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MGS Formalism: Collection

®m Topological Collection

0 Structure
®m A collection of (topological) cells

B An neighborhood relationship
O Data associated with the cells ———
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MGS Formalism: Collection

b ===

®m Abstract Cellular Complex (ACC)

Let (S;,) be a family of disjoint sets of symbols called topological cells.

The nofacell o €S, is denoted . We write S = U, (S,).

-
An abstract cellular complex K on S is a couple (S, <) such that

» S C Sis a set of topological cells,

» < C S XS isapartial order on S, called the incidence relation,

\

& the is monotone for <. 0, < 0, = dim(og;) < dim(o,).
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MGS Formalism: Collection

b ===

® Some neighborhoods on ACC

0 Face/Coface relationship (<, >)

Let K be an ACC and let o and T be two cells of K.
The cell T is called face of o if T < o and

L The cell o is called coface of 1. This relation is denoted by T < o. J

v, f
S/ Vv, <e >V
® 1 1 2
V,<e,>V;,
e, e, . . . vy <e;> v,
1 2 3 e, >f
L><| |><|1 e,>f
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Vi @ ® e.>f
e, V2 V1 V3 3
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MG

S Formalism: Collection

— ————

-

® Some neighborhoods on ACC
[0 Face/Coface relationship (<, >)
O p-Neighborhood (,, )
4 )
Let K be an ACC, 141 and T, two n-cells of K and p an integer.
The cells T, and T, are said p-neighbors if there exists o € K such that
e Ty >0andt, > 0if , or
e Ty <oandt, <oif
This relation is denoted by a comma: 1, ,, 7. )
%
o 7/ A
m Vin W
€3 € V2,2 V3
e, e, e, e n e
e, V2 Vi V3
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MGS Formalism: Collection

® Labeling of an ACC

p
Let K be an ACC and let V be an arbitrary set of values.
A topological collection over 7 with values in V is a partial function from
to V. C<(V) denotes the set of collections with values in V.

\.

c=(0,4).v, +(3,0).v, +(-3,0).v, + 5.e, + 6., + S5.e, + 12.

1% (0,4)
¢ 7 ¢
/ )< 5 5
v; @ o (-30) @ - e 3.0
e

2
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MGS Formalism: Collection

m Types of collections

[0 Depending on the topology of the underlying cellular complex

[0 Records (equivalent to a C struct)
® Let F be the set of fields
m K = (F,0)with F c F, a totally disconnected space

{ a=1, b=2.0, ¢ = “trois” } 02‘0

® «

trois”
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MGS Formalism: Collection

m Types of collections

[0 Depending on the topology of the underlying cellular complex

0 Monoidal collections
m Collections builds from singleton and join operator
® Topology depends on the properties of the join operator
[0 Sequence (associative): linear graph

(1, 2, 5, 3, 1, 2, 4):seq
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MGS Formalism: Collection

=

p. —T—=——=uEETae

m Types of collections

[0 Depending on the topology of the underlying cellular complex

0 Monoidal collections
m Collections builds from singleton and join operator
® Topology depends on the properties of the join operator
[0 Sequence (associative): linear graph

O Bag (associative/commutative): complete graph
1

(1, 2, 5, 3, 1, 2, 4):bag

4 3
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MGS Formalism: Collection

=

. TRl

m Types of collections

[0 Depending on the topology of the underlying cellular complex

0 Monoidal collections
m Collections builds from singleton and join operator
® Topology depends on the properties of the join operator
[0 Sequence (associative): linear graph
O Bag (associative/commutative): complete graph
O Set (associative/commutative/idempotent): complete graph

2

(L, 2, 5, 3, 1, 2, 4):set

5 4
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m Types of collections

MGS Formalism: Collection

[0 Depending on the topology of the underlying cellular complex

[0 GBF collections

m letG =(dd,,.. | 1,1, ..) be afinitely generated group

m K=(G,{(g,,g*d)|geEG}),theCayley’s graph of G

o

-west > ;;

gbf NEWS = < north, east, west, south ;
north = -south, east =
c = (
(1, 2), *
(2, 3, 4),
(3, 4,5, 6),
(4, 5, 6,7, 8)
) following

| south>, |east> ;;

