
LaMI
Laboratoire de Méthodes Informatiques

Computational Models
for Integrative and Developmental Biology

Jean-Louis Giavitto, Christophe Godin,

Olivier Michel & Przemyslaw Prusinkiewicz

email(s) : giavitto@lami.univ-evry.fr, godin@cirad.fr,

michel@lami.univ-evry.fr, pwp@cpsc.ucalgary.ca

Rapport de Recherche no 72-2002

Mars 2002

CNRS – Université d’Evry Val d’Essonne
523, Place des Terrasses
F–91000 Evry France

Computational Models

for Integrative and Developmental

Biology

Jean-Louis Giavitto1, Christophe Godin2,
Olivier Michel1 and Przemyslaw Prusinkiewicz3

1 LaMI, umr 8042 du CNRS,
Tour Evry2, Genopole - Université d’Evry

523 place des terasses de l’Agora
91000 Evry, France

giavitto,michel@lami.univ-evry.fr

2 AMAP, umr CIRAD-CNRS-INRA-Université Montpellier II,
TA 40/PS2

34398 Montpellier cedex 5, France
godin@cirad.fr

3 Department of Computer Science, University of Calgary
2500 University Drive N.W.

Calgary, Alberta, Canada T2N 1N4
pwp@cpsc.ucalgary.ca

Versions of this report:

• Revised version for publication in a book edited by GENOPOLE for the Interna-
tional Symposium on Macromolecular Networks, 8–12 july 2002, Paris, France.

• Initial Version: march 2002. This report is also a tutorial chapter of the proceed-
ings of the workshop “Modélisation et simulation de processus biologiques dans le
contexte de la génomique”, 17-21 mars 2002, Autran, France.

The authors acknoledge gratefully the financial support of GENOPOLE.

Copyrights 2002 Jean-Louis Giavitto, Christophe Godin, Olivier Michel, Przemyslaw
Prusinkiewicz. LaMI – Université d’Evry Val d’Essonne and CNRS, CIRAD Montpel-
lier and University of Calgary, Canada.

Table of Contents

1 Introduction 1

2 Dynamical systems 3
2.1 Basic definitions . 3
2.2 Structured dynamical systems . 4
2.3 Dynamical systems with a dynamic structure 5
2.4 A Taxonomy of Formalisms . 6
2.5 Outline . 8

3 Multiset Rewriting and the Modeling of Biological Systems 9
3.1 Basic Concepts . 9
3.2 Division, Growth and Diffusion Processes 10
3.3 Applications, Theories and Tools for Multiset Rewriting 12

4 L-systems 15
4.1 Basic notions . 15
4.2 A sample model . 16

5 The MGS Approach 20
5.1 Motivations and Background . 20
5.2 Biological Examples in MGS . 21

6 Multiscale graphs 28
6.1 Plants as modular organisms . 28
6.2 Multiscale representations . 30
6.3 Space of modularities . 31
6.4 Growing multiscale structures . 34
6.5 Handling plant architecture databases 35

List of Figures

1 Illustration of one occurence of a reaction r1 occuring in a test tube
considered as a multiset of molecules. 9

2 Diffusion of a particle along a line 12
3 Fragment of a simulated filament of Anabaena 18
4 A basic transformation of a topological collection 21
5 Transformation and iteration of a transformation 21
6 Eden’s model on a grid and on an hexagonal mesh 23
7 cAMP and calcium signaling pathway 26
8 The reaction, diffusion and transport processes 26
9 Different types of modularity in plants 28
10 The tree graph representation of its topology 29
11 Nested modularities . 31
12 Partitionning graph into growth units 32
13 Multiscale graph . 33
14 Nested and overlapping modularities 33
15 MTG . 34
16 MTG interpretation of a reiterated complex 35
17 Synopsis of the AMAPmod system. 36

1 Introduction

The relation between biology and computation has a long history reviewed
by Langton [LIL89]. In this paper, we classify the interactions between
computer science and biology in three areas:

1. Bioinformatics develops the automated management and analysis of
biological data.

2. Computational Biology looks at biological entities as information pro-
cessing systems with the final goal of a better understanding of nature
using computer science notions.

3. Biological Computing goes in the reverse direction and studies how
biological techniques can help out with computational problems.

Bioinformatics consists of developing software tools to support and help the
biologist in the analysis and comprehension of biological systems. A good ex-
ample is the development of data-bases supporting the genome project [Kan00].

Biological Computing imports some biological metaphors [Pat94] to de-
velop new way of computing and to design new algorithms. From the be-
ginning of computer sciences, biological processes have been abstracted to
produce new computational models: formal neural networks inspired by
natural neurons, evolutionary algorithm inspired by Darwinian evolution
(see the “Parallel Problem Solving from Nature” (PPSN) conference se-
ries), parallel computer architecture (e.g. cellular automata) inspired by
biological tissues (see for example the “Information Processing in Cells and
Tissues” (IPCAT) conference series), DNA computing abstracted from bio-
chemistry [Pau98a], cooperative distributed algorithm (e.g. multi-agents)
motivated by ethological behaviors or social interactions, ...

Computational Biology. Here we are mainly interested in computer
modeling and simulation of biological processes. The computer simulation
of a biological process implies the definition of a model sufficiently rigorous
to lead to a program. With such a formal model, it is possible to system-
atically explore the system’s behavior and sometimes to make predictions.
This kind of study is part of the more general idea of simulated experiments
(also called in silico experiments by biologists and numerical experiments
by physicists). These experiments are required when in-vivo or in-vitro ex-
periments are out of reach for economical, practical or ethical reasons. Note
however that the simulation of a computer model is only one of its possible
use: because it is formal, it is possible to reason about it and for example
to infer some properties (existence of steady state, stability, phase changes,
etc.) that can be checked against the natural phenomena.

More generally, formal models can have a pedagogical, normative, con-
structive or ideological role:

1

• pedagogical and heuristic: the model is used to share knowledge about
a given system or to illustrate a set of complex relationships involved
in a biological process.

• normative: the model is used as a reference between scientists or to
compare several systems.

• constructive: the model is used as a blueprint in the design of a new bi-
ological entity. Biology has reached the point where in addition to the
study of already existing natural entities, it has to design new biolog-
icals artifacts (drug design, metabolic pathways, genetically modified
organisms, ...).

• ideological: a model illustrates some biological paradigm and con-
straints furthermore the investigated schemes. Biology has imported
a number of notions developed in computer science, for instance the
notion of programs, memory, information, control, etc. [Ste88, Kel95],
that have then structured biological theories.

The transfer of concepts and tools between biology and computer science
is not a one-way process and often, a computing model inspired initially by
a biological phenomena, leads to a formalism used later in simulation of
some (other) biological processes. A good example is given by the history
of cellular automata (CA): initially developed by J. Von Neuman [VN66],
they abstract the idea of a tissue of cells, to investigate the notion of self-
reproducing programs. The CA formalism then has been largely used in
biological simulation, for example to model the growth of tumor (Eden’s
models) or in ecology (it has been also successful in numerous other appli-
cation domains, like in physics).

The contributions of Computational biology in the area of molecular
dynamics or ecological modeling, are now well established. They are largely
centered around the notion of dynamical systems. What appears now is that
this kind of computational models can make connections between molecular
mechanisms and the physiological properties of a cell. The theme

gene expression −→ system dynamics −→ cell physiology

is an emerging paradigm [JTN00] that becomes increasingly more important
as we try to integrate the exponential knowledge of all the cells components
in a true understanding of the cell. However, this formalization from biology
to dynamical system and back to biology, has long been advocated in the
more general domain of the development [Smi99, Kau95].

2

2 Dynamical systems

2.1 Basic definitions

Many natural phenomena can be modeled as dynamical systems. At any
point in time, a dynamical system is characterized by its state. A state is
represented by a set of state variables. For example, in the description of
planetary motions around the sun, the set of state variables may represent
positions and velocities of the planets. Changes of the state over time are
described by a transition function, which determines the next state of the
system (over some time increment) as a function of its previous state and,
possibly, the values of external variables (input to the system). This pro-
gression of states forms a trajectory of the system in its phase space (the set
of all possible states of the system).

Mathematical objects with diverse properties can be considered dynami-
cal systems. For instance, state variables may take values from a continuous
or discrete domain. Likewise, time may advance continuously or in discrete
steps. Examples of dynamical systems characterized by different combina-
tions of these features are listed in Table 1.

Table 1: Some formalisms used to specify dynamical systems according to
the discrete or continuous nature of time and state variables.

C: continuous,
D: discrete.

ODE
Iterated

Mappings
Finite

Automata
Time C D D
State C C D

In simple cases, trajectories of dynamical systems may be expressed us-
ing mathematical formulas. For example, the ODE (ordinary differential
equation) describing the motion of a mass on a spring has an analytical
solution expressed by a sine function (linear spring, in the absence of fric-
tion and damping). In more complex cases, analytic formulas representing
trajectories of the system may not exist, and the behavior of the system is
best studied using computer simulations.

By their nature, simulations operate in discrete time. Models initially
formulated in terms of continuous time must therefore be discretized. Strate-
gies for discretizing time in a manner leading to efficient simulations have
extensively been studied in the scope of simulation theory, e.g. [Kre86].

