
Spatial Computing in MGS
Lecture II – MGS & Applications

Antoine Spicher1 & Olivier Michel1 & Jean-Louis Giavitto2

mgs.spatial-computing.org/

www.spatial-computing.org/mgs:tutorial

1LACL, University Paris Est Créteil

2IRCAM, CNRS – UPMC

UCNC’12 – Sept. 2012

Outline

 MGS: a Formal Introduction

 Patch Transformations

 Differential Operators

 An Integrative Example: T-shape growth

UCNC'12 - Spatial Computing in MGS - Lecture II 2

MGS Formalism: Collection

 Topological Collection
 Structure

 A collection of (topological) cells

 An neighborhood relationship

 Data associated with the cells

UCNC'12 - Spatial Computing in MGS - Lecture II 3

0-cell

1-cell

3-cell

2-cell

MGS Formalism: Collection

 Abstract Cellular Complex (ACC)

UCNC'12 - Spatial Computing in MGS - Lecture II 4

Let (S𝑛) be a family of disjoint sets of symbols called topological cells.

The dimension 𝑛 of a cell 𝜎 ∈ S𝑛 is denoted dim(𝜎). We write S = (S𝑛)𝑛 .

Let (S𝑛) be a family of disjoint sets of symbols called topological cells.

The dimension 𝑛 of a cell 𝜎 ∈ S𝑛 is denoted dim(𝜎). We write S = (S𝑛)𝑛 .

An abstract cellular complex 𝓚 on S is a couple (𝑆, ≺) such that

• 𝑆 ⊂ S is a set of topological cells,

• ≺⊂ 𝑆 × 𝑆 is a partial order on 𝑆, called the incidence relation,

• the dimension is monotone for ≺: 𝜎1 ≺ 𝜎2⟹ dim 𝜎1 < dim 𝜎2 .

An abstract cellular complex 𝓚 on S is a couple (𝑆, ≺) such that

• 𝑆 ⊂ S is a set of topological cells,

• ≺⊂ 𝑆 × 𝑆 is a partial order on 𝑆, called the incidence relation,

• the dimension is monotone for ≺: 𝜎1 ≺ 𝜎2⟹ dim 𝜎1 < dim 𝜎2 .

f

e1 e2 e3

v2 v1 v3

dim = 2

dim = 1

dim = 0

v1

v2 v3

e1 e3

e2

f

MGS Formalism: Collection

 Some neighborhoods on ACC
 Face/Coface relationship (<, >)

UCNC'12 - Spatial Computing in MGS - Lecture II 5

Let 𝒦 be an ACC and let 𝜎 and 𝜏 be two cells of 𝒦.

The cell 𝜏 is called face of 𝜎 if 𝜏 ≺ 𝜎 and dim 𝜏 = dim 𝜎 − 1.

The cell 𝜎 is called coface of 𝜏. This relation is denoted by 𝜏 < 𝜎.

Let 𝒦 be an ACC and let 𝜎 and 𝜏 be two cells of 𝒦.

The cell 𝜏 is called face of 𝜎 if 𝜏 ≺ 𝜎 and dim 𝜏 = dim 𝜎 − 1.

The cell 𝜎 is called coface of 𝜏. This relation is denoted by 𝜏 < 𝜎.

v1

v2 v3

e1 e3

e2

f v1 < e1 > v2 f

e1 e2 e3

v2 v1 v3

v2 < e2 > v3

v3 < e3 > v1

e1 > f

e2 > f

e3 > f

MGS Formalism: Collection

 Some neighborhoods on ACC
 Face/Coface relationship (<, >)

 𝑝-Neighborhood (,p)

UCNC'12 - Spatial Computing in MGS - Lecture II 6

Let 𝒦 be an ACC, 𝜏1 and 𝜏2 two 𝑛-cells of 𝒦 and 𝑝 an integer.

The cells 𝜏1 and 𝜏2 are said 𝒑-neighbors if there exists 𝜎 ∈ 𝒦 such that

• 𝜏1 ≻ 𝜎 and 𝜏2 ≻ 𝜎 if 𝑛 > 𝑝, or

• 𝜏1 ≺ 𝜎 and 𝜏2 ≺ 𝜎 if 𝑛 < 𝑝

This relation is denoted by a comma: 𝜏1,𝑝 𝜏2.

