SH,

2 Information
Processing
Letters
ELSEVIER Information Processing Letters 84 (2002) 311-317

www.elsevier.com/locatefipl

Efficient multi-variate abstraction using an array representation
for combinators

Antoni Diller

University of Birmingham, School of Computer Science, Birmingham, UK B15 2TT
Received 15 February 2000; received in revised form 26 April 2002
Communicated by F.B. Schneider

Keywords:Bracket abstraction; Combinatory logic; Compilers; Functional programming

1. Introduction basic combinatorsThe lettersv, w, x, y and z,

sometimes decorated with subscripts or superscripts,
Turner [9] showed how a pure functional program- are used for variables. #ermis defined thus:

ming language could be implemented using combina-

tory logic in a practicable way. This method is cur- (a) Every variable is a term;

rently out of fashion, but for some time | have believed (b) Every constantis a term;

that its full potential is still to be realized. This belief (c) If P andQ are terms, then so is? Q).

was partially vindicated by Stevens [7] who developed

a family of interesting algorithms which use a novel The lettersP, Q, R, S, T andX, sometimes decorated

notation for combinators. The work reported here was with subscripts or superscripts, are used for terms.

inspired by that of Stevens, but is significantly differ- An atomis a variable or a constant. A term of the

ent. (Additional information about the motivation be- form (P Q) is anapplication but the outermost pair

hind the current research can be found elsewhere [2, of parentheses is usually omitted. Normally, no space

pp. 2-5].) is left between the terms of an application, but some-
times one will be inserted for clarity and readability.
Application associates to the left, 0QRST is the

2. Fixing terminology same as$((P Q)R)S)T . The symbok= representsyn-

_ ~ tacticidentity P = Q means thaP andQ are exactly
There are several systems of combinatory logic. the same term.

The one used here i8eakcombinatory logic. On the A subtermis defined thusP is a subterm of?: P

whole, standard terminology is used [4]. is a subterm ofQR if P is a subterm ofQ or P is a

Assume given an infinite sequence of symbols g hterm ofk. Every termP can be uniquely expressed
called variablesand two constant¥ and S, called in the form PLP,...P,. where Py is an atom and

m > 1. The P; are know as th@rimal componentsf
E-mail addressa.r.diller@cs.bham.ac.uk (A. Diller). P. The non-standard notion okaibprimal component

0020-0190/02/$ — see front mattér 2002 Elsevier Science B.V. All rights reserved.
PI1l: S0020-0190(02)00318-6

312

is defined thusP is a subprimal component af; P
is a subprimal component @ if P is a subprimal
component of one of therimal components 0. For
example, the subprimal componentsaf(x(yz)) are:
vw(x(y2)), v, w, x(yz), x, yz, y andz.

Because combinatory logic contains no variable-
binding operators every variable in a termfiee
FV(P) represents the set of free variablesAn The
lengthof P, written #P, is the number of occurrences
of atoms inP. SubstitutingP for every occurrence of
x in X, written[P/x]X, is defined thus:

(@ [P/x]x =x;
(b) [P/x]Y =Y, if Y is an atom distinct from;
(©) [P/x]IQR = ([P/x]1Q)([P/x]R).

A term of the formKPQ or SPQR is aredex
Contracting an instance of a redex in a teri$i
means replacing one occurrencekdt Q by P or one
occurrence o5PQR by PR(QR). Let the result be
T.Then we say thaf contractgto T, writtenS —1 T,
and thatT is the contractum S is said toreduceto
T, written S — T, iff T results fromS by carrying
out a finite (possibly zero) number of contractions.
Combinatorss, C andl can be defined in terms &f
ands:

B2 S(KS)K, CZS(BBS)(KK) and |2 SKK.

These contract thus:
BPOR — P(QOR),
CPQOR— PRQ and

Uni-variate bracket abstractioiis a syntactic op-
eration which removes a variable from a termX,
written [x]X, satisfying the property thafx]X)P —
[P/x]X. If [x]X = Q, thenX is theinput termand
Q the abstract Usually, in combinatory logianulti-
variate abstractionxy, xo, ..., x,]1X is defined to be
the same apr1]([x2](. .. ([xa—1]([x4]1X))...)). In this

IP— P.

