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 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-shape growth 
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MGS Formalism: Collection 

 Topological Collection 
 Structure 

 A collection of (topological) cells 

 An neighborhood relationship 

 Data associated with the cells 
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MGS Formalism: Collection 

 Abstract Cellular Complex (ACC) 
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Let (S𝑛) be a family of disjoint sets of symbols called topological cells. 

The dimension 𝑛 of a cell 𝜎 ∈ S𝑛 is denoted dim⁡(𝜎). We write S =  (S𝑛)𝑛 . 

Let (S𝑛) be a family of disjoint sets of symbols called topological cells. 

The dimension 𝑛 of a cell 𝜎 ∈ S𝑛 is denoted dim⁡(𝜎). We write S =  (S𝑛)𝑛 . 

An abstract cellular complex 𝓚 on S is a couple (𝑆, ≺) such that 

• 𝑆 ⊂ S is a set of topological cells, 

• ≺⁡⊂ 𝑆 × 𝑆 is a partial order on 𝑆, called the incidence relation, 

• the dimension is monotone for ≺: 𝜎1 ≺ 𝜎2⟹ dim 𝜎1 < dim 𝜎2 . 

An abstract cellular complex 𝓚 on S is a couple (𝑆, ≺) such that 

• 𝑆 ⊂ S is a set of topological cells, 

• ≺⁡⊂ 𝑆 × 𝑆 is a partial order on 𝑆, called the incidence relation, 

• the dimension is monotone for ≺: 𝜎1 ≺ 𝜎2⟹ dim 𝜎1 < dim 𝜎2 . 
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MGS Formalism: Collection 

 Some neighborhoods on ACC 
 Face/Coface relationship (<, >) 
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Let 𝒦 be an ACC and let 𝜎 and 𝜏 be two cells of 𝒦. 

The cell 𝜏 is called face of  𝜎 if 𝜏 ≺ 𝜎 and dim 𝜏 = dim 𝜎 − 1. 

The cell 𝜎 is called coface of  𝜏. This relation is denoted by 𝜏 < 𝜎. 

Let 𝒦 be an ACC and let 𝜎 and 𝜏 be two cells of 𝒦. 

The cell 𝜏 is called face of  𝜎 if 𝜏 ≺ 𝜎 and dim 𝜏 = dim 𝜎 − 1. 

The cell 𝜎 is called coface of  𝜏. This relation is denoted by 𝜏 < 𝜎. 
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MGS Formalism: Collection 

 Some neighborhoods on ACC 
 Face/Coface relationship (<, >) 

 𝑝-Neighborhood ( ,p ) 
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Let 𝒦 be an ACC, 𝜏1 and 𝜏2 two 𝑛-cells of 𝒦 and 𝑝 an integer. 

The cells 𝜏1 and 𝜏2 are said 𝒑-neighbors if there exists 𝜎 ∈ 𝒦 such that 

• 𝜏1 ≻ 𝜎 and 𝜏2 ≻ 𝜎 if 𝑛 > 𝑝, or 

• 𝜏1 ≺ 𝜎 and 𝜏2 ≺ 𝜎 if 𝑛 < 𝑝 

This relation is denoted by a comma: 𝜏1⁡,𝑝 𝜏2. 

Let 𝒦 be an ACC, 𝜏1 and 𝜏2 two 𝑛-cells of 𝒦 and 𝑝 an integer. 

The cells 𝜏1 and 𝜏2 are said 𝒑-neighbors if there exists 𝜎 ∈ 𝒦 such that 

• 𝜏1 ≻ 𝜎 and 𝜏2 ≻ 𝜎 if 𝑛 > 𝑝, or 

• 𝜏1 ≺ 𝜎 and 𝜏2 ≺ 𝜎 if 𝑛 < 𝑝 

This relation is denoted by a comma: 𝜏1⁡,𝑝 𝜏2. 
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MGS Formalism: Collection 

 Labeling of an ACC 
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c = (0,4).v1 + (3,0).v2 + (-3,0).v3 + 5.e1 + 6.e2 + 5.e3 + 12.f 

Let 𝒦 be an ACC and let V be an arbitrary set of values. 

A topological collection over 𝓚 with values in V is a partial function from 

𝓚 to V. 𝑪S V  denotes the set of collections with values in V. 

Let 𝒦 be an ACC and let V be an arbitrary set of values. 