Let 𝒦 be an ACC, 𝜏1 and 𝜏2 two 𝑛-cells of 𝒦 and 𝑝 an integer.

The cells 𝜏1 and 𝜏2 are said 𝒑-neighbors if there exists 𝜎 ∈ 𝒦 such that

• 𝜏1 ≻ 𝜎 and 𝜏2 ≻ 𝜎 if 𝑛 > 𝑝, or

• 𝜏1 ≺ 𝜎 and 𝜏2 ≺ 𝜎 if 𝑛 < 𝑝

This relation is denoted by a comma: 𝜏1,𝑝 𝜏2.

v1

v2 v3

e1 e3

e2

f

v1 ,1 v2

f

e1 e2 e3

v2 v1 v3

v2 ,2 v3

e3 ,0 e1

e2 ,2 v1
…

MGS Formalism: Collection

 Labeling of an ACC

UCNC'12 - Spatial Computing in MGS - Lecture II 7

c = (0,4).v1 + (3,0).v2 + (-3,0).v3 + 5.e1 + 6.e2 + 5.e3 + 12.f

Let 𝒦 be an ACC and let V be an arbitrary set of values.

A topological collection over 𝓚 with values in V is a partial function from

𝓚 to V. 𝑪S V denotes the set of collections with values in V.

Let 𝒦 be an ACC and let V be an arbitrary set of values.

A topological collection over 𝓚 with values in V is a partial function from

𝓚 to V. 𝑪S V denotes the set of collections with values in V.

v1

v2 v3

e1 e3

e2

f
(0,4)

(3,0) (-3,0)

5 5

6

12

MGS Formalism: Collection

 Types of collections
 Depending on the topology of the underlying cellular complex

 Records (equivalent to a C struct)

 Let ℱ be the set of fields

 𝒦 = (𝐹, ∅) with 𝐹 ⊂ ℱ, a totally disconnected space

UCNC'12 - Spatial Computing in MGS - Lecture II 8

{ a = 1, b = 2.0, c = “trois” }

1

2.0

“trois”

MGS Formalism: Collection

 Types of collections
 Depending on the topology of the underlying cellular complex

 Monoidal collections

 Collections builds from singleton and join operator

 Topology depends on the properties of the join operator

 Sequence (associative): linear graph

UCNC'12 - Spatial Computing in MGS - Lecture II 9

1

2

5

3

1 2

4

(1, 2, 5, 3, 1, 2, 4):seq

MGS Formalism: Collection

 Types of collections
 Depending on the topology of the underlying cellular complex

 Monoidal collections

 Collections builds from singleton and join operator

 Topology depends on the properties of the join operator

 Sequence (associative): linear graph

 Bag (associative/commutative): complete graph

UCNC'12 - Spatial Computing in MGS - Lecture II 10

1 2

5

3

1

2

4

(1, 2, 5, 3, 1, 2, 4):bag

MGS Formalism: Collection

 Types of collections
 Depending on the topology of the underlying cellular complex

 Monoidal collections

 Collections builds from singleton and join operator

 Topology depends on the properties of the join operator

 Sequence (associative): linear graph

 Bag (associative/commutative): complete graph

 Set (associative/commutative/idempotent): complete graph

UCNC'12 - Spatial Computing in MGS - Lecture II 11

(1, 2, 5, 3, 1, 2, 4):set

5

3 1

2

4

MGS Formalism: Collection

 Types of collections
 Depending on the topology of the underlying cellular complex

 GBF collections

 Let 𝐺 = 𝑑1, 𝑑2, …|𝑟1, 𝑟2, … be a finitely generated group

 𝒦 = 𝐺, 𝑔,1 𝑔 ± 𝑑𝑖 |𝑔 ∈ 𝐺 , the Cayley’s graph of 𝐺

UCNC'12 - Spatial Computing in MGS - Lecture II 12

gbf NEWS = < north, east, west, south ;

 north = -south, east = -west > ;;

c = (

 (1, 2),

 (2, 3, 4),

 (3, 4, 5, 6),

 (4, 5, 6, 7, 8)

) following

 |south>, |east> ;;

1

2

3

4

2

3

4

5

4

5

6

6

7 8

MGS Formalism: Collection

 Types of collections
 Depending on the topology of the underlying cellular complex