_‘
_‘
_‘

f

’

00 0 0 0

o o o 0o o
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MGS Formalism: Collection

m Types of collections

[0 Depending on the topology of the underlying cellular complex

[0 Delaunay collections

B Built from a Voronoi tessellation of a set of points
® Association of a region of space with each node

— Voronoi polygon

— Delaunay triangle
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MGS Formalism: Transformation

B e

- ===

B Transformation

Sub-collection (Sub-)collection

-— >

pattern trans T = { | substitution
matching n 1

pattern, => expression,

patternn — expression,

Topological Collection Topological Collection
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MGS Formalism: Transformation

B Transformation

[0 Function of collections defined by case

[0 Each case is specified by a rule

pattern = expression

[0 Semantics of a transformation: topological rewriting

B Requirements

O

O
O
O

Topological collection patterns

Topological collection expressions, environments and evaluation
Pattern matching

Rewriting rule/relation
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MGS Formalism: Transformation

B Some notations

O

O
O
O

Collection: c = ), v.o
Shape: Shape(c) = X
Support: [c] = { 0 € Shape(c) | c(o) is defined }

Extension: ¢’ = ¢jx
c¢'(o) = c(o) when o € K n Shape(c), and is undefined on {—Shape(c)

Merge: c;dc,
C1j5c T Capgc Where K = Shape(c;) U Shape(c,)

o e 10 o o 100
8 N 8| N\,
2 ltJ 5 () — 2 5 o
4 d 4 yd
o o 9@ ® 09
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MGS Formalism: Transformation

®m Topological Collection Patterns

[0 Let consider the two sets of variables:

SV =

, %, ... } variables denoting cells

Elements of are ranked by dimension (i.e., S¥3T =

m V' ={X,,X,,..}variables denoting values

0 A pattern is a topological collection of C

:Xl' +X2. +X3. +Y1.
’: z
V3 M1
X3 @ o -
V2

Un S%)
(Vvar)
+ Yy, + Ve, + Z.
Xl
®
X; @
Y2
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MGS Formalism: Transformation

B e

- ===

®m Topological Collection Expressions

0 Similar to topological collection patterns
m Extending value variables with expressions X

m A collection expression is a collection of C (2)

[0 Environments
[]

| l"V — Vvar NN V

[0 Evaluation function

(: C () xIs x Iy — Cs(V)
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MGS Formalism: Transformation

N e S R AT T

®m Pattern Matching

O Apatterna =X, .0, +...+X,,.
pattern-matches a collection ¢
with environments and py € Iy iff

c = py(Xy). .+ py(Xn).

O A pattern o matches a collection ¢’ in a collection c
with environments and py € Iy iff

" C'|shape(c) IS @ sub-collection of ¢
m Shape(c") < Shape(c)

B« pattern-matches ¢’ with environments ps and py
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MGS Formalism: Transformation

B Rewriting rule & rewriting relation

0 Rewritingrule « = f8
m is a topological collection pattern
®m [ is atopological collection expression

00 One-step rewriting relation: ¢; &,z ¢, iff

m ¢y =l c(listheredex and c is the context)
such that « matches [ in ¢; with some environments

moc,=1rlcC
such that r = (B, ps, pv)
®m  (Shape(r) — Shape(/)) — Shape(c) = @

[0 c©p trivial extension to a set R of rules

and py
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MGS Formalism: Transformation

® Topological Rewriting

O |eg parallel rewriting of a set R of rules

C1 — [4 b . , [, b C
Co = r1 , . , rn v C

LN || =0 for all i # j
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Outline

®m MGS: a Formal Introduction
B Patch Transformations
m Differential Operators

B An Integrative Example: T-shape growth
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Patch Transformation

B e

- ===

® Motivations

0 A straightforward implementation of the previous semantics

0 Two pattern languages
®m Path patterns: p-neighborhood, close to regular expressions
m Patch patterns: face/coface relation, arbitrary in dimension

path -
0»1{1:" T ’ T
| I |

I patch
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Patch: Syntax

®m Syntax: building collections

[0 Creation of a fresh cell

new_cell dim faces cofaces

[0 Binder letcell ..

