

beyond agent-based and spatial interaction INTERACTION BASED COMPUTING

Space-Centric, Agent-Centric and Interaction-Oriented Modeling

(in the previous example of languages there are)

Two main modeling approaches

- agent-based
- space-based

Fish and Sharks in the sea (agent-based view)

Fish and Sharks in the sea (space-centric view)

Space-Centric, Agent-Centric and Interaction-Oriented Modeling

(in the previous example of languages there are)

Two main modeling approaches

- agent-based
 - the structure of the system is described through its components (agent, entity)
 not through its processes
 - an agent evolves by receiving a message from one other agent

Space-Centric, Agent-Centric and Interaction-Oriented Modeling

(in the previous example of languages there are)

Two main modeling approaches

- space-based
 - the structure of the system is described through its spatial domain
 not through its processes
 - an "elementary piece of space" evolves by querying the neighborhood

Same distinction for continuous models (fluid dynamics)

A shift in perspectives

- the distinction impacts the language level (agent based and object oriented languages vs. spatial computing languages)
- The distinction vanishes for dynamic structure (agent and "piece of space" creation, rearrangement and deletion)
- Neither framework is satisfactory
 because they focus on the evolution of one
 entity
- A subsuming view is possible: interaction-based structuration

The Topological Structure of Interactions

A system in some state

t = 1

$$t = 2$$

The interactions decomposes the systems into elementary parts.

An interaction implies one or several elementary parts.

the inclusion structure between the elementary and interacting parts is a lattice

a (simplicial) complex is a better (topological) equivalent representation

The space of bubble-sort

Bubble-sort is a process where:

- the state of the system is a sequence of numbers
- an interacting part in the system is a pair of adjacent decreasing numbers
- the transformation of an interacting couple exchanges the couple's elements
- the topology of the interacting parts is build upon the topology of the sequence

or

the topology of the sequence can be recovered from the possible element's swap

Topology, simplicial complex and lattice

Higher dimensional objects for complex simulations

Example of electrostatic Gauss law [Tonti 74]

- Electric charge content ρ : dimension 3
- Electric flux Φ: dimension 2
- Law available on a arbitrary complex domain

$$\phi = \iint w \cdot dS = \frac{Q^c}{\varepsilon_0} = \iiint_{(V)} \frac{\rho}{\varepsilon_0} d\tau$$

electric field in space:

- V: electric potential (dim 0)
- E: voltage (dim 1)
- w: electric flux (dim 2)
- Qc: electric charge (dim 3)

The grand picture

- 1. Describe a dynamical system following the interaction of its parts
- 2. Each part is characterized by a (local) state
- 3. The global state of the system is the "sum" of its local state and their topological organization
- 4. An interaction makes evolve a (small) subset of local states
- 5. An interaction potentially changes the topological organization of state

Thanks

- Jean-Louis
- Antoine Spicher
- Olivier Michel
- PhD and other students

Julien, Antoine, P. Barbier de Reuille,

T. Louail, E. Delsinne, V. Larue, F. Letierce,

B. Calvez, F. Thonerieux, D. Boussié, iGem'07 Paris team, and the others...

- A. Lesne (IHES, stochastic simulation)
- P. Prusinkiewicz (Calgary, declarative modeling)
- C. Godin (CIRAD, biological modeling)
- H. Berry (LRI, stochastic simulation)
- G. Malcolm (Liverpool, rewriting)
- J.-P. Banâtre (IRISA, programming)
- P. Fradet (InriaAlpes, programming)
- F. Delaplace (IBISC, synthetic biology)
- D. Pumain (Geographie-Cité, city growth)
- R.Doursat (ISC, morphogenetic engineering)
- F. Gruau (U. PXI, language and hardware)
- P. Liehnard (Poitier, CAD, Gmap and guasi-manifold)

Olivier

