sub-collection (Sub-)collection 

substitution pattern 
matching 

trans T = { 
     pattern1  expression1 
     … 
     patternn  expressionn  
} 



MGS Formalism: Transformation 

 Transformation 
 Function of collections defined by case 

 Each case is specified by a rule 
 

pattern ⟹ expression 
 

 Semantics of a transformation: topological rewriting 

 

 Requirements 
 Topological collection patterns 

 Topological collection expressions, environments and evaluation 

 Pattern matching 

 Rewriting rule/relation 
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MGS Formalism: Transformation 

 Some notations 
 

 Collection: 𝑐 =  𝑣. 𝜎 
 

 Shape: Shape 𝑐 = 𝒦 
 

 Support: 𝑐 = 𝜎 ∈ Shape 𝑐 |𝑐 𝜎 isdefined  
 

 Extension: 𝑐′ = 𝑐|𝒦  

𝑐′ 𝜎 = 𝑐 𝜎  when 𝜎 ∈ 𝒦 ∩ Shape 𝑐 , and is undefined on 𝒦−Shape 𝑐  
 

 Merge: 𝑐1⨄𝑐2 

𝑐1|𝒦 + 𝑐2|𝒦 where 𝒦 = Shape 𝑐1 ∪ Shape 𝑐2  
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MGS Formalism: Transformation 

 Topological Collection Patterns 
 

 Let consider the two sets of variables: 

 Svar = 𝑥1, 𝑥2, …  variables denoting cells 

Elements of are ranked by dimension (i.e., Svar =  S )𝑛
var

𝑛  

 Vvar = 𝑋1, 𝑋2, …  variables denoting values 

 

 A pattern is a topological collection of 𝑪S𝐯𝐚𝐫 V
𝐯𝐚𝐫  
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𝛼 = 𝑋1.x1 + 𝑋2.x2 + 𝑋3.x3 + 𝑌1.y1 + 𝑌2.y2 + 𝑌3.y3 + 𝑍.z 
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MGS Formalism: Transformation 

 Topological Collection Expressions 
 

 Similar to topological collection patterns 

 Extending value variables with expressions 𝚺 

 A collection expression is a collection of 𝑪S𝐯𝐚𝐫∪S 𝚺  

 

 Environments 

 𝚪𝐒 = S
𝐯𝐚𝐫⟶ S 

 𝚪𝐕 = V
𝐯𝐚𝐫⟶ V 

 

 Evaluation function 
 

𝜻:𝑪𝐒𝐯𝐚𝐫∪𝐒 𝚺 × 𝚪𝐒 × 𝚪𝐕⟶ 𝑪𝐒 𝐕  
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MGS Formalism: Transformation 

 Pattern Matching 
 

 A pattern 𝜶 = 𝑋1.x1 + … + 𝑋𝑚.xm 
pattern-matches a collection 𝑐 
with environments 𝝆𝐒 ∈ 𝚪𝐒 and 𝝆𝐕 ∈ 𝚪𝐕 iff 

 

𝒄 = 𝝆𝐕 𝑋1 . 𝝆𝐒 𝑥1  + … + 𝝆𝐕 𝑋𝑚 . 𝝆𝐒 𝑥𝑚  
 

 

 A pattern 𝜶 matches a collection 𝑐′ in a collection 𝑐 
with environments 𝝆𝐒 ∈ 𝚪𝐒 and 𝝆𝐕 ∈ 𝚪𝐕 iff 

 𝑐′|Shape 𝑐  is a sub-collection of 𝑐 

 Shape 𝑐′ ⊂ Shape 𝑐  

 𝜶 pattern-matches 𝑐′ with environments 𝝆𝐒 and 𝝆𝐕 
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MGS Formalism: Transformation 

 Rewriting rule & rewriting relation 
 

 Rewriting rule 𝜶⟹ 𝜷 

 𝛼 is a topological collection pattern 

 𝛽is a topological collection expression 

 