Dynamical systems with apparently simple specifications may have very
complex trajectories. This phenomenon is called chaotic behavior, c.f. [PJS92],
and is relevant to biological systems, for example populations models [May75,
May76].

3

2.2 Structured dynamical systems

Many biological systems are structured, which means that they can be de-
composed into parts. The advancement of the state of the whole system is
then viewed as the result of the advancement of the state of its parts. For
example, the operation of a gene regulation network can be described in
terms of the activities of individual genes.

Formally, we use the term structured dynamical system to denote a dy-
namical system divided into component subsystems (units). The set of state
variables of the whole system is the Cartesian product of the sets of state
variables of the component subsystems. Accordingly, the state transition
function of the whole system can be described as the product of the state
transition functions of these subsystems. Similarly to non-structured sys-
tems, structured dynamical systems can be defined assuming continuous or
discrete state variables and time. In addition, the components can be ar-
ranged in a continuous or discrete manner in space. Some of the formalisms
resulting from different combinations of these features are listed in Table 2.

Table 2: Some formalisms used to specify structured dynamical systems
according to the continuous or discrete nature of space, time, and state
variables of the components. The heading “Numerical Solutions” refers to
explicit numerical solutions of partial differential equations and systems of
coupled ordinary differential equations.

C: continuous,
D: discrete.

PDE
Coupled

ODE
Numerical
Solutions

Cellular
Automata

Space C D D D
Time C C D D
States C C C D

Time management is an important issue in the modeling and simulation
of structured systems [Lyn96]. For example, state transitions may occur
synchronously (simultaneously in all components) or asynchronously (in one
component at a time). Furthermore, efficient simulation techniques may
assume different rates of time progression in different components [Jef85].

In many cases, the transition function of each subsystem depends only
on a (small) subset of the state variables of the whole system. If the compo-
nents of the system are discrete (i.e., excluding partial differential equations,
or PDEs), these dependencies can be depicted as a directed graph, with the
nodes representing the subsystems and the arrows indicating the inputs to
each subsystem. We say that this graph defines the topology of the struc-
tured dynamical system, and call neighbors the pairs of subsystems (directly)
connected by arrows.

4

The topology of a structured dynamical system may reflect its spatial or-
ganization, in the sense that only physically close subsystems are connected.
A dynamical system with this property is said to be locally defined. Locality
is an important feature of systems that model physical reality, because phys-
ical means of information exchange ultimately have a local character (e.g.,
transport of signaling molecules between neighboring cells). On the other
hand, physically-based models need not to be rigorously local. For example,
when modeling plants, it may be convenient to assume that higher branches
cast shadow on lower branches without simulating the local mechanism of
light propagation through space.

When the number of components in a structured dynamical systems
is large, the exhaustive listing of all connections between the components
becomes impractical or infeasible. This limitation can be overcome in several
ways. For example, if the components are arranged in a regular pattern, the
neighbors of each component need not to be listed explicitly. This is the
case of cellular automata (e.g. [TM87], in which cells are arranged in a
square grid). Group-based fields [GM01b] are a generalization of this idea,
allowing for a wider range of connection patterns. Large structures can also
be defined by simulated development, discussed next.

2.3 Dynamical systems with a dynamic structure

A developing multicellular organism can be viewed as a dynamical system
in which not only the values of state variables, but also the set of state
variables and the state transition function change over time. These phe-
nomena can be captured using an extension of structured dynamic systems,
in which the set of subsystems and/or the topology of their connections
may dynamically change. We call these systems dynamical systems with a
dynamic structure [GM01b], or (DS)2-systems in short.

For example, let us consider a model of a multicellular organism, defined
at the level of individual cells. When a cell divides, the subsystem that
represents it is replaced by two subsystems that represent the daughter
cells. Furthermore, the topology of the whole system is adjusted to:

• remove connections (neighborhood relations) between the mother cell
and the rest of the organism,

• create connections between the daughter cells,

• insert connections between the daughter cells and the rest of the sys-
tem.

These operations make it possible to gradually create a large network of
interconnected cells.

5

2.4 A Taxonomy of Formalisms

From a computer science (or a mathematical) point of view, the problem
raised by the simulation of dynamical systems with a dynamical structure
is that of the programming paradigm (or the modeling language) well fitted
to the specification of such systems. For instance, the PDE formalism is
not a relevant solution because it prescribes an a priori given set of rela-
tions between an a priori given set of variables. Consequently, these two
sets, which embed implicitly the structural interaction between the entities
or the system parts, cannot evolve jointly with the running state of the
system [Mic96, pp 6, 85], [GM01b, chapter 1].

However, there exist several formalisms that can be used. The criteria
used to classify the DS formalism in section 2.1 and 2.2 are still valid and
the representation of time and state can be discrete or continuous for (DS)2

as for standard DS. Here we propose an additional criterion to distinguish
between the topological nature of the system structure. Table 3 presents
some formalisms for the discrete time case.

Table 3: Some formalisms used for the modeling of (DS)2, according to the
underlying topology of the state.

Topology Multiset Sequence Uniform Combinatorial

Formalism multiset
rewriting

L-systems GBF
map L-systems,

Graph-grammars,
MTG, MGS

In this table, the first line gives the type of the topology used to connect
the subcomponents of a system. In a multiset, all elements are considered
to be connected to each other. In a sequence, elements are ordered linearly;
this case includes lists and extends also to tree-like structures. Uniform
structures represents a regular neighborhood: for example, in a rectangular
lattice (Von Neumann neighborhood), each element has exactly four neigh-
bors. Combinatorial structures are used to define arbitrary connections
between the components.

Considering solely the type of the topology underlying the structure of a
state is only a partial caracterization that does not emphasize other several
important points. Let us mention some of them.

• The relationship between the components can take place in an a priori
structure. This approach is also known as the Newtonian conception
of space where phenomena take place in a predefined scene. The other
approach, which has been promoted by Leibniz, considers the topol-
ogy as the result of the connection between the existing entities. In

6

this point of view, the topology results from the dynamic connection
between the system elements. This distinction is found in biology
with the notions of space oriented or structure oriented models. For
instance, accretive growth (growth on the boundaries) is an example
of a space oriented process and intercalary growth (growth from the
inside) is an example of a structure oriented process.

• There are several degrees in the dynamic of the structure. In the
simplest case, the type of the topology remains the same during the
evolutions of the system. An example is the growth of Anabaena fil-
aments (Cf. section 4.2) where the system is always described as a
sequence of cells. In addition, once a cell is connected with two neigh-
bors, these connections remain the same. On the other hand, during
the development of an embryo, several domains of cells change dramat-
ically their shapes. For instance, the neural tube is formed dorsally
in the embryonic development of Vertebrates by the joining of the 2
upturned neural folds formed by the edges of the ectodermal neural
plate, giving rise to the brain and spinal nerve cord. In this process,
which implies cell migration, the connections of a cell change over time
and the global shape changes from a sheet to a tube.

• We have assumed that the interaction between the system parts can
be described by a graph. Implicitly, this implies that elements interact
two by two, which is not always the case. More elaborated interaction
may imply more participants (e.g. a chemical reaction between two
chemicals that requires also a catalyst; or the many-to-one relation
between a subsystem and its decomposition). An interaction between
n participants can be modeled by an n-edge in an hypergraph. An
alternative representation is to use a n-simplex in a simplicial com-
plex [GV01]. In the last case, the dimension of the simplex is directly
linked with the number of participants.

• The notion of dimension also appears in the interactions between com-
ponents in the following way. Often, the components of a system
have a physical nature and the logical neighborhood established by
the component interaction is the same as the spatial neighborhood
implied by the physical structure of the system. For example, the
topology implied by the representation of the cell sub-structures is
tridimensional (compartments), bidimensional (membranes) and zero-
dimensional (molecules). Obviously, the interactions that must be de-
scribed depend of the dimension of the invoked entities: for instance,
a flow of molecules can be conceived only through a membrane bound-
ary between two compartments, not between a filament and another
molecule; conservation laws depend on the topological nature of the
entities, etc. From this point of view, multiset corresponds to a trivial

7

topology (two points are always neighbors), L-systems corresponds to
one-dimensional topologies and a GBF described by n fundamental
generators (cf. below, section 5) describe n-dimensional topologies.

2.5 Outline

Following table 3, the next sections and chapters presents some formalisms
usable for (DS)2 Modeling:

• Section 3 reviews the use of multisets to model biological state and
multiset rewriting to specify the evolution function.

• Section 4 sketches the L-system formalism. This formalism is an effec-
tive approach for the modeling of linear and branching structure. For
instance, it as largely been applied in the field of plant growing.

• Section 5 presents a general framework, instantiated in a programming
language, that is able to unify several approaches by using a topological
point of view.

• The chapter ?? “Cellular automata and multi-agent” in this document
gives some examples of the use of the computational device in the field
of biological modeling.

• “Neural networks” are a special kind of dynamical systems. A large
part of the considerations presented here, apply. Their importance has
motivated numerous investigations and a lot of results are available.
They are presented in ??.