 Delaunay collections

 Built from a Voronoi tessellation of a set of points

 Association of a region of space with each node

UCNC'12 - Spatial Computing in MGS - Lecture II 13

MGS Formalism: Transformation

 Transformation

UCNC'12 - Spatial Computing in MGS - Lecture II 14

Topological Collection Topological Collection

Sub-collection (Sub-)collection

substitution pattern
matching

trans T = {
 pattern1 expression1
 …
 patternn expressionn
}

MGS Formalism: Transformation

 Transformation
 Function of collections defined by case

 Each case is specified by a rule

pattern ⟹ expression

 Semantics of a transformation: topological rewriting

 Requirements
 Topological collection patterns

 Topological collection expressions, environments and evaluation

 Pattern matching

 Rewriting rule/relation

UCNC'12 - Spatial Computing in MGS - Lecture II 15

MGS Formalism: Transformation

 Some notations

 Collection: 𝑐 = 𝑣. 𝜎

 Shape: Shape 𝑐 = 𝒦

 Support: 𝑐 = 𝜎 ∈ Shape 𝑐 |𝑐 𝜎 isdefined

 Extension: 𝑐′ = 𝑐|𝒦

𝑐′ 𝜎 = 𝑐 𝜎 when 𝜎 ∈ 𝒦 ∩ Shape 𝑐 , and is undefined on 𝒦−Shape 𝑐

 Merge: 𝑐1⨄𝑐2

𝑐1|𝒦 + 𝑐2|𝒦 where 𝒦 = Shape 𝑐1 ∪ Shape 𝑐2

UCNC'12 - Spatial Computing in MGS - Lecture II 16

2

4

8

5

3

⨄ 2

4

8

5

3

=

10

9
9

10

MGS Formalism: Transformation

 Topological Collection Patterns

 Let consider the two sets of variables:

 Svar = 𝑥1, 𝑥2, … variables denoting cells

Elements of are ranked by dimension (i.e., Svar = S)𝑛
var

𝑛

 Vvar = 𝑋1, 𝑋2, … variables denoting values

 A pattern is a topological collection of 𝑪S𝐯𝐚𝐫 V
𝐯𝐚𝐫

UCNC'12 - Spatial Computing in MGS - Lecture II 17

𝛼 = 𝑋1.x1 + 𝑋2.x2 + 𝑋3.x3 + 𝑌1.y1 + 𝑌2.y2 + 𝑌3.y3 + 𝑍.z

x1

x2 x3

y1 y3

z

y2

X1

X2 X3

Y1 Y3

Z

Y2

MGS Formalism: Transformation

 Topological Collection Expressions

 Similar to topological collection patterns

 Extending value variables with expressions 𝚺

 A collection expression is a collection of 𝑪S𝐯𝐚𝐫∪S 𝚺

 Environments

 𝚪𝐒 = S
𝐯𝐚𝐫⟶ S

 𝚪𝐕 = V
𝐯𝐚𝐫⟶ V

 Evaluation function

𝜻:𝑪𝐒𝐯𝐚𝐫∪𝐒 𝚺 × 𝚪𝐒 × 𝚪𝐕⟶ 𝑪𝐒 𝐕

UCNC'12 - Spatial Computing in MGS - Lecture II 18

MGS Formalism: Transformation

 Pattern Matching

 A pattern 𝜶 = 𝑋1.x1 + … + 𝑋𝑚.xm
pattern-matches a collection 𝑐
with environments 𝝆𝐒 ∈ 𝚪𝐒 and 𝝆𝐕 ∈ 𝚪𝐕 iff

𝒄 = 𝝆𝐕 𝑋1 . 𝝆𝐒 𝑥1 + … + 𝝆𝐕 𝑋𝑚 . 𝝆𝐒 𝑥𝑚

 A pattern 𝜶 matches a collection 𝑐′ in a collection 𝑐
with environments 𝝆𝐒 ∈ 𝚪𝐒 and 𝝆𝐕 ∈ 𝚪𝐕 iff