A topological collection over 𝓚 with values in V is a partial function from 

𝓚 to V. 𝑪S V  denotes the set of collections with values in V. 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Records (equivalent to a C struct) 

 Let ℱ be the set of fields 

 𝒦 = (𝐹, ∅) with 𝐹 ⊂ ℱ, a totally disconnected space  
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{ a = 1, b = 2.0, c = “trois” } 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Monoidal collections 

 Collections builds from singleton and join operator 

 Topology depends on the properties of the join operator 

 Sequence (associative): linear graph 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Monoidal collections 

 Collections builds from singleton and join operator 

 Topology depends on the properties of the join operator 

 Sequence (associative): linear graph 

 Bag (associative/commutative): complete graph 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Monoidal collections 

 Collections builds from singleton and join operator 

 Topology depends on the properties of the join operator 

 Sequence (associative): linear graph 

 Bag (associative/commutative): complete graph 

 Set (associative/commutative/idempotent): complete graph 
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(1, 2, 5, 3, 1, 2, 4):set 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 GBF collections 

 Let 𝐺 = 𝑑1, 𝑑2, …⁡|⁡𝑟1, 𝑟2, …  be a finitely generated group 

 𝒦 = 𝐺, ⁡ 𝑔⁡,1 𝑔 ± 𝑑𝑖 ⁡|⁡𝑔 ∈ 𝐺⁡ , the Cayley’s graph of 𝐺 
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gbf NEWS = < north, east, west, south ; 

             north = -south, east = -west > ;; 
 

c = ( 

  ( 1, 2 ), 

  ( 2, 3, 4), 

  ( 3, 4, 5, 6 ), 

  ( 4, 5, 6, 7, 8 ) 

) following 

    |south>, |east> ;; 
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MGS Formalism: Collection 

 Types of collections 
 Depending on the topology of the underlying cellular complex 

 Delaunay collections 

 Built from a Voronoi tessellation of a set of points 

 Association of a region of space with each node 
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MGS Formalism: Transformation 

 Transformation 
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Topological Collection Topological Collection 

Sub-collection (Sub-)collection 

substitution pattern 
matching 

trans T = { 
     pattern1  expression1 
     … 
     patternn  expressionn  
} 



MGS Formalism: Transformation 

 Transformation 
 Function of collections defined by case 

 Each case is specified by a rule 
 

pattern ⟹ expression 
 

 Semantics of a transformation: topological rewriting 

 

 Requirements 
 Topological collection patterns 

 Topological collection expressions, environments and evaluation 

 Pattern matching 

 Rewriting rule/relation 
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MGS Formalism: Transformation 

 Some notations 
 

 Collection: 𝑐 =  𝑣. 𝜎 
 

 Shape: Shape 𝑐 = 𝒦 
 

 Support: 𝑐 = ⁡𝜎 ∈ Shape 𝑐 ⁡|⁡𝑐 𝜎 ⁡is⁡defined⁡  
 

 Extension: 𝑐′ = 𝑐|𝒦  

𝑐′ 𝜎 = 𝑐 𝜎  when 𝜎 ∈ 𝒦 ∩ Shape 𝑐 , and is undefined on 𝒦−Shape 𝑐  
 

 Merge: 𝑐1⨄𝑐2 

𝑐1|𝒦 + 𝑐2|𝒦 where 𝒦 = Shape 𝑐1 ∪ Shape 𝑐2  
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MGS Formalism: Transformation 

 Topological Collection Patterns 
 

 Let consider the two sets of variables: 

 Svar = ⁡𝑥1, 𝑥2, …⁡  variables denoting cells 

Elements of are ranked by dimension (i.e., Svar =  S )𝑛⁡⁡⁡⁡
var

𝑛  

 Vvar = ⁡𝑋1, 𝑋2, …⁡  variables denoting values 

 

 A pattern is a topological collection of 𝑪S𝐯𝐚𝐫 V
𝐯𝐚𝐫  
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𝛼 = 𝑋1.x1 + 𝑋2.x2 + 𝑋3.x3 + 𝑌1.y1 + 𝑌2.y2 + 𝑌3.y3 + 𝑍.z 
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MGS Formalism: Transformation 

 Topological Collection Expressions 
 

 Similar to topological collection patterns 

 Extending value variables with expressions 𝚺 

 A collection expression is a collection of 𝑪S𝐯𝐚𝐫∪S 𝚺  

 

 Environments 

 𝚪𝐒 = S
𝐯𝐚𝐫⟶ S 

 𝚪𝐕 = V
𝐯𝐚𝐫⟶ V 

 