8

3 Multiset Rewriting and the Modeling of Biolog-
ical Systems

3.1 Basic Concepts

Consider a simple chemical system of two molecules types A and B. We
suppose that only deterministic second-order catalytic reactions are allowed,
that is: a collision of two molecules will catalyze the formation of a specific
third molecule and the two colliding molecules are regarded as catalysts.
The possible reaction rules are given explicitly as follows:

r1 : A + A −→ A + A + B

r2 : A + B −→ A + B + B

r3 : B + B −→ B + B + A

A simulation in which every molecule is explicitly stored and every single
collision is explicitly performed can easily be implemented if the chemical
reactor is abstracted as a multiset. Unlike a set, an element can occur several
times in a multiset. In the following, we denote a multiset using braces:
{A,C, A,D, B, C} is a multiset m with elements A and C occurring twice,
and elements B and D occurring only one time. To simulate the chemical
reaction, we simply interpret each rule as a transformation of the multiset.
For instance, the rule r1 specifies that two molecules A taken in the multiset
have to be replaced by the three molecules A, A and B. For example, if
reaction r1 occurs in m at a given time step t0, then m is transformed in
{A,C, A,D, B, C,B} (one additional B is produced). See figure 1.

A
A

A
B

⇒ A
B

A
A

B

Figure 1: Illustration of one occurence of a reaction r1 occuring in a test
tube considered as a multiset of molecules.

Because several chemical reactions can occur in parallel (which means
that several reactions involving different elements occur in the same time
step), the strategy is to apply in parallel as many transformations as possible
to the multiset. Such transformations are iterated to model the evolution
of the state of the reactor. However, several competing rules may apply

9

at the same time step: for instance consider a chemical reactor described
by {A,A,B} at time t0 and subject to the two reactions r1 and r2. If
r1 occurs, then there is no longer A at t0 to proceed with r2 and vice-
versa. The two reactions cannot occur together because there are not enough
resources. In this case, we consider that one of the two rules is chosen in a
non-deterministic manner. No assumption is made on the order on which
the reactions occur.

The “+” sign that appears in the left and right hand side of the rules
means that the linked molecules are present together in the chemical reactor.
Thus, the left hand side of rule r2 can also be equivalently written B + A.
From a mathematical point of view, it is very convenient to consider +
as a formal commutative-associative operator used to construct multisets: a
multiset {A, C,A, D,B,C} is simply a formal sum A+C+A+D+B+C. The
associativity and the commutativity properties are simply the expression
that the elements of this last sum can be rearranged in any order. Then,
rules like the ri rules can be interpreted as rules for rewriting such formal
expression. Abstractly, we can say that a chemical reaction can be modeled
as a multiset rewriting system.

This modeling paradigm can be extended from this chemical example to
other situations and its biological relevance is advocated in several recent
papers [Man01, FMP00]. To quote1 Fisher et al. [FMP00]: “A biological
system is represented as a term of the form t1 + t2 + · · · + tn where each
term ti represents either an entity or a message [or signal, command, infor-
mation, action, etc.] addressed to an entity. [The simulation of the physical
evolution of the biosystem] is achieved through term rewriting, where the
left hand side of a rule typically matches an entity and a message addressed
to it, and where the right hand side specifies the entity’s updated state,
and possibly other messages addressed to other entities. The operator +
that joins entities and messages is associative and commutative, achieving
an ‘ associative commutative soup ’, where entities swim around looking for
messages addressed to them.”

3.2 Division, Growth and Diffusion Processes

To illustrate this paradigm in a biological situation, we consider the multi-
plication of a mono-cellular organism in a test tube. A cell exists in one of
two forms A or B. Type A and B can be used to characterize a phase of
the life cycle of the cell, or as a cell polarity, etc. The division of a cell of
type A produces one cell of type A and one of type B. In contrast, a cell
of type B does not divide but evolves to give a cell of type A. This can be

1with adaptations in the terminology, brackets are our comments

10

summarized by the two rules:

r1 : A −→ A + B

r2 : B −→ A

Starting from a test tube with three initial cells, abstracted as a multiset
m0 = {A,B, B}, the first three evolutions are:

m0 → {A, B, A, A} → {A, B, A, B, A, B, A} → {A, B, A, B, A, B, A, B, A, A, A} → . . .

There exists several software environments that support multiset rewrit-
ing (see next paragraph). So the previous two rules directly turn to a com-
puter program that simulates the growing and division processes of this
hypothetic mono-cellular organism. In fact, these rules fit well the develop-
ment of Anabaena, which is described more in details in the next section, if
we neglect the sequential organization of the cells. However, this model ad-
mit also other interpretations. For example, Fibonacci studied (in the year
1202) about how fast rabbits could breed under some ideal circumstances.
Suppose a newly-born pair of rabbits, one male, one female, are put in a
field. Rabbits are able to mate after one month so that at the end of its
second month a female can produce another pair of rabbits. We simplify the
model assuming that rabbits never die and that a female always produces
one new pair (one male, one female) every month from the second month
on. We model by symbol B a newly-born pair of rabbits and by symbol
A a mature pair of rabbits. Then the rule r1 expresses that a mature pair
produces a newly-born pair and survive and rule r2 specifies the maturation
of a new pair.

The simulation of this process can be used to determine, for example, the
relative ratio of A and B types in a population after some time. However, as
mentioned in the introduction, the use of a formal model is not restricted to
simulation and can be used to prove formal properties of the system without
looking at the results of the simulation (e.g.: Fibonacci was able to prove
that the ratio between B and A converges to the golden section as the time
goes).

In the previous examples, each entity (a molecule, a cell or a pair of
rabbits) is represented as an element of a multiset. In addition, the multiset
structure allows objects to interact in a rather unstructured way, in the sense
that an interaction between two objects is enabled simply by virtue of both
being present in the multiset. In other word, there is no localization of the
entities. Here is an example of another approach, where multiset rewriting
is used in another way to take into account a geometric information. The
problem is to model the diffusion of a set of particles on a line. The line is
discretized as a sequence of small boxes, indexed by a natural integer, each
containing zero or many particles. At each time step, a particle can choose
to stay in the same box, or to jump to a neighboring box, with the same
probability. See figure 2. The state of a particle is the index of the box

11

where it resides. The entire state of the system is represented as a multiset
of indices. The evolution of the system is then specified as three rules:

r1 : n −→ n

r2 : n −→ n− 1
r3 : n −→ n + 1

where n is an integer and the operations “+” and “−” that appear in the
right hand side are the usual arithmetic operators. Rule r1 specifies the
behavior of a particle that stay in the same box; rule r2 corresponds to a
particle that jumps to the box at the left; and rule r3 defines a particle
jumping to the right. Another solution is to factorize the three rules into
one:

r : n −→ n + Random(−1, 0, 1)

where the function Random(. . .) returns randomly one of its arguments.
In the case of three competing rules, we must assume that there is some
fairness in the choice of the rules r1 to r3 to be applied, i.e., they have the
same probability of being chosen. If there is more chance to stay in a box
than to leave it, then the underlying formalism must be able to express some
finer control over the rule application. As a matter of fact, specifying an
application strategy of the rules that respect the symmetries of the system
can be very difficult.

0 1 2−1−2

Figure 2: Diffusion of a particle along a line

3.3 Applications, Theories and Tools for Multiset Rewriting

Multiset rewriting has inspired several applications leading to the emer-
gence of a new field: Artificial Chemistry. The home page [Dit00] and
reference [DZB00] are a good introduction to this new area. There is a
growing body of applications in artificial life, chemical and biological mod-
eling, information processing and optimization. More specifically, Artificial
Chemistry has been advocated as a productive framework for the study of

12

pre-biotic and bio-chemical evolution, and for the study of the evolution of
organization in general.

Multiset rewriting has also been used to extend other formalisms. For
example, a multiset of L-systems is used to model an ecosystem (a multiset)
of individual plants (modeled using L-system), see [LP02].

From the computer science point of view, the use of the chemical metaphor
as a computing model has been investigated by Gamma [BM86, BCM87] in
the middle of the eighties. A good review of the research done about Gamma
can be found in [BFM01]. The CHemical Abstract Machine (CHAM) for-
malism extends these ideas with a focus on the expression of semantic of
non deterministic processes [BB90]. The CHAM is an elaboration on the
original Gamma formalism introducing the notion of sub-solution enclosed
in a membrane. It is shown that models of algebraic process calculi can
be defined in a very natural way using a CHAM: the fact that concurrency
(between rule application) is a primitive built-in notion makes proof far eas-
ier than in the usual process semantics. The motivations of Gamma and
the CHAM are the development of a formalism to support the specification
and the programming of parallel and non deterministic programs. Multiset
rewriting lies at the core of the formalism.

From the point of view of term rewriting [DJ90], multiset rewriting is the
special case where the operators considered are both associative and commu-
tative. In this domain, the perspective is more logical and directed towards
the concepts of rewriting calculus and rewriting logic. The applications con-
sidered are the design of theorem provers, logic programming languages,
constraint solvers and decision procedures. Several frameworks provide effi-
cient and expressive environments to apply rewrite rules following dedicated
strategies. It is worth mentioning ELAN [ela02] and MAUDE [mau02].