 One-step rewriting relation: 𝑐1 ⊳𝜶⟹𝜷 𝑐2 iff 
 

 𝑐1 = 𝒍⨄𝒄 (𝒍 is the redex and 𝒄 is the context) 

such that 𝜶 matches 𝒍 in 𝑐1 with some environments 𝝆𝐒 and 𝝆𝐕 
 

 𝑐2 = 𝒓⨄𝒄 

such that 𝒓 = 𝜁 𝜷, 𝝆𝐒, 𝝆𝐕  
 

 Shape 𝒓 − Shape(𝒍) − Shape 𝒄 = ∅ 

 

 ⊳𝑅 trivial extension to a set 𝑅 of rules 
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MGS Formalism: Transformation 

 Topological Rewriting 
 

 |⊳𝑅 parallel rewriting of a set 𝑅 of rules 
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Outline 

 

 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-shape growth 
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Patch Transformation 

 Motivations 
 A straightforward implementation of the previous semantics 

 Two pattern languages 

 Path patterns: p-neighborhood, close to regular expressions 

 Patch patterns: face/coface relation, arbitrary in dimension 
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patch 

path 



Patch: Syntax 

 Syntax: building collections 
 

 Creation of a fresh cell 

new_cell dim faces cofaces 

 

 Binder letcell … in … & labeling *  
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letcell v1 = new_cell 0 ()         (e1,e3) 

and     v2 = new_cell 0 ()         (e1,e2) 

and     v3 = new_cell 0 ()         (e2,e3) 

and     e1 = new_cell 1 (v1,v2)    (f) 

and     e2 = new_cell 1 (v2,v3)    (f) 

and     e3 = new_cell 1 (v1,v3)    (f) 

and     f  = new_cell 2 (e1,e2,e3) () 

in 

   (0,4)*v1 + (3,0)*v2 + (-3,0)*v3 

 + 5*e1 + 6*e2 + 5*e3 

 + 12*f 

(0,4) 

(3,0) (-3,0) 

5 5 

6 

12 



Patch: Syntax 

 Syntax: patterns 
 

 

 

 

 

 Pattern variable x corresponds to a collection element 𝑋. 𝑥 

 In expressions exp, x denotes 𝑋 ∈ Vvar 

 In expressions exp, ^x denotes 𝑥 ∈ Svar 
 

 Tilded pattern variable ~x 

The element is matched but not consumed (can be matched by another rule) 
 

 x:[dim = exp] specifies the dimension of the matched element 

The expression has to evaluate an integer  
 

 x  <  y means that ^x is a face of ^y 
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pat : : = pat op pat | clause 

clause : : = (~)?x(:[dim = exp])? 

op : : = < | > | 𝜀 



Patch: Vertex Insertion 

 Example 
Splitting an edge by insertion of a vertex 
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patch insert_vertex = { 

  ~v1 < e:[ dim = 1 ] > ~v2 

    => 

      letcell v  = new_cell 0 ()      () 

      and     e1 = new_cell 1 (^v1,v) (cofaces ^e) 

      and     e2 = new_cell 1 (^v2,v) (cofaces ^e) 

      in 

        (some expression) * v 

} 

v1 v2 
e e1 e2 

v v1 v2 



Patch: Vertex Insertion 

 Example 
Splitting an edge by insertion of a vertex 
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Patch: Mesh Subdivision 

 Mesh subdivision 
 Definition 

“ Subdivision defines a smooth curve or surface as the limit of a sequence of 
successive refinements   ” 
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SIGGRAPH 98 Course Notes 



Patch: Mesh Subdivision 

 Polyhedral subdivision 
 Inserting vertices on edges 

 Splitting each hexagonal surface 
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Patch: Mesh Subdivision 

 MGS Implementation 
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patch insert_vertex = { … } 

 

patch subdivide_face = { 

  f:[ dim = 2 ] 

