Algorithmic Examples

Multiset and the Chemical Model

The Chemical model

- Gamma (Banâtre & Le Metayer, 1986):
 - Data: "floating" molecules in the solution
 - Computation: chemical reactions between the molecules
 - no over specification of control structure (non determinism, parallelism)
 - no over specification of data structure (multisets as blackboard)

•	Metaphor	Foundations
	Solution	Multisets

ReactionsRewriting rulesBownian motionAssociativity/Commutativity

• Implicit parallelism and autonomy of reactions until inertia

Computing the primes

replace x, y by x if x divide y

Pro and Cons

- Very high-level languages
- Between specification and programs
 - not specifications
 (*e.g.*, several algorithms are expressible for the same task)
 - not programs(typically not the same complexity)
- Relevant for the programming of large autonomic and distributed systems
 - 1. The multiset data structure and rewriting suitably represent the orderless interactions (reactions) between elements that occur in large parallel or open systems
 - 2. Autonomic properties (e.g. self-healing, self-protection, selfoptimization, etc.) are naturally expressed as reaction rules. The corresponding behavior can be seen as the corrective action corresponding a perturbation.

Pro and Cons

The high-level nature of chemical programming entails also drawbacks

- 1. multisets are weak data structure
 - difficult to express data structure
 - difficult to express selection and control of rules
 - difficult to represent the distribution
 - neighborhood relationships represent physical constraints (spatial distribution, localization of the resources)
 - multiset = ether
- 2. AC rewriting can be inefficient
 - the selection of elements
 - the ordering of reactions
 - the termination

Eratosthene's Sieve

 $Eliminate[\texttt{fixrule}] \Big(Succed \big(Generate[N](\{2, true\}, \texttt{set} : ()) \big) \Big)$

trans $X = \{ x, y / (x \otimes y == 0) => y \}$

applied on the bag

2, 3, 4, 5, 6, ..., n

(in a bag, any elements are neighbor)

At fixpoint, there is no x, y such that y divides x. That is: the numbers in the multiset are relatively primes. And because we started from all number between 2 and n, we have the **primes below** n.

Sequence

Example: "bubble sort" of a sequence

Example: "bubble sort" of a sequence

trans bubble_sort = { x , y / (x > y) => y , x };; bubble_sort[`fixpoint]((3,1,4,2)) ;;

Eratosthene's Sieve

9

11

Array

Bead sort

Bead sort

trans bead_sort = { • | south> <empty> => <empty>, • };;

Group based fields

From Arrays, Data Fields and GBF to Chain

Cayley graph of a finite group presentation: < n, e; n+e=e+n >

- vertices are group element
- edges are generators g linking u and v iff u + g = v

Equations are closed paths (loops):

- backtracking path are closed in any Cayley graph : e + e + n n e e
- group equation are specific of the graph topology

< n, e, nw; n = e+nw >


```
gbf hexa = \langle a, b, c; a+b=c \rangle
```

```
trans T = {
   (0 as x / (neighborsfold(+, 0, x)==1)
   => 1)
}
```

Hamiltonian path

x* as p / size(p) = N **=>** return(p)

};;

Path in a Maze

trans maze = { `input, c* as p, `output => return p }

Graphs defined by a metric

Proximal

record agent = { x : float, y: float } proximal P[agent] = fun a b -> $(a.x - b.x)^2 + (a.y - b.y)^2$

Proximal and Flocking Birds

alignment =

```
a => begin
    let phi = neighborsfold(add_theta, 0, a)
    and nb = neighborsfold(nb_neighbors, 0, a) in
    let dir = phi / nb
    in a + {x = a.x + speed*cos(dir) + random(bruit),
        y = a.y + speed*sin(dir) + random(bruit),
        theta = dir}
```

end;

};;

```
separation =
  a / neighborsfold(to close(a), false, a)
  => begin
        let b = neighborsfold( closer bird(a),
                                   \{dist = 2*d sep\},\
                                   a) in
        let dir = if (random(2) == 0)
                  then b.theta + 'PI 2
                  else b.theta - 'PI 2 fi
        in a + \{x = a.x + speed*cos(dir),
                y = a.y + speed*sin(dir),
                theta = dir\}
```

end;

cohesion =

```
a / neighborsfold(to_far(a), true, a)
=> begin
    let b = neighborsfold(closer_bird(a),{dist = 0}, a) in
    let dir = atan2(b.y - a.y, b.x - a.x)
    in a + {x = a.x + speed2*cos(dir),
        y = a.y + speed2*sin(dir),
        theta = dir}
end;
```

alignment =

end;

Fibonacci and phyllotaxis

Two successive numbers of the Fibonacci series

Phyllotaxis : divergence angle

Phyllotaxis models: three kinds of approaches

(Hofmeister, 1868) (Snow and Snow, 1962)

A shoot apical meristem

Active transport of auxine

high concentration of auxine induces organ initiation

MGS @ UCNC'2012. J.-L. Giavitto, A. Spicher. http://mgs.spatial-computing.org

Genetic labelling

Images : Vernoux & Traas

ANT::GFP

Virtual meristem

Meristem representation

Meristem representation

trans div =
$$\{x / dividing(x) \Rightarrow child(x,1), child(x,2)\}$$

Model 3 - "Inhibitor fields" and diffusion

Simulation results

Model 4 : Active pumping of auxin

- -- Cell internal state and processes => capacity of division, spring relaxed length, primordium/center, concentration of auxin (inhibitor), saturation, auxin degradation / evacuation promotion to primordium "pump magnetism"
- *Movement* => due to cell growth
- Growth => increase of spring relaxed length
- Division => when size > threshold
- Cell interaction => Passive diffusion of auxin, active pumping of auxin MGS @ UCNC'2012. J.-L. Giavitto, A. Spicher. http://mgs.spatial-computing.org

Model

-- Cell internal state and processes

capacity of division, springs relaxed length, primordium/center, concentration of auxin, auxin degradation / evacuation, inhibitor promotion to primordium, "pump magnetism"

- Movement (due to cell growth)
- Growth: increase of spring relaxed length
- -- Division: when size > threshold

- Cell interaction Passive diffusion of auxin, active pumping of auxin

trans Auxin = {
x, y / pump(x,y)

$$\rightarrow$$
 x+{x.auxin -= δ }, y+{y.auxin += δ }

Auxin level

Simulation

Primordium local inhibition

MGS: Antoine Spicher, Olivier Michel, Julien Cohen

S&S Bio : Hanna Klaudel, Franck Delaplace, Hugues Berry, Przemek Prusinkiewicz, Annick Lesne...

Spatial Computing: Jacob Beal, Fréderic Gruau, René Doursat...

Examples: Pierre Barbier de Reuille, Christophe Godin, Samuel Bottani, the Paris iGEM'07 team...

Some figures are borowed from Olivier Michel, Antoine Spicher, Pierre Barbier de Reuille, Franck Delaplace, Hugues Berry (INRIA), the iGEM Paris 2007 and many others.