At last but not least, in the domain of formal language theory and com-
putational complexity, P systems [Pau98b, Pau00] are a new distributed
parallel computing model based on the notion of a membrane structure.
This paradigm extends standard multiset rewriting introducing the notion
of membrane. A membrane structure is a nesting of compartments rep-
resented, e.g, by a Venn diagram without intersection and with a unique
superset: the skin. Objects are placed in the regions defined by the mem-
branes and evolve following various transformations: an object can evolve
into another object, can pass through a membrane or dissolve its containing
membrane. In the initial definition of the P systems, each region defined by a
membrane corresponds to a multiset of atomic objects which can evolve fol-
lowing evolution rules very similar to Gamma’s (the right hand side of each
rule is augmented to specify the destination of the results of the reaction).
The membrane structure enables the specification of some localization of
the processes. For an example, see section 5. Several alternatives have been
devised and a region can be equipped with various computational mech-
anisms: string rewriting, splicing systems (DNA computing), etc. From

13

the calculability point of view, several variants of such computing devices
can compute all recursively enumerable sets of natural numbers. When an
enhanced parallelism is provided, by means of membrane division (and, in
certain variants where one works with string-objects, by means of object
replication), NP-complete problems can be solved in linear time (of course,
making use of an exponential space).

14

4 L-systems

4.1 Basic notions

L-systems were introduced in 1968 in the landmark paper by A. Linden-
mayer, Mathematical models for cellular interaction in development [Lin68].
They provide a well developed and flexible tool for modeling and simulat-
ing a restricted but biologically important class of dynamic systems with a
dynamic structure: linear and branching structures.

Originally, Lindenmayer described his formalism in terms of cellular au-
tomata, in which — in contrast to the standard definition — the cells could
divide. Subsequently he observed that L-systems can be formulated in a sim-
pler and more elegant manner in terms of formal language theory [Lin71].
That theory was originally proposed by Chomsky [Cho56, Cho57] to de-
scribe the syntax of natural languages. Its fundamental notion is that of a
(generative) grammar, which consists of productions or rewriting rules. In
general, a production replaces a symbol by zero, one, or several new symbols.
They may represent words in a sentence, as in the original interpretation by
Chomsky, but they also may represent cells or other components of a living
organism, as was proposed by Lindenmayer. The use of related formalisms
in the description of such apparently distant notions as languages and bio-
logical structures may seem surprising at first. In fact, it reflect the common
dynamic nature of sentences under construction and developing organisms.

Applications of L-systems to modeling have an extensive literature, last
reviewed in [Pru98] and [Pru99]. Below we outline one variant, called para-
metric L-systems [Han92, PH90, PL90] Within this formalism, the individ-
ual subsystems are called modules. Each module is represented by a symbol
(letter) with optional parameters. This letter and parameters jointly char-
acterize the module’s state. For instance, the letter may represent a cell
type, while the parameters may represent quantitative attributes of the cell,
such as its dimensions and concentrations of chemicals that it contains.

The assumption that the organism forms a filament makes it possible to
represent it at any moment of time as a string of modules, called a parametric
word. For example, the string

A(2.5)B(3.14, 0.2)CA(1.3) (1)

may represent an organism that consists of four cells. The first cell has type
A and is characterized by one parameter, the value of which is equal to 2.5.
The remaining symbols have an analogous interpretation.

An L-system model describes the development of the entire structure by
operating on individual modules. A production specifies the fate of a unit
over a given time interval as a function of its current state and, optionally,
the states of its neighbors. For example, the production

A(x) < B(y, z) > C → CB(x + y, z/2) (2)

15

operates on a module B that appears in the context of a module A to its
left and module C to its right. The left and right contexts are separated
from the strict predecessor B by the metasymbols (i.e., the symbols that do
not represent modules) < and >, respectively. In this example, module B
divides into a module C and a new module B. The arithmetic expressions
in the production’s successor determine new parameter values. Hence, when
applied to string (1), production (2) will yield the string

A(2.5)CB(5.64, 0.1)CA(1.3). (3)

Simultaneous application of productions to all modules advances the state
of the whole structure. If the set of module types is finite, the corresponding
finite set of productions provides a mechanism for advancing the state of the
entire structure independently of its size (the number of modules).

4.2 A sample model

We will illustrate the notion of genetic L-systems by constructing a model
of heterocyst differentiation in a growing filament of the cyanobacterium
Anabaena. The following description is adapted from [HP96].

The cells of Anabaena are organized into filaments which consist of se-
quences of vegetative cells separated by heterocysts. The vegetative cells
divide into two cells of unequal length and, in some cases, differentiate into
heterocysts which do not further divide. The organism maintains an ap-
proximately constant spacing between heterocysts: whenever the distance
between two heterocysts becomes too large due to the division and elonga-
tion of vegetative cells, a new heterocyst emerges.

What mechanisms is responsible for the differentiation of heterocysts
and the maintenance of the approximately constant spacing between them?
Baker and Herman [BH70, BH72] (see also [dL87, HR75, Lin74] proposed
the following simulation model. The heterocysts produce a substance that
diffuses along the filament and is used by the vegetative cells. This substance
inhibits the differentiation of vegetative cells into heterocysts. When its level
in a cell drops below a threshold value, the cell detects that it is no longer
inhibited and differentiates into a heterocyst.

Although the model of Baker and Herman is capable of reproducing the
observed pattern of heterocyst spacing, it is very sensitive to parameter
values. Small changes in these values easily result in filaments with pairs
of heterocysts appearing almost simultaneously, close to each other. This
is not surprising, considering the operation of the model. The gradient of
the concentration of the inhibitor may be too small near the middle of a
sequence of vegetative cells to precisely define the point in which a new
heterocyst should differentiate. Consequently, the threshold value may be
reached almost simultaneously by several neighboring cells, resulting in the
differentiation of two or more heterocysts close to each other.

16

The above model can be improved assuming that the prospective het-
erocysts compete until one “wins” and suppresses the differentiation of its
neighbors. This “interactive” model was originally proposed by Wilcox et
al [WMS73]. It can be formalized using the framework of the activator-
inhibitor class of reaction-diffusion models [Mei82]. In addition to the sub-
stance that inhibits the differentiation, the cells are assumed to carry a
substance called the activator. The concentration of the activator is the
criterion that distinguishes the vegetative cells (low concentration) from the
heterocysts (high concentration). The activator and inhibitor are antagonis-
tic substances: the production of the activator is suppressed by the inhibitor
unless the concentration of the inhibitor is low. In that case, production
of the activator drastically increases through an autocatalytic process (an
increased concentration of the activator promotes its own further produc-
tion). High concentration of the activator also promotes the production
of the inhibitor, which diffuses to the neighboring cells. This establishes a
ground for competition in which activator-producing cells attempt to sup-
press production of the activator in the neighboring cells. For proper values
of parameters that control this process, only individual, widely spaced cells
are able to maintain the high-activation state.

An L-system implementation of these mechanisms (a variant of the L-
system from [HP96]) is given below.

ω : M(0.5, 0.1, 200, right)M(0.5, 0.1, 100, right)M(0.5, 0.1, 100, right)
p1 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :

s < smax & a < ath → M(s′, a′, h′, p)
p2 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :

s ≥ smax & a < ath & p = left →
M(ks′, a′, h′, left)M((1− k)s′, a′, h′, right)

p3 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :
s ≥ smax & a < ath & p = right →
M((1− k)s′, a′, h′, left)M(ks′, a′, h′, right)

p4 : M(sl, al, hl, pl) < M(s, a, h, p) > M(sr, ar, hr, pr) :
a ≥ ath → M(s, a′, h′, p)

where

s′ = s(1 + r∆t),

a′ = a +
(

ρ
h(a2

1+κa2 + a0)− µa
)

∆t,

h′ = h +
(
ρ(a2

1+κa2 + h0)− νh + Dh
hl+hr−h

sw

)
∆t.

The cells are specified as modules M , where parameter s stands for cell
length, a is the concentration of the activator, h is the concentration of the
inhibitor, and p denotes polarity, which plays a role during cell division. All

17

Figure 3: Fragment of a simulated filament of Anabaena. Vertical lines indi-
cate the concentrations of the activator and inhibitor (above and below the
cells, respectively). Notice the sharp peaks of the activator concentration
that define the heterocysts, and high levels of the inhibitor concentration in
the neighboring vegetative, which prevent their differentiation. The param-
eters used in the simulation were: ρ = 3, κ = 0.001, a0 = 0.01, µ = 0.1,
h0 = 0.001, ν = 0.45, Dh = 0.004, ath = 1, k = 0.38196, smax = 1,
r = 0.002, and w = 0.001.

productions are context-sensitive to capture diffusion of the activator and
inhibitor. It is assumed that the main barrier for the diffusion are cell walls
of width w. Production p1 characterizes growth of vegetative cells (a < ath),
controlled by the growth rate r. A cell that reaches the maximum length of
smax divides into two unequal daughter cells, with the lengths controlled by
constant k < 0.5. The respective positions of the longer and shorter cells
depends on the polarity p of the mother cell, as described by productions
p2 and p3. Increase of the concentration of the activator a to or above
the threshold value ath indicates the emergence of a heterocyst. According
to production p4, a heterocyst does not further elongate or divide. The
equations for s′, a′, and h′ govern the exponential elongation of the cells
and the activator-inhibitor interactions [Mei82].