  ~v1 < ~e1 < f > ~e1 > ~v2 < ~e2 < f > ~e2 > 

  ~v3 < ~e3 < f > ~e3 > ~v4 < ~e4 < f > ~e6 > 

  ~v5 < ~e5 < f > ~e5 > ~v6 < ~e6 < f > ~e4 > ~v1 

    => 

      letcell a1 = new_cell 1 (^v2,^v4)    (f1,f4) 

      and     a2 = new_cell 1 (^v4,^v6)    (f2,f4) 

      and     a3 = new_cell 1 (^v6,^v2)    (f3,f4) 

      and     f1 = new_cell 2 (a1,^e2,^e3) () 

      and     f2 = new_cell 2 (a2,^e4,^e5) () 

      and     f3 = new_cell 2 (a3,^e6,^e1) () 

      and     f4 = new_cell 2 (a1,a2,a3)   () in 

        `edge * a1 + … + `triangle * f4 

} 



Patch: Mesh Subdivision 
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Quadrangular mesh 

Doo-Sabin Catmull-Clark 

Loop 

Butterfly 

Triangular mesh 

Kobbelt 



Patch: Fractal 
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Menger Sponge (2 steps) 

Sierpinsky Sponge (4 steps) 



Outline 

 

 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-shape growth 
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Formalism Summary 

 Elements of Algebraic Topology 
 Abstract Cellular Complex  𝒦 = 𝑆,≺  

  … 

  … 
 

 Topological Collections 
 Formal Sums Representation 𝑐 ∈ 𝐶𝑆 𝑉 ⟹ 𝑐 =  𝑣𝜎 . 𝜎 

 Shape, Support   Shape 𝑐 , 𝑐  

 Sub-collection, Merge  𝑠 ⊂ 𝑐, 𝑐 ⊎ 𝑐′ 
 

 Transformation 
 Collection Patterns/Expressions 𝛼 ∈ 𝐶𝑆var 𝑉

var , 𝛽 ∈ 𝐶𝑆∪𝑆var Σ  

 Rewriting Rules   𝑟 = 𝛼 ⟹ 𝛽 

 Topological Rewriting  𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules 
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Diff. MGS: Algebraic Topology 

 Topological Chains 
 

 Definition 

 

 

 

 

 

 Motivations (homology) 

Extends ACC with an algebraic structure 
 

 Comparison with topological collections 

 Similar to collections with values in a group 

Main difference: chains are total functions 

 Richer algebraic structure 

𝑪𝓚 𝑮  has an abelian group structure 
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Let 𝓚 be an ACC and let 𝑮 be an abelian group. 

A topological chain over 𝓚 with values in 𝑮 is a function null almost 

everywhere from 𝓚 to 𝑮. 𝑪𝓚 𝑮  denotes the topological chains over 𝓚 

with values in 𝑮. 

Let 𝓚 be an ACC and let 𝑮 be an abelian group. 

A topological chain over 𝓚 with values in 𝑮 is a function null almost 

everywhere from 𝓚 to 𝑮. 𝑪𝓚 𝑮  denotes the topological chains over 𝓚 

with values in 𝑮. 



Diff. MGS: Algebraic Topology 

 Topological Cochains 
 

 Definition 

 

 

 

 

 

 Representation with formal sums 
 

𝑇 =  𝑓. 𝝉𝝉∈𝓚  where 𝑓 are homomorphisms of Hom 𝑮,𝑯  
 

 Application of a cochain on a chain 

𝑻, 𝒄 =  𝑓𝝉. 𝝉𝝉∈𝓚 ,  𝑣𝝈. 𝝈𝝈∈𝓚 =  𝑓𝝉(𝑣𝝈)𝝎∈𝓚  s  
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Let 𝓚 be an ACC and let 𝑮 and 𝑯 be abelian groups. 

The topological cochains of chains of 𝑪𝓚 𝑮  into 𝑯 are group 

homomorphisms from 𝑪𝓚 𝑮  to 𝑯. 

𝑪𝓚 𝑮,𝑯  denotes the group of topological cochains from 𝑪𝓚 𝑮  to 𝑯. 