 Evaluation function 
 

𝜻:⁡𝑪𝐒𝐯𝐚𝐫∪𝐒 𝚺 × 𝚪𝐒 × 𝚪𝐕⟶ 𝑪𝐒 𝐕  
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MGS Formalism: Transformation 

 Pattern Matching 
 

 A pattern 𝜶 = 𝑋1.x1 + … + 𝑋𝑚.xm 
pattern-matches a collection 𝑐 
with environments 𝝆𝐒 ∈ 𝚪𝐒 and 𝝆𝐕 ∈ 𝚪𝐕 iff 

 

𝒄 = 𝝆𝐕 𝑋1 . 𝝆𝐒 𝑥1  + … + 𝝆𝐕 𝑋𝑚 . 𝝆𝐒 𝑥𝑚  
 

 

 A pattern 𝜶 matches a collection 𝑐′ in a collection 𝑐 
with environments 𝝆𝐒 ∈ 𝚪𝐒 and 𝝆𝐕 ∈ 𝚪𝐕 iff 

 𝑐′|Shape 𝑐  is a sub-collection of 𝑐 

 Shape 𝑐′ ⊂ Shape 𝑐  

 𝜶 pattern-matches 𝑐′ with environments 𝝆𝐒 and 𝝆𝐕 
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MGS Formalism: Transformation 

 Rewriting rule & rewriting relation 
 

 Rewriting rule 𝜶⟹ 𝜷 

 𝛼 is a topological collection pattern 

 𝛽⁡is a topological collection expression 

 

 One-step rewriting relation: 𝑐1 ⊳𝜶⟹𝜷 𝑐2 iff 
 

 𝑐1 = 𝒍⁡⨄⁡𝒄 (𝒍 is the redex and 𝒄 is the context) 

such that 𝜶 matches 𝒍 in 𝑐1 with some environments 𝝆𝐒 and 𝝆𝐕 
 

 𝑐2 = 𝒓⁡⨄⁡𝒄 

such that 𝒓 = 𝜁 𝜷, 𝝆𝐒, 𝝆𝐕  
 

 Shape 𝒓 − Shape(𝒍) − Shape 𝒄 = ∅ 

 

 ⊳𝑅 trivial extension to a set 𝑅 of rules 
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MGS Formalism: Transformation 

 Topological Rewriting 
 

 |⊳𝑅 parallel rewriting of a set 𝑅 of rules 
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Outline 

 

 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-shape growth 
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Patch Transformation 

 Motivations 
 A straightforward implementation of the previous semantics 

 Two pattern languages 

 Path patterns: p-neighborhood, close to regular expressions 

 Patch patterns: face/coface relation, arbitrary in dimension 
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patch 

path 



Patch: Syntax 

 Syntax: building collections 
 

 Creation of a fresh cell 

new_cell dim faces cofaces 

 

 Binder letcell … in … & labeling *  
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letcell v1 = new_cell 0 ()         (e1,e3) 

and     v2 = new_cell 0 ()         (e1,e2) 

and     v3 = new_cell 0 ()         (e2,e3) 

and     e1 = new_cell 1 (v1,v2)    (f) 

and     e2 = new_cell 1 (v2,v3)    (f) 

and     e3 = new_cell 1 (v1,v3)    (f) 

and     f  = new_cell 2 (e1,e2,e3) () 

in 

   (0,4)*v1 + (3,0)*v2 + (-3,0)*v3 

 + 5*e1 + 6*e2 + 5*e3 

 + 12*f 

(0,4) 

(3,0) (-3,0) 

5 5 

6 

12 



Patch: Syntax 

 Syntax: patterns 
 

 

 

 

 

 Pattern variable x corresponds to a collection element 𝑋. 𝑥 

 In expressions exp, x denotes 𝑋 ∈ Vvar 

 In expressions exp, ^x denotes 𝑥 ∈ Svar 
 

 Tilded pattern variable ~x 

The element is matched but not consumed (can be matched by another rule) 
 

 x:[dim = exp] specifies the dimension of the matched element 

The expression has to evaluate an integer  
 

 x  <  y means that ^x is a face of ^y 

UCNC'12 - Spatial Computing in MGS - Lecture II 25 

pat : : = pat op pat | clause 

clause : : = (~)?x(:[dim = exp])? 

op : : = < | > | 𝜀 



Patch: Vertex Insertion 

 Example 
Splitting an edge by insertion of a vertex 
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patch insert_vertex = { 