The operation of the model is illustrated in Figure 3. The vertical lines
indicate the concentrations of the activator (above the filament) and in-
hibitor (below the filament) associated with each cell.

It is interesting from the historical perspective that the interactive model
of Wilcox et al. [WMS73] and its subsequent L-system implementation [HP96]
predicted the essential structure of the gene regulation network that controls
the development of Anabaena filaments in nature [Ada00]. The activator cor-
responds to the protein HetR, which plays a key role in the maintenance of
the heterocyst state, whereas the inhibitor corresponds to the protein PatS
(or a fragment of it), which diffuses across the filament and maintains the
spacing between the heterocysts. The character of interactions captured by
the simulation model is consistent with the postulated structure of the gene

18

regulation network, in which HetR upregulates its own production as well
as the production of PatS, whereas PatS downregulates production of HetR.

We believe that models of similar nature, integrating the action of genes
into developmental models of multicellular structures, will become more
widely used in the future, offering insights into developmental processes
that are difficult to obtain through observations and qualitative reasoning
alone.

19

5 The MGS Approach

5.1 Motivations and Background

The previous examples of formalisms do not fully address issues of struc-
tural interactions between entities or system parts because of the lack of
topological organization. The need to represent more structured organiza-
tions (than sequence or multiset) of entities and their interactions has been
already stressed [FMP00] and motivates several extensions of rewriting (see
for one example amongst others [BH00]). However, a general drawback with
these extensions is that they work with a fixed topology of entities, and it
is not obvious at all how to extend this to systems where the relationships
between entities are drastically changing. This is precisely one of the main
motivations of the MGS research project2.

MGS is aimed at the representation and manipulation of local trans-
formations of entities structured by abstract topologies [GM01b, GM02].
A set of entities organized by an abstract topology is called a topologi-
cal collection. Topological means here that each collection type defines a
neighborhood relation specifying both the notion of locality and the notion
of sub-collection. The collection types can range in MGS from totally un-
structured with sets and multisets to more structured with sequences and
GBFs [GMS95, Mic96, GM01a] (other topologies are currently under devel-
opment and include Voronöı partitions and arbitrary combinatorial neigh-
borhoods).

The global transformation of a topological collection C consists in the
parallel application of a set of local transformations. A local transformation
is specified by a rewriting rule r that specifies the change of a sub-collection.
A rewrite rule r:

1. selects a sub-collection A in C,

2. computes a new collection B as a function f of A and its neighbors,

3. and specifies the insertion of B in place of A into C.

These steps are summarized in figures 4 and 5. The topology of B depends
on f and can be different from the topology of A. For example, a set
in a sequence can be replaced by a sequence. Moreover, the topological
structure of C can be changed through the application of transformations.
These features enables the modeling of (DS)2: states of a DS are represented
by collections and transformations are used to model transition functions on
these structured states.

2MGS is the acronym of “ (encore) un Modèle Géneral de Simulation (de système dy-
namique) ” (yet another General Model for the Simulation of dynamical systems). The MGS
home page is located at url www.lami.univ-evry.fr/mgs where additional informations
are available.

20

y = f(x’)x
T

BAC T(C)

Figure 4: A basic transformation of a topological collection. Collection C is
of some kind (set, sequence, array, cyclic grid, tree, term, etc). A rule T specifies
that a sub-collection A of C has to be substituted by a collection B computed from
A. The right hand side of the rule is computed from the sub-collection matched by
the left hand side x and its possible neighbors x′ in the collection C.

T T(T(C))T(C)C

...

Figure 5: Transformation and iteration of a transformation. A transformation
T is a set of basic transformations applied synchronously to make one evolution
step. The basic transformations do not interact together. A transformation is then
iterated to build the successive states of the system.

As a programming language based on topological concepts, MGS inte-
grates the idea of topological collections and their transformations into a
general high-level functional programming language: topological collections
are just new kinds of values and transformations are functions acting on
collections. The approach is purely declarative: operators acting on values
combine values to give new values, they do not act by side-effect.

5.2 Biological Examples in MGS

In this subsection, we sketch several examples in various domains to exem-
plify the versatility of the MGS formalism.

The Eden Model

We start with a simple model of growth sometimes called the Eden model
(specifically, a type B Eden model) [Ede58]. The model has been used since
the 1960’s as a model for such things as tumor growth and growth of cities.
In this model, a 2D space is partitioned in empty or occupied cells (we use

21

the white-space character and the C letter). We start with only one occupied
cell. At each step, occupied cells with an empty neighbor are selected, and
the corresponding empty cell is made occupied.

The corresponding MGS model starts by defining the 2D partition using
a group based field (GBF in short). A GBF is an extension of the notion of
array, where the elements are indexed by the elements of a group, called the
shape of the GBF [GMS95, GM01a]. This kind of collection can be used to
describe uniform and regular topologies. For example:

gbf Grid2 = < north, east >

defines a shape called Grid2 , corresponding to the Von Neuman neighbor-
hood in a classical array (a cell above, below, left or right – not diagonal).
The two names north and east refer to the directions that can be followed
to reach the neighbors of an element. These directions are the generators of
the underlying group structure. The list of the generators can be completed
by giving equations that constraint the displacement in the shape:

gbf Hexagon = < east, north, northeast ;
east + north = northeast >

defines an hexagonal lattice that tiles the plane, see. figure 6. Each cell has
six neighbors (following the three generators and their inverses). The equa-
tion east + north = northeast specifies that a move following northeast
is the same has a move to east followed by a move to north.

The Eden’s aggregation process is simply described as the following
transformation:

trans Eden = {
x,y / (x = "C") & (y = " ") ⇒ x,"C";

}
the keyword trans introduce the rules of a transformation. A rule takes the
following form:

pattern ⇒ expression

where pattern in the left hand side of the rule matches a sub-collection A of
the collection C on which the transformation is applied. The sub-collection
A is substituted in C by the collection B computed by the expression in
the right hand side of the rule. Here, the pattern “x,y” filters an element y
neighbor of an element x such that the value of x is occupied and the value
of y is empty. The conditions on the elements matched are given by the
expression after the “/” operator and the comma operator “,” means that
x and y must be neighbors. The right hand side specifies that the couple
x,y matched by the left hand side must be replaced by a couple x,"C".

22

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C
C

C
C

C

C
C

C
C

C

C C
C

C

C

C
C C

C

C

C

CC
C

C

C

C

C

C
C C

C
C

C

C
C

C
C

CC

C

C

Figure 6: Eden’s model on a grid and on an hexagonal mesh (initial state,
and states after the 3 and the 7 time steps). The same transformation is
used for both cases.

The transformation Eden defines a function that can then be applied to
compute the evolution of some initial state. One of the advantages of the
MGS approach, is that this transformation can apply indifferently on grid
or hexagonal lattices (or any other collection kind). The meaning of the
neighborhood operator “,” in the pattern of a rule depends on the collection
on which the transformation is applied.

It is interesting to compare transformations on GBFs with the genuine

23

cellular automata (CA) formalism (see the corresponding chapter). There
are several differences. The notion of GBF extends the usual square grid
of CA to more general Cayley graphs. The pattern in a rule may match
arbitrary domain, not only one cell as it is usually the case for CA. Moreover,
the value of a cell can be arbitrary complex (even another GBF) and is not
restricted to take a value in a finite set.

Restriction Enzymes

This example shows the ability to nest different topologies to achieve the
modeling of a biological organization. We want to represent the action of
a set of restriction enzymes on the DNA. The DNA structure is simplified
as a sequence of letters A, C, T and G. The DNA strings are collected in a
multiset. Thus we have to manipulate a multiset of sequences (this kind of
nested structures has been proved useful in other areas, e.g. [LP02]).

A restriction enzyme is represented as a rule that splits the DNA strings;
for instance a rule like:

EcoRI = x+ as X,
(cut+ as CUT / CUT = "G","A","A","T","T","C"),
y+ as Y

⇒ (X, "G")::("A","A","T","T","C", Y)::seq:()

corresponds to the EcoRI restriction enzyme with recognition sequence
G^AATTC (the point of cleavage is marked with ^). The x+ pattern filters
the part of the DNA string before the recognition sequence and the result
is named X (the + operator denotes repetition of neighbors). Identically,
Y names the part of the string after the recognition sequence. The right
hand side of the rule constructs the two resulting parts as a sequence of two
sequences (the :: operator indicates the construction of a nested sequence).

We assume that all restrictions enzyme rules are collected into one trans-
formation. We need an additional rule, called Void for specifying that a
DNA string without recognition sequence must be inserted as such:

trans Restriction = {
EcoRI = ...;
...;
Void = x+ as X ={flat=false}=> X

}
The attribute “flat=false” in the body of the arrow of rule Void indicates
that the X (which is a sequence) must be inserted in the resulting multiset as
one single entity. This contrasts with the rule EcoRi whose right hand side
computes a sequence of elements to be inserted in the enclosing multiset.