A. Diller / Information Processing Letters 84 (2002) 311-317

sizgp) is the number of occurrences gfandn in

B and B;, for 1 < i < sizédp), is theith letter in 3.
String concatenation is represented by juxtaposition.
If y is ana x m yn-array, theny; ;, for 1 <i <a and

1< j < m, is the jth letter in rowi. Note that if 8

is ayn-string, it is assumed thatgi= 1. Similarly, if

y is anyn-array, it is assumed that#= 1, but this
assumption is discussed in the conclusion.

Let 8 be ayn-string. Then aB-redexis any term
of the form gP1P>... Pyy1, Where m = sizgp).
Contracting an instance of g3-redex in a termS
means replacing one occurrencegd Py . .. P, 11 by
0107...0,,wWhere, for 1< i <m,

Q__{PiPm+1a |f,31=y1
T Pi if ,31‘ =n.

Let [X] = [x1, x2, ..., x4]. Thenrpv([X], P) is the
number of distinct non-atomic subprimal components
of P, other thanP itself, which contain at least one
of the variables, x2, ..., x,. There is an alternative
characterization ofpv. Let P be represented using
the fewest possible parentheses. Then([X], P) is
half the number of parentheses that enclose subterms
containing at least one of the variables x, ..., x,.
Thus,

rpv(lx, y, 2], x(yz)(wv)z) =1 and
rpv([x, 1, x(y(wv)) (w(xv))) = 3.
LetP =P P>...P,,whereP; is an atom. Then

rpu([E], P) = D _if (Vi € L.a)x; ¢ FV(P)) or
=1
! Fiel.a)x = Pj

then O else 1+ rpu([X], P;),

where(Vi € 1..a) means ‘for alli such that i <a’
and (i € 1..a) means ‘for someé such that 1< i <
a’. Putting a conditional inside a summation may be
unusual, but its meaning is straightforward. Leg;)

paper, however, it represents an operation that removesbe a Boolean-valued function and Igtj) and g(;)
several variables simultaneously. Furthermore, all the be integer-valued ones. Then

variables in the bracket prefixi, xo, ..
sumed to be distinct.

Two non-standard notations for combinators are
introduced here, namely as strings of the letteand
n, calledyn-strings and as arrays or matrices of the
lettersy andn, calledyn-arrays The lettersy and$
are used for arbitraryn-arrays an@3 for a yn-string.

.,x,] are as-

m

DI () then £(j) dseg())
j=1

= (if I'(1) then f(1) else g(1))
+(if ' (2) then f(2) else g(2)) + -
+ (if I"(m) then f(m) else g(m)).

A. Diller / Information Processing Letters 84 (2002) 311-317 313

3. Contraction by translating them into the usual notation for combi-
nators. This is achieved by the functidranswhich
In order to explain howyn-arrays are contracted employstrans which translategn-strings into stan-

two functions have to be defined gn-strings:yc(s) dard combinators. The functidrans uses the series
is the number of occurrences of the letterin g of combinator®;, fori > 1, defined thus:

and posy(i, 8) is the position of theth occurrence A (B, ifi=1,

of y in B, where 1< i < yc(B); if i > yo(B), then Bi = { BB;_1B. ifi> 1.

posy(i, B) is not defined. For examplgg(ynnynyy) =
4, posy1, ynnynyy) = 1 and posy2, ynnynyy) = 4.
Let y be ana x m yn-array. Then it contracts thus: X

defined thus:

yP1Po.. . PyPyy1...Pyig—1 0102...0m, trang(y) éBL

where, for 1< j < m, Q;j = PjPg;)Ps;2)--- trans(n) 2 K,

Note that eacls;, fori > 1, has the same effect as the
B’ defined in [1, pp. 163-164]. The functidransis

Py, (s;), Wheres; = yo(y1,jy2.j - va,j) and, for 1< trans(By) 2 B;Strans(8), if siz&p) > 1,
k<sj,gj(k)=m~+posyk, y1,jyz; - Va,j)- FOr €x- R " sl
ample tranggn) = B;Ctrangg8), if siz¢B) > 1,

wherei = sizg8). For example,

n ny n
Yy Ny n|PiPyP3P4PsPsPy; trans(nny) = BaStrang(nn)
nny.y = By S (B1Ctrans(n))

—1 P1PgP2(P3PsPs P7)(PsPr).