Let 𝓚 be an ACC and let 𝑮 and 𝑯 be abelian groups. 

The topological cochains of chains of 𝑪𝓚 𝑮  into 𝑯 are group 

homomorphisms from 𝑪𝓚 𝑮  to 𝑯. 

𝑪𝓚 𝑮,𝑯  denotes the group of topological cochains from 𝑪𝓚 𝑮  to 𝑯. 

f1 f2 f3 
v1 v2 v3 [ ] =   f1(v1) + f2(v2) + f3(v3) , 



Diff. MGS: Summary 

 Elements of Algebraic Topology 
 Abstract Cellular Complex  𝒦 = 𝑆,≺  

 Topological Chain   𝑐 ∈ 𝐶𝒦 𝐺 ⟹ 𝑐 =  𝑣𝜎 . 𝜎𝜎∈𝒦  

 Topological Cochain  𝑇 ∈ 𝐶𝒦 𝐺,𝐻 ⟹ 𝑇 =  𝑓𝜏. 𝜏𝜏∈𝒦  
 

 Topological Collections 
 Formal Sums Representation 𝑐 ∈ 𝐶𝑆 𝑉 ⟹ 𝑐 =  𝑣𝜎 . 𝜎 

 Shape, Support   Shape 𝑐 , 𝑐  

 Sub-collection, Merge  𝑠 ⊂ 𝑐, 𝑐 ⊎ 𝑐′ 
 

 Transformation 
 Collection Patterns/Expressions 𝛼 ∈ 𝐶𝑆var 𝑉

var , 𝛽 ∈ 𝐶𝑆∪𝑆var Σ  

 Rewriting Rules   𝑟 = 𝛼 ⟹ 𝛽 

 Topological Rewriting  𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules 
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Diff. MGS: Transformations vs. Cochains 

 Intersection Between Cochains and Transformations 
 Topological Cochain  𝑇 ∈ 𝐶𝒦 𝐺,𝐻 ⟹ 𝑇 =  𝑓𝜏. 𝜏𝜏∈𝒦  

 Topological Rewriting  𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules 

 Rewriting Cochains 

 Cochains of  𝑻 ∈ 𝐶𝒦 𝐺, 𝐶𝒦 𝐺 = Hom 𝐶𝒦 𝐺 , 𝐶𝒦 𝐺  

Mapping of topological chains to topological chains 

 

 

 

 

 Transformation of the form 𝑹 = 𝑋. 𝑥 ⇒ 𝑓𝑥 𝑋   

Application of a specific function on each cell of the collection 

 
 One can show that   ∀𝑐 ∈ 𝐶𝒦 𝐺 𝑐|⊳𝑹 𝑻, 𝑐  
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trans T = { x  =>  f ^x(x) } 



Diff. MGS: Transport of Data 

 Algebraic handling of collection 
 Usual functional map (when 𝑓𝑥 𝑋  does not depend on 𝑥) 

 Computing by moving data on  the collection 

when 𝑓𝑥 𝑋  transports values from cells 

 to their p-neighbors (i.e., the comma operator) 

  trans Eq1 = { x => pNeighborsFold(+, 0, x, p) } 

 to their faces (i.e., the face operator) 

  trans Eq2 = { x => CofacesFold(+, 0, x) } 

 to their cofaces (i.e., the coface operator) 

  trans Eq3 = { x => FacesFold(+, 0, x) } 
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x x 

𝝎 𝝎′ 

𝜶 

𝝎 𝝎 𝝎 𝝎 𝝎′ 𝝎′ 𝝎′ 

𝜹 

𝜸 𝜷 

𝜶 

𝜷 



Differential Calculus in MGS 

 The boundary operator 𝜕 
 Starting point of the elaboration of the discrete differential calculus 

 

 

 

 

 Coincides with Eq2 (transport of data to faces) with orientation 

 

 The derivative operator 𝐝 
 Defined w.r.t. discrete Stockes’ theorem 

 
 

 

 Coincides with Eq3 (transport of data to cofaces) with orientation 
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2 7 