The transformation Restriction can then be applied to the DNA strings
floating in a multiset using the simple transformation:

24

trans Apply = { dna ⇒ Restriction(dna) }

A Localized Signaling Network

At last but not least, we want to sketch the modeling of a spatially dis-
tributed biochemical network in MGS. We rely on a model proposed by A.
E. Bugrim [Bug00]. The example focuses on a small signaling network that
consists of cAMP and calcium signaling. See figure 7 for a more complete
description.

The corresponding topological structure mimics the spatial organization
of the cell using nested multisets, see figure 8. The MGS declarations:

collection Volume = bag;
collection Membrane = bag;

collection Environment = Volume;
collection Plasma = Membrane;
collection Cytosol = Volume;
collection EndoRetic = Membrane;

are used to introduce some new kinds of multisets (the bag keyword). This
kinds are used here mainly do describe the hierarchy of localization and
compartments and can be used, if necessary, to discriminate between mul-
tisets.

The main part of the corresponding MGS program consists in defining the
ontology of this application domain: there exists several molecules, each have
a name; some exists in two state: active or inactive; some are characterized
as receptors; etc. Such ontology is described in MGS using subtyping. These
subtypes are then used in pattern-matching to select entities with or without
some properties. For example, a molecule is described as a record having or
not some fields. Record type in MGS may specify the presence or the absence
of a field, or the value of a specific field. For instance:

state Molecule = {name};
state Activity = {activation};
state Activated = {activation = 1};
state Inactivated = {activation = 0};
state ATP = Molecule + {name = "atp"};

define five record types. The record type declaration is introduced by the
keyword state. Molecule is the type of any record having at least a field
named name. Activated is the type of a record having at least a field named
activation and with value 1. This type is a subtype of Activity which only
requires the presence of the field activation. The type ATP corresponds
to a molecule named "atp".

25

RR

C C

PhK

R R

CC

IC CI
Ca2+

Agonist

Rec

ATP cAMP

+

ACG

Figure 7: cAMP and calcium signaling pathways (this schema is reprinted
from [Bug00]). The different components of the two pathways are localized
at various places within the cell.
The first steps of the cAMP pathway occur at the plasma membrane, start-
ing with the activation of adrenegric receptors. Then, the cAMP molecules
bind to a regulatory sub-unit of the protein kinase A, with the effect of
dissociating a catalytic sub-unit C. The localization of PKA depends of a
family of anchoring proteins AKAPs that target this kinase to different com-
partments. In this example, two localizations are considered: the plasma
membrane and an internal compartment (e.g., nucleus or ER).
The calcium pathway starts by the activation of a channel in the plasma
membrane. The fraction of PhK associated to the internal compartment is
the target of both pathways. A possible inhibitor I of PKA is also considered.

reaction

transport

transport

reaction

internal membrane

plasma membrane

cytosol

diffusion

environment

Figure 8: The reaction, diffusion and transport processes described in fig-
ure 7 are modeled as multiset transformations taking place in a nest of
multisets. This is reminiscent of the P system approach, see section 3.

26

Three kinds of transformations are used to define the processes of the Bu-
grim’s model. The first class corresponds to some ancillary transformations.
For example

trans ActivateReceptor = { r:Receptor → r + {activation=1} }
is a rule that updates to 1 the field activation of an entity r of type
Receptor . This kind of transformations is triggered by a rule of the sole
transformation of the second class. This transformation summarize all the
rule corresponding of the description of the biochemistry (they are about 10
reactions in this pathway):

trans Biochemistry = {
R1 = a:ActiveAgonist, p:Plasma

⇒ a+{activation=0},ActivateReceptor(p);
...

}
For example, rule R1 specifies that an active agonist and a plasma membrane
interact to inactivate the agonist and to transform the plasma with trans-
formation ActivateReceptor (this transformation turn on all the activation
fields of the receptors anchored in the plasma membrane).

There is also only one transformation in the last class of transformations.
It is used to thread the biochemistry rules amongst the nested multisets:

fun Run(x) = Thread(Biochemistry(x));
trans Thread = {

p:Membrane ⇒ Run(p);
c:Volume ⇒ Run(c);

}
The transformation Thread applies the function Run to each entity of type
Membrane or Volume found in the collection argument. The function Run
consists in running the biochemistry transformation and then iterating the
threading.

The complete MGS program is approximatively 150 line long, including
the building of the initial system state. It describes 40 molecules in diverse
states, uses of 5 auxiliary transformation to define 10 chemical interactions.

27

6 Multiscale graphs

The previous formalisms have been used to model the changes of structure
that arise throughout time. However, biological structures may change also
due to a change in the scale of observations.

On the one hand, plants appear as complex structures due to the in-
trication of many sub-structures at various levels of detail. On the other
hand, plants are essentially spatially and temporally periodic structures
which gives an overall impression of simplicity. In such a paradoxical situa-
tion, the question arises: what mathematical formalisms and what tools are
necessary to model plants at several scales ?

In this chapter, we analyse how biological systems, such as plants, can
be formally represented with combinatorial formalisms (see section 2). We
particularly analyze how this formalism must be designed in order to account
for a new dimension, namely the scale dimension. We then briefly describe
the types of mathematical and computational tools that must be developed
in this context.

6.1 Plants as modular organisms

The growth of a plant can be depicted as the result of two growth pro-
cesses. This apical growth process gives the plant the ability to develop
in one direction. During their activity, shoot meristems can give birth to
distinct embryogenic cellular areas (always associated with corresponding
leaves), called axillary or lateral meristems. This defines the branching pro-
cess. Plants make branching structures if the meristems located at leaf axils
enter an apical growth process. Using the branching process, plants can
develop shoots in more than one direction. The overall growth process is
thus the combination of both the apical growth process and the branching
process. Growth is a fundamentally repetitive process which creates vari-
ous forms of patterns repeated as ”modules” throughout the plant structure
([HRW86], [Bar91]). Figure 9 illustrates different types of modules that can
be observed on plants.

Figure 9: Different types of modularity in plants. a. nodes b. axes c. whorls
d. branching systems e. crownlets

28

For a given type of module, the plant can be split-up into a set of modules
of this type. This defines a particular plant modularity. A plant modularity,
is caracterised by the type of modules considered and their adjacency within
the plant. This information can be represented by a directed graph.

A directed graph is defined by a set of objects, called vertices, and a
binary relation between these vertices. The binary relation defines a set of
ordered pair of vertices, called edges. In plant representations, vertices rep-
resent botanical entities and edges adjacency between these entities. Edges
are always directed from oldest entities to youngest ones. Given an edge
(a, b), we say that a is a father of b and b is a son of a. Directed graphs rep-
resenting plants have tree-like structures : every vertex, except one, called
the root, has exactly one father vertex. Morevover, in order to identify the
different axes of a given plant, two types of connections are distinguished :
an entity can either precede (type ’<’) or bear (type ’+’) another entity
(Figure 10). In order to describe different characteristics of plant entities,
vertices can have attributes, e.g. length, diameter, spatial location, leaf area,
number of flowers, type of branched entities, etc.

Figure 10: a. A tree b. The tree graph representation of its topology (at
node scale)

29

6.2 Multiscale representations

Many modularities can exist on a single individual. Several types of modu-
larity, stemming from either natural or artificial decomposition of the plant
into modules, can exist within a single individual at the same time. For
above-ground systems, at least the nodal (the plant is a set of leaves) and
the axial modularity (the plant is a set of axes) coexist. If, in addition, the
plant reiterates, a modularity by reiteration is superimposed on the previous
ones. Thus, there always exist two or three types of modularities expressed
in a plant simultaneously. There can be more, depending on the number of
regular fluctuations that characterize the plant growth. This is the case, for
example, for plants containing growth unit or annual shoot modules. These
types of module can exist simultaneously in a plant, such as in apricot tree,
evergreen oak or Aleppo pine. For a single plant, there is thus the theoretical
possibility of finding numerous types of modularity, each one corresponding
to a particular topological interpretation of the plant.

The existence of several modularities on the same plant can be illustrated
by Vochysia guyanensis [San92]. For this plant, the number of modulari-
ties stemming from natural decomposition is relatively high. The highest
scale corresponds to the description of the topological structure in terms
of internodes. At a lower scale, the rhythmic elongation of stems produces
an alternate sequence of cataphylls and developed leaves which enables the
observer to define growth unit modules (11.a). The final stopping of stem
elongation, due to the death of their apical meristem, makes it possible to
group growth units into axes (11.a). The architectural unit of the young tree
consists of a stack of such axes (11.b). The plant continues its development
by reiterating its architectural unit. The resulting topological structure is
described in terms of reiterated complexes. Eventually, at the lowest scale,
the crown of the adult tree is a set of crownlets, each of them made of re-
iterated complexes (11.c). The plant can thus be represented by a specific
topological structure for each possible scale. The set of these topological
structures defined at every scale and their relations characterizes the overall
topological structure of the plant, i.e. multiscale topological structure of the
plant.

To formally represent the multi-modular structure of plants, extension
od directed graphs, called multiscale tree graphs (MTGs) [GC98], are used.
The MTG formalism has been designed in order to enable users to express
both the modularity and the multiscale nature of plant structures. Each
scale of analysis corresponds to a modular structure which can be formally
represented by a tree graph. Entities at one scale are decomposed into
entities at finer scales. For instance, internodes of Figure 10.a can be grouped
into growth units, leading to a more macroscopic description of the plant
topology (Figure 12).