 𝑐′|Shape 𝑐 is a sub-collection of 𝑐

 Shape 𝑐′ ⊂ Shape 𝑐

 𝜶 pattern-matches 𝑐′ with environments 𝝆𝐒 and 𝝆𝐕

UCNC'12 - Spatial Computing in MGS - Lecture II 19

MGS Formalism: Transformation

 Rewriting rule & rewriting relation

 Rewriting rule 𝜶⟹ 𝜷

 𝛼 is a topological collection pattern

 𝛽is a topological collection expression

 One-step rewriting relation: 𝑐1 ⊳𝜶⟹𝜷 𝑐2 iff

 𝑐1 = 𝒍⨄𝒄 (𝒍 is the redex and 𝒄 is the context)

such that 𝜶 matches 𝒍 in 𝑐1 with some environments 𝝆𝐒 and 𝝆𝐕

 𝑐2 = 𝒓⨄𝒄

such that 𝒓 = 𝜁 𝜷, 𝝆𝐒, 𝝆𝐕

 Shape 𝒓 − Shape(𝒍) − Shape 𝒄 = ∅

 ⊳𝑅 trivial extension to a set 𝑅 of rules

UCNC'12 - Spatial Computing in MGS - Lecture II 20

MGS Formalism: Transformation

 Topological Rewriting

 |⊳𝑅 parallel rewriting of a set 𝑅 of rules

UCNC'12 - Spatial Computing in MGS - Lecture II 21

Outline

 MGS: a Formal Introduction

 Patch Transformations

 Differential Operators

 An Integrative Example: T-shape growth

UCNC'12 - Spatial Computing in MGS - Lecture II 22

Patch Transformation

 Motivations
 A straightforward implementation of the previous semantics

 Two pattern languages

 Path patterns: p-neighborhood, close to regular expressions

 Patch patterns: face/coface relation, arbitrary in dimension

UCNC'12 - Spatial Computing in MGS - Lecture II 23

patch

path

Patch: Syntax

 Syntax: building collections

 Creation of a fresh cell

new_cell dim faces cofaces

 Binder letcell … in … & labeling *

UCNC'12 - Spatial Computing in MGS - Lecture II 24

letcell v1 = new_cell 0 () (e1,e3)

and v2 = new_cell 0 () (e1,e2)

and v3 = new_cell 0 () (e2,e3)

and e1 = new_cell 1 (v1,v2) (f)

and e2 = new_cell 1 (v2,v3) (f)

and e3 = new_cell 1 (v1,v3) (f)

and f = new_cell 2 (e1,e2,e3) ()

in

 (0,4)*v1 + (3,0)*v2 + (-3,0)*v3

 + 5*e1 + 6*e2 + 5*e3

 + 12*f

(0,4)

(3,0) (-3,0)

5 5

6

12

Patch: Syntax

 Syntax: patterns

 Pattern variable x corresponds to a collection element 𝑋. 𝑥

 In expressions exp, x denotes 𝑋 ∈ Vvar

 In expressions exp, ^x denotes 𝑥 ∈ Svar

 Tilded pattern variable ~x

The element is matched but not consumed (can be matched by another rule)

 x:[dim = exp] specifies the dimension of the matched element

The expression has to evaluate an integer

 x < y means that ^x is a face of ^y

UCNC'12 - Spatial Computing in MGS - Lecture II 25

pat : : = pat op pat | clause

clause : : = (~)?x(:[dim = exp])?

op : : = < | > | 𝜀

Patch: Vertex Insertion

 Example
Splitting an edge by insertion of a vertex

UCNC'12 - Spatial Computing in MGS - Lecture II 26

patch insert_vertex = {

 ~v1 < e:[dim = 1] > ~v2

 =>

 letcell v = new_cell 0 () ()

 and e1 = new_cell 1 (^v1,v) (cofaces ^e)

 and e2 = new_cell 1 (^v2,v) (cofaces ^e)

 in

 (some expression) * v

}

v1 v2
e e1 e2

v v1 v2

Patch: Vertex Insertion

 Example
Splitting an edge by insertion of a vertex

UCNC'12 - Spatial Computing in MGS - Lecture II 27

Patch: Mesh Subdivision

 Mesh subdivision
 Definition

“ Subdivision defines a smooth curve or surface as the limit of a sequence of
successive refinements ”

UCNC'12 - Spatial Computing in MGS - Lecture II 28

SIGGRAPH 98 Course Notes

Patch: Mesh Subdivision

 Polyhedral subdivision
 Inserting vertices on edges

 Splitting each hexagonal surface

UCNC'12 - Spatial Computing in MGS - Lecture II 29

Patch: Mesh Subdivision

 MGS Implementation

UCNC'12 - Spatial Computing in MGS - Lecture II 30

patch insert_vertex = { … }

patch subdivide_face = {

 f:[dim = 2]