letcell vl
and v2
and v3
and el
and e2
and e3
and £
in

(0,4)*vl + (3,0)*v2 + (-3,0)*v3

new _cell
new _cell
new _cell
new _cell
new _cell
new _cell
new _cell

+ 5*el + 6*e2 + 5*e3
+ 12*f

NPRPRRPRPREROODO

in .. & labeling *

()

()

()

(vl,v2)
(v2,v3)
(vl,v3)
(el,e2,el)

(el,e3)
(el,e2)
(e2,e3)
(£)

(£)

(£)

()

('390) .
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Patch: Syntax

B Syntax: patterns

pat ::= patop pat| clause
clause ::= (~)?x(:[dim = 1)?
= <|>]|¢

[0 Pattern variable x corresponds to a collection element X. x
m In expressions ¢xp, x denotes X € VVa'
m In expressions ¢xp, “x denotes x € SV¥"

0 Tilded pattern variable ~x

The element is matched but not consumed (can be matched by another rule)

O x:[dim = ] specifies the dimension of the matched element

The expression has to evaluate an integer

0 x < y meansthat “xisafaceof *y
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Patch: Vertex Insertion

- —

T e o

® Example

Splitting an edge by insertion of a vertex

I‘)

U {:l q ( :)
vl v2 vl

patch insert vertex = {
~vl < e:[ dim =1 ] > ~v2

=>
letcell = new_cell 0 ()
and = new cell 1 ("vl,v)
and = new _cell 1 ("v2,v)
in

(some expression) *

C

v2

()

(cofaces “e)
(cofaces “e)
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Patch: Vertex Insertion

® Example

Splitting an edge by insertion of a vertex
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Patch: Mesh Subdivision

N N S e i e R N T T TR S T e

B Mesh subdivision
[0 Definition

o

Subdivision defines a smooth curve or surface as the limit of a sequence of
successive refinements ”

T s
e

i

Tl
LT

N 4%
kS i—"fﬁg i
; e

L N
TR b [ 1
!,i!'ﬁ 1.::r "f 2 ‘ﬂ.

A

SIGGRAPH 98 Course Notes
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Patch: Mesh Subdivision

® Polyhedral subdivision

0 Inserting vertices on edges

[0 Splitting each hexagonal surface
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Patch: Mesh Subdivision

b === el

® MGS Implementation

patch insert vertex = { ..}

patch subdivide face = {
f:[ dim = 2 ]
~vl < ~el < £ > ~el > ~v2 < ~e2 < f > ~e2 >
~v73 < ~e3 < £ > ~e3 > ~vd < ~ed < £ > ~eb >
~v5 < ~e5 < £ > ~eb5 > ~v6 < ~eb < £ > ~ed > ~vl

letcell = new _cell 1 ("v2,"v4) (£1,£4)
and = new cell 1 ("v4,”"v6) (£2,£4)
and = new cell 1 ("v6,"v2) (£3,£4)
and = new _cell 2 (al,”e2,”e3) ()
and = new _cell 2 (a2,%e4,”e5) ()
and = new _cell 2 (a3,%e6,%el) ()

and = new_cell 2 (al,z2,a3) () in
"edge * + .. + “triangle *
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Patch: Mesh Subdivision

PR i - b B oo
S e . - et

Butterfly

Triangular mesh

Kobbelt

Quadrangular mesh

Catmull-Clark Doo-Sabin
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Patch: Fractal

Sierpinsky Sponge (4 steps)

Menger Sponge (2 steps)
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Outline

®m MGS: a Formal Introduction
B Patch Transformations
m Differential Operators

B An Integrative Example: T-shape growth
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Formalism Summary

® Elements of Algebraic Topology

O Abstract Cellular Complex K =(5<)
O
O

®m Topological Collections

[0 Formal Sums Representation ceC(V)=c=Xv,.0
[0 Shape, Support Shape(c), |c]
[0 Sub-collection, Merge scccWc

B Transformation

0 Collection Patterns/Expressions a € Csvar (VV3), B € Cgygvar(X)
0 Rewriting Rules r=a=2_
0 Topological Rewriting c|s>,c" where R is a set of rules

UCNC'12 - Spatial Computing in MGS - Lecture Il
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Diff. MGS: Algebraic Topology

® Topological Chains

0 Definition

-
Let 7. be an ACC and let G be an abelian group.