An a x m yn-array y has to be followed by at least

a + m terms in order for a contraction to be possible.
Informally, the firstm terms following y can be
thought of as functions and the nextan be seen as
their possible arguments. Tlye-array tells us which

of these are going to be passed to the functions to
become their actual arguments. Thus, jiie column

= B2S(B1CK).

The functiontransis correctif trang(8) P1P>... Py
Pu+1— O, wherem = size€) and Q is the result of
contracting8P1P>... P, Py4+1. Thattransis correct
is proved elsewhere [2, pp. 9-10].

The functionTransis defined thus:

ta

tells us which 0fP,, 11, Pu+2, . . ., Puta follow P; in Trangy) 2 trangnn...n y11y1.2...YLm)
the contractum of thgn-array: P,,+; only occurs if a—1 times
vi,j isy. For example, the 4th column of tlye-array fa1

used in the example imy. This tells us which of the
terms Ps, Pg and Py follow P4 in the contractum. As
only the last letter ofhny is y, only P; does. This
means that P4 P7) occurs in the contractum. f2
tranqnya—l,lya—l,2 ces]/a—l,m)
4

trang(nn...n
S Y2,1¥2,2 .- Y2,m)
a—2 times

4, Trandation trans(ye.1Ya.2. - - Yam) -

Transproduces quite complicated terms as the follow-

Many people, on first encounterigg-strings, think)
ing example shows:

that they are similar to director strings [6]. Director

strings, however, are not combinators. They are el- y n vy

ements of a new formal system called ‘the director Transin y vy

string calculus’ whose properties have to be estab- n n vy

lished from scratchyn-strings andyn-arrays, by con- = trans(nnyny) trang(nnyy) trans(nny)
trast, are just alternative notations for combinators, _ B4S(BgC(st(Bch)))

just as Roman and Arabic numerals are alternative
representations for numbers. This can be established ~ (B3S(B2S(B1CK)))(B2S(B1CK)).

314

Proposition 1. The function Trans is correct in the
sense that if

yP1iPo.. . PyPyy1...Pyrg— 0102...0m,

wherey is ayn-array and theQ;, for 1 < j <m, are
as specified by the way contracts, then

Trangy)P1iP2... Py Ppy1... Puta
g QlQZ i Om-

Proof. Let;, for 1 <i < a, be as shown above and
let Pt = P;, for 1<i <m. Then

1pl 1
ta.t1P1P2.Pum+l..Pm+a

2 p2 2
—>tg-1...1P{ Py .. . Py Pyi2... Pyiq,

whererz = le Pu+1, if 15 =y, and sz = pl if
y1,j = h, because, is ayn-string which contracts in
this way,

> tgp...0PEP3 . P3Pyi3... Pyia,

where P? = P2P,.5, if y5; =y, and P} = P2, if
Y2,j =N, because,_; is ayn-string,

a+1 pa+1 a+1
— pitlpgtl | patl

WhereP]?”rl = P{Pnta, if vaj =V, andpj'lﬂ =P},
if y4,; =n, becausey is ayn-string. Thus,

P = PPy Pu) - Pajirys

where Pn; is the i;(Dth term in the list Py, 1,
Puy2,..., Puya, Whereh;(1) is the position of the
first occurrence of the lettgrin y1 jy2 ;... v4,j, and
Py, 2) is thehj(2)th term in the same list, wherg (2)

is the position of the second occurrence of the let-
teryin yyjy2j...va,j and so oni;(r;) is the po-
sition of the final occurrence ofin y1 jy2 ;... va,j-
Thus, r; is the total number of occurrences of
N y1jy2j.. Yaj. ThUS, rj = ye(y1y2,j-.Ya,j)
and, for 1< k < rj, hj(k) = g;j(k), where g;(k)

is the function defined in the context of explain-
ing how yn-arrays contract, namelg;(k) = a +
posyk, y1,j¥2.j---Ya.j)- O