 ~v1 < ~e1 < f > ~e1 > ~v2 < ~e2 < f > ~e2 >

 ~v3 < ~e3 < f > ~e3 > ~v4 < ~e4 < f > ~e6 >

 ~v5 < ~e5 < f > ~e5 > ~v6 < ~e6 < f > ~e4 > ~v1

 =>

 letcell a1 = new_cell 1 (^v2,^v4) (f1,f4)

 and a2 = new_cell 1 (^v4,^v6) (f2,f4)

 and a3 = new_cell 1 (^v6,^v2) (f3,f4)

 and f1 = new_cell 2 (a1,^e2,^e3) ()

 and f2 = new_cell 2 (a2,^e4,^e5) ()

 and f3 = new_cell 2 (a3,^e6,^e1) ()

 and f4 = new_cell 2 (a1,a2,a3) () in

 `edge * a1 + … + `triangle * f4

}

Patch: Mesh Subdivision

UCNC'12 - Spatial Computing in MGS - Lecture II 31

Quadrangular mesh

Doo-Sabin Catmull-Clark

Loop

Butterfly

Triangular mesh

Kobbelt

Patch: Fractal

UCNC'12 - Spatial Computing in MGS - Lecture II 32

Menger Sponge (2 steps)

Sierpinsky Sponge (4 steps)

Outline

 MGS: a Formal Introduction

 Patch Transformations

 Differential Operators

 An Integrative Example: T-shape growth

UCNC'12 - Spatial Computing in MGS - Lecture II 33

Formalism Summary

 Elements of Algebraic Topology
 Abstract Cellular Complex 𝒦 = 𝑆,≺

 …

 …

 Topological Collections
 Formal Sums Representation 𝑐 ∈ 𝐶𝑆 𝑉 ⟹ 𝑐 = 𝑣𝜎 . 𝜎

 Shape, Support Shape 𝑐 , 𝑐

 Sub-collection, Merge 𝑠 ⊂ 𝑐, 𝑐 ⊎ 𝑐′

 Transformation
 Collection Patterns/Expressions 𝛼 ∈ 𝐶𝑆var 𝑉

var , 𝛽 ∈ 𝐶𝑆∪𝑆var Σ

 Rewriting Rules 𝑟 = 𝛼 ⟹ 𝛽

 Topological Rewriting 𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules

UCNC'12 - Spatial Computing in MGS - Lecture II 34

Diff. MGS: Algebraic Topology

 Topological Chains

 Definition

 Motivations (homology)

Extends ACC with an algebraic structure

 Comparison with topological collections

 Similar to collections with values in a group

Main difference: chains are total functions

 Richer algebraic structure

𝑪𝓚 𝑮 has an abelian group structure

UCNC'12 - Spatial Computing in MGS - Lecture II 35

Let 𝓚 be an ACC and let 𝑮 be an abelian group.

A topological chain over 𝓚 with values in 𝑮 is a function null almost

everywhere from 𝓚 to 𝑮. 𝑪𝓚 𝑮 denotes the topological chains over 𝓚

with values in 𝑮.

Let 𝓚 be an ACC and let 𝑮 be an abelian group.

A topological chain over 𝓚 with values in 𝑮 is a function null almost

everywhere from 𝓚 to 𝑮. 𝑪𝓚 𝑮 denotes the topological chains over 𝓚

with values in 𝑮.

Diff. MGS: Algebraic Topology

 Topological Cochains

 Definition

 Representation with formal sums

𝑇 = 𝑓. 𝝉𝝉∈𝓚 where 𝑓 are homomorphisms of Hom 𝑮,𝑯

 Application of a cochain on a chain

𝑻, 𝒄 = 𝑓𝝉. 𝝉𝝉∈𝓚 , 𝑣𝝈. 𝝈𝝈∈𝓚 = 𝑓𝝉(𝑣𝝈)𝝎∈𝓚 s

UCNC'12 - Spatial Computing in MGS - Lecture II 36

Let 𝓚 be an ACC and let 𝑮 and 𝑯 be abelian groups.