A topological chain over 7 with values in G is a function null almost

everywhere from 7 to G. C, () denotes the topological chains over
\with values in G.

[0 Motivations (homology)

Extends ACC with an algebraic structure

[0 Comparison with topological collections
m  Similar to collections with values in a group
Main difference: chains are total functions
®m Richer algebraic structure
C,-(G) has an abelian group structure

UCNC'12 - Spatial Computing in MGS - Lecture Il
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Diff. MGS: Algebraic Topology

:\1
-

® Topological Cochains

0 Definition

4 ™
Let 70 be an ACC and let G and H be abelian groups.

The topological cochains of chains of C(G) into H are group
homomorphisms from C, (G) to H.

\C (G, H) denotes the group of topological cochains from C,(G) to H,

[0 Representation with formal sums

T =), .4 f.7 where f are homomorphisms of Hom(G, H)

0 Application of a cochain on a chain

[T, cl = Rves f7.T) Zoesc Vo 0] = Rgyerc [T (Vo)

[4—2 § |= reo+rea+nes
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Diff. MGS Summary

=

g T

® Elements of Algebraic Topology

[1_Abstract Cellular Complex K =(S5.<)
I O Topological Chain CECy(G) =C=) ey Vs O
00 Topological Cochain TECY(GH)=T=Y,eqf".7T

® Topological Collections

[0 Formal Sums Representation ceCs(V)=>c=)v,.0
0 Shape, Support Shape(c), |c]
[0 Sub-collection, Merge scc,cyc

B Transformation

[0 Collection Patterns/Expressions a € Cgvar(VVa), B € Cqgvar(Z)
[0 Rewriting Rules r=a=9_,
0 Topological Rewriting c|s>,c" where R is a set of rules

UCNC'12 - Spatial Computing in MGS - Lecture Il

37



Diff. MGS: Transformations vs. Cochains

B Intersection Between Cochains and Transformations
00 Topological Cochain TECK(GH) =T=Y,c0f 7
[0 Topological Rewriting c|=>,c" where R is a set of rules
[0 Rewriting Cochains
m Cochains of T € C*(G,Cy(G)) = Hom(Cy (G), Cx(G))

Mapping of topological chains to topological chains
4 = Yg: T3y T ... T YUg,.05

T [ E2

b

T,el = ¢ H ... B ¢,

m  Transformation of theform R = { X.x = [*(X) }
Application of a specific function on each cell of the collection

trans 7 = { x => [™*(x) }

® One can show that Ve € Cx(G) ¢ |=, [T, c]

UCNC'12 - Spatial Computing in MGS - Lecture Il
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Diff. MGS: Transport of Data

®m Algebraic handling of collection

0 Usual functional map (when f*(X) does not depend on x)

0 Computing by moving data on the collection
when f*(X) transports values from cells

O to their p-neighbors (i.e., the comma operator)
trans Eg1 = { x => pNeighborsFold(+, 0, x, p) }

[0 to their faces (i.e., the face operator)
trans Eg2 = { x => CofacesFold(+, O, x) }

[0 to their cofaces (i.e., the coface operator)
trans £g3 = { x => FacesFold(+, 0, x) }

N D W Dy S e
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Differential Calculus in MGS

:\1
-

® The boundary operator 0

[0 Starting point of the elaboration of the discrete differential calculus
r \

°7 + 2
9|2/ | =
\ -4 / -2-4 4 -7

[0 Coincides with Eq2 (transport of data to faces) with orientation

® The derivative operator d

0 Defined w.r.t. discrete Stockes’ theorem

[dT,c] = [T, dc] | reodx= | dre= | Fe

Continuous Stockes’ theorem

[0 Coincides with Eq3 (transport of data to cofaces) with orientation
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Application: Generic Laplacian Operator

® Laplacian in Discrete Differential Calculus

0 Definition in terms of d and d
A= 6d +dS where § = (—1)ME-D+1 4 g *

0 Data transports (in dimension 1)

a b C
-——- @ > @ > o > @ >
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Application: Generic Laplacian Operator