  ~v1 < e:[ dim = 1 ] > ~v2 

    => 

      letcell v  = new_cell 0 ()      () 

      and     e1 = new_cell 1 (^v1,v) (cofaces ^e) 

      and     e2 = new_cell 1 (^v2,v) (cofaces ^e) 

      in 

        (some expression) * v 

} 

v1 v2 
e e1 e2 

v v1 v2 



Patch: Vertex Insertion 

 Example 
Splitting an edge by insertion of a vertex 
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Patch: Mesh Subdivision 

 Mesh subdivision 
 Definition 

“ Subdivision defines a smooth curve or surface as the limit of a sequence of 
successive refinements   ” 
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SIGGRAPH 98 Course Notes 



Patch: Mesh Subdivision 

 Polyhedral subdivision 
 Inserting vertices on edges 

 Splitting each hexagonal surface 
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Patch: Mesh Subdivision 

 MGS Implementation 
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patch insert_vertex = { … } 

 

patch subdivide_face = { 

  f:[ dim = 2 ] 

  ~v1 < ~e1 < f > ~e1 > ~v2 < ~e2 < f > ~e2 > 

  ~v3 < ~e3 < f > ~e3 > ~v4 < ~e4 < f > ~e6 > 

  ~v5 < ~e5 < f > ~e5 > ~v6 < ~e6 < f > ~e4 > ~v1 

    => 

      letcell a1 = new_cell 1 (^v2,^v4)    (f1,f4) 

      and     a2 = new_cell 1 (^v4,^v6)    (f2,f4) 

      and     a3 = new_cell 1 (^v6,^v2)    (f3,f4) 

      and     f1 = new_cell 2 (a1,^e2,^e3) () 

      and     f2 = new_cell 2 (a2,^e4,^e5) () 

      and     f3 = new_cell 2 (a3,^e6,^e1) () 

      and     f4 = new_cell 2 (a1,a2,a3)   () in 

        `edge * a1 + … + `triangle * f4 

} 



Patch: Mesh Subdivision 
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Quadrangular mesh 

Doo-Sabin Catmull-Clark 

Loop 

Butterfly 

Triangular mesh 

Kobbelt 



Patch: Fractal 
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Menger Sponge (2 steps) 

Sierpinsky Sponge (4 steps) 



Outline 

 

 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-shape growth 
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Formalism Summary 

 Elements of Algebraic Topology 
 Abstract Cellular Complex  𝒦 = 𝑆,≺  

  … 

  … 
 

 Topological Collections 
 Formal Sums Representation 𝑐 ∈ 𝐶𝑆 𝑉 ⟹ 𝑐 =  𝑣𝜎 . 𝜎 

 Shape, Support   Shape 𝑐 , 𝑐  

 Sub-collection, Merge  𝑠 ⊂ 𝑐, 𝑐 ⊎ 𝑐′ 
 

 Transformation 
 Collection Patterns/Expressions 𝛼 ∈ 𝐶𝑆var 𝑉

var , 𝛽 ∈ 𝐶𝑆∪𝑆var Σ  

 Rewriting Rules   𝑟 = 𝛼 ⟹ 𝛽 

 Topological Rewriting  𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules 
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Diff. MGS: Algebraic Topology 

 Topological Chains 
 

 Definition 

 

 

 

 

 

 Motivations (homology) 

Extends ACC with an algebraic structure 
 

 Comparison with topological collections 

 Similar to collections with values in a group 

Main difference: chains are total functions 

 Richer algebraic structure 

𝑪𝓚 𝑮  has an abelian group structure 
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Let 𝓚 be an ACC and let 𝑮 be an abelian group. 

A topological chain over 𝓚 with values in 𝑮 is a function null almost 

everywhere from 𝓚 to 𝑮. 𝑪𝓚 𝑮  denotes the topological chains over 𝓚 

with values in 𝑮. 

Let 𝓚 be an ACC and let 𝑮 be an abelian group. 

A topological chain over 𝓚 with values in 𝑮 is a function null almost 

everywhere from 𝓚 to 𝑮. 𝑪𝓚 𝑮  denotes the topological chains over 𝓚 

with values in 𝑮. 