The topological cochains of chains of 𝑪𝓚 𝑮 into 𝑯 are group

homomorphisms from 𝑪𝓚 𝑮 to 𝑯.

𝑪𝓚 𝑮,𝑯 denotes the group of topological cochains from 𝑪𝓚 𝑮 to 𝑯.

Let 𝓚 be an ACC and let 𝑮 and 𝑯 be abelian groups.

The topological cochains of chains of 𝑪𝓚 𝑮 into 𝑯 are group

homomorphisms from 𝑪𝓚 𝑮 to 𝑯.

𝑪𝓚 𝑮,𝑯 denotes the group of topological cochains from 𝑪𝓚 𝑮 to 𝑯.

f1 f2 f3
v1 v2 v3 [] = f1(v1) + f2(v2) + f3(v3) ,

Diff. MGS: Summary

 Elements of Algebraic Topology
 Abstract Cellular Complex 𝒦 = 𝑆,≺

 Topological Chain 𝑐 ∈ 𝐶𝒦 𝐺 ⟹ 𝑐 = 𝑣𝜎 . 𝜎𝜎∈𝒦

 Topological Cochain 𝑇 ∈ 𝐶𝒦 𝐺,𝐻 ⟹ 𝑇 = 𝑓𝜏. 𝜏𝜏∈𝒦

 Topological Collections
 Formal Sums Representation 𝑐 ∈ 𝐶𝑆 𝑉 ⟹ 𝑐 = 𝑣𝜎 . 𝜎

 Shape, Support Shape 𝑐 , 𝑐

 Sub-collection, Merge 𝑠 ⊂ 𝑐, 𝑐 ⊎ 𝑐′

 Transformation
 Collection Patterns/Expressions 𝛼 ∈ 𝐶𝑆var 𝑉

var , 𝛽 ∈ 𝐶𝑆∪𝑆var Σ

 Rewriting Rules 𝑟 = 𝛼 ⟹ 𝛽

 Topological Rewriting 𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules

UCNC'12 - Spatial Computing in MGS - Lecture II 37

Diff. MGS: Transformations vs. Cochains

 Intersection Between Cochains and Transformations
 Topological Cochain 𝑇 ∈ 𝐶𝒦 𝐺,𝐻 ⟹ 𝑇 = 𝑓𝜏. 𝜏𝜏∈𝒦

 Topological Rewriting 𝑐|⊳𝑅𝑐′ where 𝑅 is a set of rules

 Rewriting Cochains

 Cochains of 𝑻 ∈ 𝐶𝒦 𝐺, 𝐶𝒦 𝐺 = Hom 𝐶𝒦 𝐺 , 𝐶𝒦 𝐺

Mapping of topological chains to topological chains

 Transformation of the form 𝑹 = 𝑋. 𝑥 ⇒ 𝑓𝑥 𝑋

Application of a specific function on each cell of the collection

 One can show that ∀𝑐 ∈ 𝐶𝒦 𝐺 𝑐|⊳𝑹 𝑻, 𝑐

UCNC'12 - Spatial Computing in MGS - Lecture II 38

trans T = { x => f ^x(x) }

Diff. MGS: Transport of Data

 Algebraic handling of collection
 Usual functional map (when 𝑓𝑥 𝑋 does not depend on 𝑥)

 Computing by moving data on the collection

when 𝑓𝑥 𝑋 transports values from cells

 to their p-neighbors (i.e., the comma operator)

 trans Eq1 = { x => pNeighborsFold(+, 0, x, p) }

 to their faces (i.e., the face operator)

 trans Eq2 = { x => CofacesFold(+, 0, x) }

 to their cofaces (i.e., the coface operator)

 trans Eq3 = { x => FacesFold(+, 0, x) }

UCNC'12 - Spatial Computing in MGS - Lecture II 39

x x

𝝎 𝝎′

𝜶

𝝎 𝝎 𝝎 𝝎 𝝎′ 𝝎′ 𝝎′

𝜹

𝜸 𝜷

𝜶

𝜷

Differential Calculus in MGS

 The boundary operator 𝜕
 Starting point of the elaboration of the discrete differential calculus