-4 

𝜕 = 
-2 - 4 

7 + 2 

4 - 7 

𝐝𝑇, 𝑐 = 𝑇, 𝜕𝑐   𝑓(𝑥)𝐝𝑥
𝒟

=  𝐝𝐹(𝑥)
𝒟

=  𝐹(𝑥)
𝜕𝒟

 

Continuous Stockes’ theorem 



Application: Generic Laplacian Operator 
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 Laplacian in Discrete Differential Calculus 
 Definition in terms of 𝜕 and 𝐝 

 

 

 Data transports (in dimension 1) 

 

 

 

 

 

∆= 𝛿𝐝 + 𝐝𝛿where𝛿 = −1 𝑛 𝑘−1 +1 ⋆ 𝐝 ⋆ 



Application: Generic Laplacian Operator 
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 Laplacian in Discrete Differential Calculus 
 Definition in terms of 𝜕 and 𝐝 

 

 

 MGS Implementation 

 

 

 

 

 

∆= 𝛿𝐝 + 𝐝𝛿where𝛿 = −1 𝑛 𝑘−1 +1 ⋆ 𝐝 ⋆ 



Application: Generic Laplacian Operator 

 Generic Implantation of a Diffusion Operator 
 

 Differential Equation & MGS implantation 

 
 

 

 Continuous Simulations 

The same operator works in any dimensions (here 1D and 2D) 
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fun diffusion[D,orient](u) = 

  u + D*Laplacian[orient=orient](Id)(u) 

𝜕𝑢

𝜕𝑡
= 𝐷∆𝑢 



Application: Generic Laplacian Operator 

 Generic Implantation of a Diffusion Operator 
 

 Stochastic Simulations 

Using another group 𝐺 leads to random walk specifications 
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Application: Generic Laplacian Operator 

 Generic Implantation of a Wave Operator 
 

 Differential Equation & MGS implantation 

 
 

 

 Continuous Simulations 

The same operator works in any dimensions (here 1D and 2D) 
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fun wave[D,orient](u, u’) = 

 let du’ = C*Laplacian[orient=orient](Id)(u) in 

    (u+u’+du’, u’+du’) 

𝜕2𝑢

𝜕𝑡2
= 𝐶∆𝑢 



Application: Generic Laplacian Operator 

 Generic Implantation of a Wave Operator 
 

 Stochastic Simulations 

Using another group 𝐺 leads to random walk specifications 

UCNC'12 - Spatial Computing in MGS - Lecture II 46 



Outline 

 

 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-Shape Growth 
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T-Shape Growth 

 Spatial Programming Classical Example 
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T-Shape Growth 

 Differential Transformations for Spring Forces 
 

 Elastic Stress 

𝐹 = 𝛻. 𝜎 𝑝  
 

 MGS Implantation (p-neighbors data transport) 
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trans ElasticStress[k=1.0,L0=5.0,dt=0.1] = { 

 

  x => pneighborsfold( 

    (fun y F -> ( 

       let d = distance(x,y) in 

       let stress = k * (d - L0) / d in 

    F + stress * (y-x) 

    ), F_null, x) 

 

} 



T-Shape Growth 

 Patch Transformations for Cells Divisions 
 

 MGS Implantation 
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patch CellsDivision = { 

 

  ~v1 < e12 < ~f:[dim=2] > e12 > ~v2 

    when (e12 == `Apical) => ( 

      letcell  v3(0) 

      and      v4(0) 

      and     e23(1, (^v2, v3)) 

      and     e34(1, (v3, v4)) 

      and     e41(1, (v4, ^v1)) 

      and      nf(2, (^e12,e23,e34,e41)) in 

        ( v2 + 0.05 * (v2-f) ) * v3 + 

        ( v1 + 0.05 * (v1-f) ) * v4 + 

        `Internal * ^e12 + `Lateral * e23 + 

        `Apical * e34 + `Lateral * e41 + (NextFGP(f)) * nf 

} 