Diff. MGS: Algebraic Topology 

 Topological Cochains 
 

 Definition 

 

 

 

 

 

 Representation with formal sums 
 

𝑇 =  𝑓. 𝝉𝝉∈𝓚  where 𝑓 are homomorphisms of Hom 𝑮,𝑯  
 

 Application of a cochain on a chain 

𝑻, 𝒄 =  𝑓𝝉. 𝝉𝝉∈𝓚 ,  𝑣𝝈. 𝝈𝝈∈𝓚 =  𝑓𝝉(𝑣𝝈)⁡𝝎∈𝓚  s  
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Let 𝓚 be an ACC and let 𝑮 and 𝑯 be abelian groups. 

The topological cochains of chains of 𝑪𝓚 𝑮  into 𝑯 are group 

homomorphisms from 𝑪𝓚 𝑮  to 𝑯. 

𝑪𝓚 𝑮,𝑯  denotes the group of topological cochains from 𝑪𝓚 𝑮  to 𝑯. 

Let 𝓚 be an ACC and let 𝑮 and 𝑯 be abelian groups. 

The topological cochains of chains of 𝑪𝓚 𝑮  into 𝑯 are group 

homomorphisms from 𝑪𝓚 𝑮  to 𝑯. 

𝑪𝓚 𝑮,𝑯  denotes the group of topological cochains from 𝑪𝓚 𝑮  to 𝑯. 

f1 f2 f3 
v1 v2 v3 [ ] =   f1(v1) + f2(v2) + f3(v3) , 



Diff. MGS: Summary 

 Elements of Algebraic Topology 
 Abstract Cellular Complex  𝒦 = 𝑆,≺  

 Topological Chain   𝑐 ∈ 𝐶𝒦 𝐺 ⟹ 𝑐 =  𝑣𝜎 . 𝜎𝜎∈𝒦  

 Topological Cochain  𝑇 ∈ 𝐶𝒦 𝐺,𝐻 ⟹ 𝑇 =  𝑓𝜏. 𝜏𝜏∈𝒦  
 

 Topological Collections 
 Formal Sums Representation 𝑐 ∈ 𝐶𝑆 𝑉 ⟹ 𝑐 =  𝑣𝜎 . 𝜎 

 Shape, Support   Shape 𝑐 , 𝑐  

 Sub-collection, Merge  𝑠 ⊂ 𝑐, 𝑐 ⊎ 𝑐′ 
 

 Transformation 
 Collection Patterns/Expressions 𝛼 ∈ 𝐶𝑆var 𝑉

var , 𝛽 ∈ 𝐶𝑆∪𝑆var Σ  

 Rewriting Rules   𝑟 = 𝛼 ⟹ 𝛽 

 Topological Rewriting  𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules 
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Diff. MGS: Transformations vs. Cochains 

 Intersection Between Cochains and Transformations 
 Topological Cochain  𝑇 ∈ 𝐶𝒦 𝐺,𝐻 ⟹ 𝑇 =  𝑓𝜏. 𝜏𝜏∈𝒦  

 Topological Rewriting  𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules 

 Rewriting Cochains 

 Cochains of  𝑻 ∈ 𝐶𝒦 𝐺, 𝐶𝒦 𝐺 = Hom 𝐶𝒦 𝐺 , 𝐶𝒦 𝐺  

Mapping of topological chains to topological chains 

 

 

 

 

 Transformation of the form 𝑹 = ⁡𝑋. 𝑥 ⇒ 𝑓𝑥 𝑋 ⁡  

Application of a specific function on each cell of the collection 

 
 One can show that   ∀𝑐 ∈ 𝐶𝒦 𝐺 ⁡⁡⁡⁡𝑐⁡⁡|⊳𝑹⁡ 𝑻, 𝑐  
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trans T = { x  =>  f ^x(x) } 



Diff. MGS: Transport of Data 

 Algebraic handling of collection 
 Usual functional map (when 𝑓𝑥 𝑋  does not depend on 𝑥) 

 Computing by moving data on  the collection 

when 𝑓𝑥 𝑋  transports values from cells 

 to their p-neighbors (i.e., the comma operator) 

  trans Eq1 = { x => pNeighborsFold(+, 0, x, p) } 

 to their faces (i.e., the face operator) 

  trans Eq2 = { x => CofacesFold(+, 0, x) } 

 to their cofaces (i.e., the coface operator) 

  trans Eq3 = { x => FacesFold(+, 0, x) } 
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x x 

𝝎 𝝎′ 

𝜶 

𝝎 𝝎 𝝎 𝝎 𝝎′ 𝝎′ 𝝎′ 

𝜹 

𝜸 𝜷 

𝜶 

𝜷 



Differential Calculus in MGS 

 The boundary operator 𝜕 
 Starting point of the elaboration of the discrete differential calculus 