 Coincides with Eq2 (transport of data to faces) with orientation

 The derivative operator 𝐝
 Defined w.r.t. discrete Stockes’ theorem

 Coincides with Eq3 (transport of data to cofaces) with orientation

UCNC'12 - Spatial Computing in MGS - Lecture II 40

2 7

-4

𝜕 =
-2 - 4

7 + 2

4 - 7

𝐝𝑇, 𝑐 = 𝑇, 𝜕𝑐 𝑓(𝑥)𝐝𝑥
𝒟

= 𝐝𝐹(𝑥)
𝒟

= 𝐹(𝑥)
𝜕𝒟

Continuous Stockes’ theorem

Application: Generic Laplacian Operator

UCNC'12 - Spatial Computing in MGS - Lecture II 41

 Laplacian in Discrete Differential Calculus
 Definition in terms of 𝜕 and 𝐝

 Data transports (in dimension 1)

∆= 𝛿𝐝 + 𝐝𝛿where𝛿 = −1 𝑛 𝑘−1 +1 ⋆ 𝐝 ⋆

Application: Generic Laplacian Operator

UCNC'12 - Spatial Computing in MGS - Lecture II 42

 Laplacian in Discrete Differential Calculus
 Definition in terms of 𝜕 and 𝐝

 MGS Implementation

∆= 𝛿𝐝 + 𝐝𝛿where𝛿 = −1 𝑛 𝑘−1 +1 ⋆ 𝐝 ⋆

Application: Generic Laplacian Operator

 Generic Implantation of a Diffusion Operator

 Differential Equation & MGS implantation

 Continuous Simulations

The same operator works in any dimensions (here 1D and 2D)

UCNC'12 - Spatial Computing in MGS - Lecture II 43

fun diffusion[D,orient](u) =

 u + D*Laplacian[orient=orient](Id)(u)

𝜕𝑢

𝜕𝑡
= 𝐷∆𝑢

Application: Generic Laplacian Operator

 Generic Implantation of a Diffusion Operator

 Stochastic Simulations

Using another group 𝐺 leads to random walk specifications

UCNC'12 - Spatial Computing in MGS - Lecture II 44

Application: Generic Laplacian Operator

 Generic Implantation of a Wave Operator

 Differential Equation & MGS implantation

 Continuous Simulations

The same operator works in any dimensions (here 1D and 2D)

UCNC'12 - Spatial Computing in MGS - Lecture II 45

fun wave[D,orient](u, u’) =

 let du’ = C*Laplacian[orient=orient](Id)(u) in

 (u+u’+du’, u’+du’)

𝜕2𝑢

𝜕𝑡2
= 𝐶∆𝑢

Application: Generic Laplacian Operator

 Generic Implantation of a Wave Operator

 Stochastic Simulations

Using another group 𝐺 leads to random walk specifications

UCNC'12 - Spatial Computing in MGS - Lecture II 46

Outline

 MGS: a Formal Introduction

 Patch Transformations

 Differential Operators

 An Integrative Example: T-Shape Growth

UCNC'12 - Spatial Computing in MGS - Lecture II 47

T-Shape Growth

 Spatial Programming Classical Example

UCNC'12 - Spatial Computing in MGS - Lecture II 48

T-Shape Growth

 Differential Transformations for Spring Forces

 Elastic Stress

𝐹 = 𝛻. 𝜎 𝑝

 MGS Implantation (p-neighbors data transport)

UCNC'12 - Spatial Computing in MGS - Lecture II 49

trans ElasticStress[k=1.0,L0=5.0,dt=0.1] = {

 x => pneighborsfold(

 (fun y F -> (

 let d = distance(x,y) in

 let stress = k * (d - L0) / d in

 F + stress * (y-x)

), F_null, x)

}

T-Shape Growth

 Patch Transformations for Cells Divisions

 MGS Implantation

UCNC'12 - Spatial Computing in MGS - Lecture II 50

patch CellsDivision = {

 ~v1 < e12 < ~f:[dim=2] > e12 > ~v2

 when (e12 == `Apical) => (

 letcell v3(0)

 and v4(0)

 and e23(1, (^v2, v3))

 and e34(1, (v3, v4))

 and e41(1, (v4, ^v1))

 and nf(2, (^e12,e23,e34,e41)) in

 (v2 + 0.05 * (v2-f)) * v3 +

 (v1 + 0.05 * (v1-f)) * v4 +

 `Internal * ^e12 + `Lateral * e23 +

 `Apical * e34 + `Lateral * e41 + (NextFGP(f)) * nf

}