A MTG integrates in a homogeneous framework the different tree graphs

30

Figure 11: Nested modularities: a. nodes, growth units and axes. b. Archi-
tectural unit c. crowlets.

corresponding to plant descriptions at different scales (Figure 13.a). Vertices
at one scale are composed of vertices at a higher scale. If an entity a is com-
posed of n entities x1, x2, ..., xn, for every i ∈ [1, n], a is called the complex
of xi, and xi is a component of a. The complex of any entity xi is denoted
π(xi). If the scale of a is defined by the integer s, then for every i ∈ [1, n],
the scale of xi is s + 1. The most macroscopic scale s0 consists of a single
vertex, representing the entire plant, and by convention has value 0. In order
to maintain coherence between the different tree graph representations of a
same individual, MTGs must respect the following consistency constraint : if
there exists an edge (x, y) in the tree graph representing the plant structure
at scale s + 1, and if the complexes of x and y are different, then there nec-
essarily exists a corresponding edge (π(x), π(y)) between these complexes in
the tree graph representing the plant at scale s (Figure 13.b) This expresses
that the connection between two macroentities results from the connection
between two of their components.

6.3 Space of modularities

From a structural point of view, the relative position of two modularities in
a plant can be of two types.

• Firstly, one modularity is a refinement of the other (Figure 14.a). For
example, a topological structure represented in terms of growth units
can be refined by considering the plant decomposition in terms of
internodes. Each growth unit is considered as a set of internodes.
Similarly, the axis structure of a plant can be interpreted as a refine-
ment of the plant description in terms of branching systems, since each

31

Figure 12: a. Partitionning graph of Figure 10 into growth units (M). b.
Topology of the plant at scale M.

branching system can be decomposed into a set of axes. Hence, one
modularity is a refinement of another if each module of the second
can be decomposed into a set of modules of the first and, reciprocally,
each module of the first modularity is a part of a module of the second.
These modularities correspond to two topological structures represent-
ing the plant at two different scales. The highest scale corresponds to
the finest modularity, while the lowest scale corresponds to the coars-
est modularity. Within a plant representation, the scale of internodes
is higher than the scale of growth units which is itself higher than the
scale of axes.

• Secondly, the two modularities are not a refinement of eachother : they
are overlapping (Figure 14.b). This is the case if at least one module
of one modularity shares a common part with one module of the sec-
ond modularity, whereas there is no inclusion of one into the other.
Let us consider for example the topological structure of an apple tree
in terms of both annual shoots and axes (14.b). At the beginning of
the vegetative period, the apical meristem of some branches produces
short shoots terminated by a flower, called ”bourse”[CL95]. During a
second phase of the vegetative period, a vegetative shoot may develop
on some bourses. These are called ”bourse shoots”. A bourse shoot is
part of the same annual shoot as the bourse, since it is created during
the same vegetative period. Therefore, some annual shoots are made
of a bourse bearing a bourse shoot. Such an annual shoot is thus

32

Figure 13: a. Multiscale graph corresponding to tree of Figure 10. b.
corresponding topology at S module scale.

straddling two axes : on one side the axis terminated by the bourse
and on the other side, the axis which begins with the bourse shoot.
Reciprocally, each axis is straddling two annual shoots. The modular-
ities corresponding respectively to axes and annual shoots determine
two topological interpretations of the plant which are not a refinement
of eachother.

Figure 14: a. nested modularities. b. overlapping modularities

The different types of modularities that can be identified within a given
plant define different topological structures. These modularities are compa-
rable if they are refinements of each other. The refinement relation expresses
the existence of a decomposition relation between the modules of the coars-
est modularity and those of the finest. In the opposite case, modularities
are incomparable, i.e. none of them is a refinement of the other. No decom-

33

position relation exists between the modules of both modularities since they
overlap.

Figure 15: a. a general MTG. b. its corresponding modularity graph.

Now, if we consider a graph g and different partitionning of the vertices of
this graph, representing different modularities (Figure 15.a). Let us assume
that each modularity is represented by a square element (Figure 15.b), and
an edge is drawn from modulatities A to modularity B whenever A is a
refinement of B. The graph obtained from this process is a lattice :

Let g be a tree graph. Let L(g) be the set of all partitions on
g, such that the induced macroscopic graph (quotient graph) is a
tree graph.

L(g) is a lattice

This proposition characterizes the space of all modularities that can be
potentially defined on a given individual by a remarkable algebraic property :
it is a sublattice of the partition lattice (the set of all subsets of a set). A
multiscale graph is associated with only a subset of this sublattice. This
subset corresponds to the set of modularities that are actually taken into
consideration by the observer in the plant description. Multiscale graphs
are thus a model of the observer’s subjective interpretation of the plant.

6.4 Growing multiscale structures

From a temporal point of view, the analysis of the relations between the
different types of modularities is a delicate issue. Indeed, whereas the growth
of a topological structure at a given scale seems to be a relatively clear
phenomenon, the simultaneous growth of different topological structures
representing a given individual, at different scales, raises the problem of
understanding how these growth processes are linked to each other [GC98].
Figure 16 illustrates such a problem.

34

Consider an adult tree bearing a well hierarchized crown (16, date t1).
At a subsequent date t2, a possible development of the crown may preserve
the original hierarchy of branches. Another possible development is that
one of the branches starts to compete with the trunk, yielding a reiterated
complex (16 dates t1 and t2). This phenomenon can be interpreted in terms
of MTGs (lower part of 16) if we assume that a component can belong to
different complex entities throughout time.

Figure 16: a. (upper part) reiterated complex is produced througout time.
b. (lower part) Corresponding MTG interpretation

The growth of a multiscale structure illustrates an important aspect of
the model : rather than an objective plant topological structure, defined
once and for all, a time-varying multiscale graph actually represents the
plant topological structure as a subjective object depending on the observer’s
goals, knowledge and means of observation.

6.5 Handling plant architecture databases

Multiscale tree graphs are currently used as the backbone of a general
methodology for measuring and analyzing plant topological structures, im-
plemented in the AMAPmod software [GGC99]. Real plants are encoded
by the observer using a specific coding language designed for this purpose.
The multiscale plant topological structure can then be loaded into the com-
puter. A set of dedicated tools, gathered in the AMAPmod software, enable
the user to access these virtual plants and to explore them. They provide
users with a methodology and corresponding tools to measure plants, create
plant databases, analyse information extracted from these databases. This
methodology can be depicted as follows (Figure 17).

Multiscale representation of plant architectures are described from either
field observations or plant growth simulation programs, using a dedicated en-

35

Figure 17: Synopsis of the AMAPmod system.

coding language. The resulting database can then be analysed with various
statistical analysis tools (e.g. [GBCC01]). Plants can be graphically recon-
structed at different scales and vizualised in 3 dimensions. Various types
of data can be extracted and analysed with different viewpoints. Different
families of probabilistic or stochastic models are provided in the system.
These models are intended to be used as advanced statistical analysis tools
for exploring in greater depth the information contained in the database. All
these tools are available through a querying language called AML (AMAP-
mod Modelling Language) which enables the user to work on various objects,
i.e. multiscale representation of plants, samples of data or models. AML
provides the user with a homogeneous language-based interface to load, dis-
play, save, analyse or transform each type of object.

36

37

References

[Ada00] D. G. Adams. Heterocyst formation in cyanobacteria. Current
Opinoin in Microbiology, 3:618–624, 2000.

[Bar91] D. Barthlmy. Levels of organization and repetition phenomena
in seed plants. Acta Biotheoretica, 39:309–323, 1991.

[BB90] G. Berry and G. Boudol. The chemical abstract machine. In
Conf. Record 17th ACM Symp. on Principles of Programmming
Languages, POPL’90, San Francisco, CA, USA, 17–19 Jan.
1990, pages 81–94. ACM Press, New York, 1990.

[BCM87] J. P. Banatre, A. Coutant, and Daniel Le Metayer. Parallel ma-
chines for multiset transformation and their programming style.
Technical Report RR-0759, Inria, 1987.

[BFM01] Jean-Pierre Banâtre, Pascal Fradet, and Daniel Le Métayer.
Gamma and the chemical reaction model: Fifteen years after.
Lecture Notes in Computer Science, 2235:17–??, 2001.

[BH70] R. Baker and G. T. Herman. CELIA — a cellular linear iterative
array simulator. In Proceedings of the Fourth Conference on
Applications of Simulation (9–11 December 1970), pages 64–73,
1970.

[BH72] R. Baker and G. T. Herman. Simulation of organisms using a
developmental model, parts I and II. International Journal of
Bio-Medical Computing, 3:201–215 and 251–267, 1972.

[BH00] Ronald Brown and Anne Heyworth. Using rewriting systems to
compute left kan extensions and induced actions of categories.
Journal of Symbolic Computation, 29(1):5–31, January 2000.

[BM86] J. P. Banatre and Daniel Le Metayer. A new computational
model and its discipline of programming. Technical Report RR-
0566, Inria, 1986.

[Bug00] A. Bugrim. A logic-based approach for computational analysis of
spatially distributed biochemical networks. In ISMB 2000, San
Diego California, August 2000.