 

 

 

 

 Coincides with Eq2 (transport of data to faces) with orientation 

 

 The derivative operator 𝐝 
 Defined w.r.t. discrete Stockes’ theorem 

 
 

 

 Coincides with Eq3 (transport of data to cofaces) with orientation 
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2 7 

-4 

𝜕 = 
-2 - 4 

7 + 2 

4 - 7 

𝐝𝑇, 𝑐 = 𝑇, 𝜕𝑐   𝑓(𝑥)𝐝𝑥
𝒟

=  𝐝𝐹(𝑥)
𝒟

=  𝐹(𝑥)
𝜕𝒟

 

Continuous Stockes’ theorem 



Application: Generic Laplacian Operator 
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 Laplacian in Discrete Differential Calculus 
 Definition in terms of 𝜕 and 𝐝 

 

 

 Data transports (in dimension 1) 

 

 

 

 

 

∆= 𝛿𝐝 + 𝐝𝛿⁡⁡⁡where⁡⁡⁡𝛿 = −1 𝑛 𝑘−1 +1 ⋆ 𝐝 ⋆ 



Application: Generic Laplacian Operator 

UCNC'12 - Spatial Computing in MGS - Lecture II 42 

 Laplacian in Discrete Differential Calculus 
 Definition in terms of 𝜕 and 𝐝 

 

 

 MGS Implementation 

 

 

 

 

 

∆= 𝛿𝐝 + 𝐝𝛿⁡⁡⁡where⁡⁡⁡𝛿 = −1 𝑛 𝑘−1 +1 ⋆ 𝐝 ⋆ 



Application: Generic Laplacian Operator 

 Generic Implantation of a Diffusion Operator 
 

 Differential Equation & MGS implantation 

 
 

 

 Continuous Simulations 

The same operator works in any dimensions (here 1D and 2D) 
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fun diffusion[D,orient](u) = 

  u + D*Laplacian[orient=orient](Id)(u) 

𝜕𝑢

𝜕𝑡
= 𝐷∆𝑢 



Application: Generic Laplacian Operator 

 Generic Implantation of a Diffusion Operator 
 

 Stochastic Simulations 

Using another group 𝐺 leads to random walk specifications 
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Application: Generic Laplacian Operator 

 Generic Implantation of a Wave Operator 
 

 Differential Equation & MGS implantation 

 
 

 

 Continuous Simulations 

The same operator works in any dimensions (here 1D and 2D) 
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fun wave[D,orient](u, u’) = 

 let du’ = C*Laplacian[orient=orient](Id)(u) in 

    (u+u’+du’, u’+du’) 

𝜕2𝑢

𝜕𝑡2
= 𝐶∆𝑢 



Application: Generic Laplacian Operator 

 Generic Implantation of a Wave Operator 
 

 Stochastic Simulations 

Using another group 𝐺 leads to random walk specifications 
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Outline 

 

 MGS: a Formal Introduction 
 

 

 Patch Transformations 
 

 

 Differential Operators 
 

 

 An Integrative Example: T-Shape Growth 
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T-Shape Growth 

 Spatial Programming Classical Example 
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T-Shape Growth 

 Differential Transformations for Spring Forces 
 

 Elastic Stress 

𝐹 = 𝛻. 𝜎 𝑝  
 

 MGS Implantation (p-neighbors data transport) 
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trans ElasticStress[k=1.0,L0=5.0,dt=0.1] = { 

 

  x => pneighborsfold( 

    (fun y F -> ( 

       let d = distance(x,y) in 

       let stress = k * (d - L0) / d in 

    F + stress * (y-x) 

    ), F_null, x) 

 

} 



T-Shape Growth 

 Patch Transformations for Cells Divisions 
 

 MGS Implantation 
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patch CellsDivision = { 

 

  ~v1 < e12 < ~f:[dim=2] > e12 > ~v2 

    when (e12 == `Apical) => ( 

      letcell  v3(0) 

      and      v4(0) 

      and     e23(1, (^v2, v3)) 

      and     e34(1, (v3, v4)) 

      and     e41(1, (v4, ^v1)) 

      and      nf(2, (^e12,e23,e34,e41)) in 

        ( v2 + 0.05 * (v2-f) ) * v3 + 

        ( v1 + 0.05 * (v1-f) ) * v4 + 

        `Internal * ^e12 + `Lateral * e23 + 

        `Apical * e34 + `Lateral * e41 + (NextFGP(f)) * nf 

} 