® Laplacian in Discrete Differential Calculus

0 Definition in terms of d and d
A= 6d +dS where § = (—1)ME-D+1 4 g *

0 MGS Implementation

let Laplacian T =
let Sg T’ ¢’ =
T’ (trans { x => -1x*((dim c’)*((dim "x)-1D)+1)*x }(c’))
in
fun ¢ -> Derivative(Sg(Derivative®® (T))) (c)
+ Sg(Derivative®® (Derivative(T))) (c)

UCNC'12 - Spatial Computing in MGS - Lecture Il
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Application: Generic Laplacian Operator

® Generic Implantation of a Diffusion Operator

0 Differential Equation & MGS implantation

a_u — DA fun diffusion[D,orient] (u) =
ot - u u + D*Laplacian[orient=orient] (Id) (u)

[0 Continuous Simulations

10

0B

LEYS

:| X :| L M L 1

The same operator works in any dimensions (here 1D and 2D)

1 " " 1 L " 1 " " " 1 L 1
4 5 ) 10
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Application: Generic Laplacian Operator

e

® Generic Implantation of a Diffusion Operator

[0 Stochastic Simulations

Using another group G leads to random walk specifications

1

0.8

0.6

0.4

0.2

0 20 40 60 80 100
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Application: Generic Laplacian Operator

® Generic Implantation of a Wave Operator

0 Differential Equation & MGS implantation

azu fun wave[D,orient] (u, u’) =
—— = CAu let du’ = C*Laplacian[orient=orient] (Id) (u) in
6t2 (utu’ +du’, u’+du’)

0 Continuous Simulations
The same operator works in any dimensions (here 1D and 2D)

I |
1 " L 1 1 e 1 P 1 1 1 3 L I T TR TR I TR

-l1.0L
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Application: Generic Laplacian Operator

T S s L by

® Generic Implantation of a Wave Operator

[0 Stochastic Simulations

Using another group G leads to random walk specifications

RPRERERE N
RFNROONN
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Outline

®m MGS: a Formal Introduction
B Patch Transformations
m Differential Operators

® An Integrative Example: T-Shape Growth
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T-Shape Growth

m -.-__—-.-.::I—.—lﬁ.:l-.—-l--n-.—.-r.‘-." .-L.-".-. -“:'-_J" Sk s S e Al et e g

®m Spatial Programming Classical Example

i_':l Hicw e e
PRy i, = e =
ey ———————ra .k Uiy | i Loam
i, ol P e Cvem Hade * st
ChRaage [am Heas " a3 L
; [LEee Wy | P | e S
[ wy | P | e b
L:‘ Heew g—— e p _“
I__ ! [ |
heiary | Laan
range v Masn S Ratiy |
L By | Pees | A | e b |
i e S
gy .
|
1 | |
k f— Cvam Hesn |
[ |
Bl oy | P s |

4

A e

UCNC'12 - Spatial Computing in MGS - Lecture Il



T-Shape Growth

m Differential Transformations for Spring Forces

[0 Elastic Stress
F=V.o(p)

0 MGS Implantation (p-neighbors data transport)

trans [k=1.0,L0=5.0,dt=0.1] =

x => pneighborsfold
(fun v F -> (
let d = distance(x,y) 1in
let stress = k * (d - L0) / d in
FF'+ stress * (y—Xx)
), F null, x)

{
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T-Shape Growth

m Patch Transformations for Cells Divisions

0 MGS Implantation

patch = {
~vl < el2 < ~f:[dim=2]
when (el2 == "Apical) =>
letcell v3(0)
and v4 (0)
and e23(1, ("v2, v
and e34(1, (v3, v4
and e4d1(1l, (v4, v
and nf(2, (

(
(

"Internal * *el2 +
"Apical * e34 +

vz + 0.05 *
vl + 0.05 *

~el2,e23,e34,e41))

(v2-1f)
(vl-f)

3
)
1

(
))
)

))

)
)

> el2 > ~v2

* v3 +
* v4d +

in

"Lateral * e23 +
"Lateral * e4l +

(NextFGP (L))

*

nf
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