[Cho56] N. Chomsky. Three models for the description of language. IRE
Trans. on Information Theory, 2(3):113–124, 1956.

[Cho57] N. Chomsky, editor. Syntactic structures. Mouton & Co., The
Hague, 1957.

38

[CL95] E. Costes and P. L. Lauri. Processus de croissance en rela-
tion avec la ramification sylleptique et la floraison chez pom-
mier. In J. Bouchon, editor, Architecture des Arbres Fruitiers et
Forestiers, volume 74, pages 41–50, Montpellier, France, 1995.
INRA Editions.

[Dit00] P. Dittrich. Artificial chemistry page, 2000. http://ls11-www.
cs.uni-dortmund.de/achem.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical
Computer Science, volume B, chapter Rewrite systems, pages
244–320. Elsevier Science, 1990.

[dL87] C. G. de Koster and A. Lindenmayer. Discrete and continuous
models for heterocyst differentiation in growing filaments of blue-
green bacteria. Acta Biotheoretica, 36:249–273, 1987.

[DZB00] P. Dittrich, Jens Ziegler, and Wolfgang Banzhaf. Artificial
chemistries - a review. Artificial Life, 2000. (to be submitted,
available from the authors).

[Ede58] M. Eden. In H. P. Yockey, editor, Symposium on Information
Theory in Biology, page 359, New York, 1958. Pergamon Press.

[ela02] Elan home page, 2002. http://www.loria.fr/equipes/
protheo/SOFTWARES/ELAN/.

[FMP00] Michael Fisher, Grant Malcolm, and Raymond Paton. Spatio-
logical processes in intracellular signalling. BioSystems, 55:83–
92, 2000.

[GBCC01] Y. Gudon, D. Barthlmy, Y. Caraglio, and E. Costes. Pattern
analysis in branching and axillary flowering sequences. Journal
of Theoretical Biology, 212:481–520, 2001.

[GC98] C. Godin and Y. Caraglio. A multiscale model of plant topolog-
ical structures. Journal of Theoretical Biology, 191:1–46, 1998.

[GGC99] C. Godin, Y. Gudon, and E. Costes. Exploration of plant archi-
tecture databases with the AMAPmod software illustrated on an
apple-tree hybrid family. Agronomie, 19(03-avr):163–184, 1999.

[GM01a] J.-L. Giavitto and O. Michel. Declarative definition of group
indexed data structures and approximation of their domains. In
Proceedings of the 3nd International ACM SIGPLAN Conference
on Principles and Practice of Declarative Programming (PPDP-
01). ACM Press, September 2001.

39

[GM01b] J.-L. Giavitto and O. Michel. MGS: A programming language for
the transformation of topological collections. Research Report
61-2001, CNRS - Université d’Evry Val d’Esonne, Evry, France,
2001.

[GM02] J.-L. Giavitto and O. Michel. The topological structures of mem-
brane computing. Fundamenta Informaticae, 49:107–129, 2002.

[GMS95] J.-L. Giavitto, O. Michel, and J.-P. Sansonnet. Group based
fields. In I. Takayasu, R. H. Jr. Halstead, and C. Queinnec,
editors, Parallel Symbolic Languages and Systems (International
Workshop PSLS’95), volume 1068 of Lecture Notes in Computer
Sciences, pages 209–215, Beaune (France), 2–4 October 1995.
Springer-Verlag.

[GV01] J.-L. Giavitto and E. Valencia. Diagrammatic Representation
and Reasonning, chapter A Topological Framework for Modeling
Diagrammatic Reasoning Tasks. Springer-Verlag, 2001.

[Han92] J. S. Hanan. Parametric L-systems and their application to the
modelling and visualization of plants. PhD thesis, University of
Regina, June 1992.

[HP96] M. Hammel and P. Prusinkiewicz. Visualization of developmen-
tal processes by extrusion in space-time. In Proceedings of Graph-
ics Interface ’96, pages 246–258, 1996.

[HR75] G. T. Herman and G. Rozenberg. Developmental systems and
languages. North-Holland, Amsterdam, 1975.

[HRW86] J. L. Harper, B. R. Rosen, and J. White. The growth and form
of modular organisms. The Royal Society, ”London, UK”, 1986.

[Jef85] D. Jefferson. Virtual time. ACM Transactions on Programming
Languages and Systems, 7(3):404–425, July 1985.

[JTN00] K. Chen J.J. Tyson, M.T. Borisuk and B. Novak. Computational
Modeling of Genetic and Biochemical Networks, chapter Analysis
of Complex Dynamics in Cell Cycle Regulation, pages 287–306.
MIT Press, 2000.

[Kan00] Minoru Kanehisa. Post-genome informatics. Oxford University
Press, 2000. ISBN 0-19-850326-1.

[Kau95] S Kaufman. The Origins of Order: Self-Organization and Selec-
tion in Evolution. Oxford University Press, 1995.

[Kel95] Evelyn Fox Kelle. Refiguring Life: Metaphors of Twentieth-
century Biology. Columbia University Press, 1995.

40

[Kre86] W. Kreutzer. System simulation: Programming styles and lan-
guages. Addison-Wesley, Sydney, 1986.

[LIL89] C. Langton, L. In, and C. Langton. Artificial life, 1989.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction
in development, Parts I and II. Journal of Theoretical Biology,
18:280–315, 1968.

[Lin71] A. Lindenmayer. Developmental systems without cellular inter-
action, their languages and grammars. Journal of Theoretical
Biology, 30:455–484, 1971.

[Lin74] A. Lindenmayer. Adding continuous components to L-systems.
In G. Rozenberg and A. Salomaa, editors, L Systems, Lecture
Notes in Computer Science 15, pages 53–68. Springer-Verlag,
Berlin, 1974.

[LP02] Brendav Lane and Przemek Prusinkiewicz. Specifying spatial
distributions for multilevel models of plant communities. In proc.
of Graphics Interface 2002, 2002.

[Lyn96] N. A. Lynch. Distributed algorithms. Morgan Kauffman, Los
Altos, CA, 1996.

[Man01] Vincenzo Manca. Logical string rewriting. Theoretical Computer
Science, 264:25–51, 2001.

[mau02] Maude home page, 2002. http://maude.csl.sri.com/.

[May75] R. M. May. Biological population models obeying difference
equations: Stable points, stalbe cycles, and chaos. Journal of
Theoretical Biology, 51:511–524, 1975.

[May76] R. M. May. Simple mathematical models with very complicated
dynamics. Nature, 261:459–467, 1976.

[Mei82] H. Meinhardt. Models of biological pattern formation. Academic
Press, New York, 1982.

[Mic96] O. Michel. Reprsentations dynamiques de l’espace dans un lan-
gage dclaratif de simulation. PhD thesis, Universit de Paris-Sud,
centre d’Orsay, December 1996. N◦4596, (in french).

[Pat94] Ray Paton, editor. Computing With Biological Metaphors. Chap-
man & Hall, 1994.

[Pau98a] Gheorge Paun, editor. Computing with Bio-Molecules: Theory
and Experiments. Springer, 1998.

41

[Pau98b] Gheorghe Paun. Computing with membranes. Technical Report
TUCS-TR-208, TUCS - Turku Centre for Computer Science,
November 11 1998.

[Pau00] G. Paun. From cells to computers: Computing with membranes
(p systems). In Workshop on Grammar Systems, Bad Ischl, aus-
tria, July 2000.

[PH90] P. Prusinkiewicz and J. Hanan. Visualization of botanical struc-
tures and processes using parametric L-systems. In D. Thal-
mann, editor, Scientific visualization and graphics simulation,
pages 183–201. J. Wiley & Sons, Chichester, 1990.

[PJS92] H.-O. Peitgen, H. J urgens, and D. Saupe, editors. Chaos and
fractals. New frontiers of science. Springer-Verlag, New York,
1992.

[PL90] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty
of plants. Springer-Verlag, New York, 1990. With J. S. Hanan,
F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[Pru98] P. Prusinkiewicz. Modeling of spatial structure and development
of plants: a review. Scientia Horticulturae, 74:113–149, 1998.

[Pru99] P. Prusinkiewicz. A look at the visual modeling of plants using
L-systems. Agronomie, 19:211–224, 1999.

[San92] E. Sanoja. Essai d’application de l’architecture vgtale la syst-
matique. L’exemple de la famille des Vochysiaceae. PhD thesis,
USTL Montpellier France, 1992.

[Smi99] John Maynard Smith. Shaping Life: Genes, Embryos and Evo-
lution. Yale University Press, 1999.

[Ste88] Isabelle Stengers. D’une science l’autre. Les concepts nomades.
Le Seuil, 1988.

[TM87] T. Toffoli and N. Margolus. Cellular automata machines: a new
environment for modeling. MIT Press, Cambridge, 1987.

[VN66] J. Von Neumann. Theory of Self-Reproducing Automata. Univ.
of Illinois Press, 1966.

[WMS73] M. Wilcox, G. J. Mitchison, and R. J. Smith. Pattern formation
in the blue-green alga, Anabaena. I. Basic mechanisms. Journal
of Cell Science, 12:707–723, 1973.

42