A. Diller / Information Processing Letters 84 (2002) 311-317

5. Abstraction

In order to present an abstraction algorithm that
produces abstracts containing-arrays two func-
tions have to be definedwv([X], P) returns the to-
tal number of variables in the list occurring in
P and inx(, [X], P) returns the index of theth
variable in the listx occurring in P. For exam-
ple, tv([x1, x2, x3], x1x3) = 2 andinx(l, [x1, x2, x3],
x2x3(x1x2)) = 2. Algorithm (M) is shown in Fig. 1.
Note that a different algorithm would result if it was
not a requirement foP; to be an atom. The element
vi,j of theyn-arrayy tells us whether or not; occurs
in P;. A lettery says that it does andthat it does not.
An example of (M) should clarify its operation:

[x1, x2, x3]x1(x2x1) (x3Xx1) X2
y y yon

=|n y n y[l([xg,x2] xax1)([x1, x3] x3x1) |
n ny n
y y yon

=lny n yI(’n y ||><‘n y’ll)l.
nnyn y n y.n

The top rowyyyn of the 3x 4 yn-array shows the
pattern of occurrences of the variabigin the primal
components of the input term. Similarly, the second
row nyny shows the pattern of occurrences of the
variablex; in the primal components of the input term
and the third row does the same for the varialye

Algorithm (M) has the property th&fx]P)x — P.
This is Proposition 2 and the proof is by induction
on ¢(a,rpv([¥], P)), where¢:N; x N — Nj is a
total bijection. N is the set of all non-negative whole
numbers andN; is the set of all positive whole
numbers.) The functiog is defined thus:

2 .
X, x=y+1
N E TG -D24y+1 x>y+1L
y2+y+x, x<y+1

Proposition 2. ([X]P)X — P.

Proof. Let[x]=[x1,x2,...,x,]andP = P1P>... Py,
where Py is an atom. The proof is by induction on
¢ (a,rpv([X], P)).

In the base cas¢(a, rpv([X], P)) =1. Thus,a =
1 andrpv([X], P) = 0. We have that([x1] P)x1 =
y0102...Qnx1, Wherey and theQ;, for 1< j <

A. Diller / Information Processing Letters 84 (2002) 311-317

315

In this algorithmP; must be an atom.

[x1,x2,...

s XalP1Po...Pyp=y0102...0m,

wherey is ayn-array and, for ki <a and 1< j <m,

if X; € FV(Pj),

yii= 1Y
L n, otherwise;

and, for 1< j <m,

,
X Xp5@0 0 X fiapIP)

whereg; = tv([x1, ..

- Xal, Pj) and, for 1<k < qj, fjk)= inx(k, [x1, .

if Pj=yx;, for somel such that i <a,
if x; ¢ FV(P;), for anyi such that Ki <a,
otherwise

- Xq), P)).

Fig. 1. Algorithm (M).

m, are as specified by (M). Aspv([X], P) = 0,
either P; = x1 or x1 ¢ FV(P)), for 1 < j < m. If
P; =x1,thenyy; =yand Q; = 1. If x1 ¢ FV(P)),
theny,; =n and Q; = P;. Thus,y0102...0n
x1— R1R>...R,,, as specified by the wayn-arrays
contract. |fy1,j =y, then R; = Q; x1=Ix1 — x1.
If Y1, =n, thenRJ = Qj = Pj So,R1R2... R, —
PP, ... P, = P. This establishes the base case.
In the inductive steg (a, rpv([X], P)) > 1. So,

([xl, X2, ..., xa]P)xlxz o Xg

=y0102...0mx1x2...Xq,
wherey and theQ;, for 1< j < m, are as specified
by (M),

— R1R2... Ry,

where theR;, for 1< j < m, are determined by the
way yn-arrays contract. First, consider the case when
(Vi € L.a)(Vj € L.m)x; ¢ FV(P;). Then,y; ; =n,
Qj=P; andR; = Q;. Thus,R; = P;. Next, con-
sider the case when3i € 1.a)(3j € 1.m) x; €
FV(P;). Then,y; ; =y and eitherP; is a variable or
aterm. If P; = x;, for somei, thenQ; =I.If P;isa
term, thenQ; = [ij(l), R xfj(qj)]Pj. Wheny; ; =

y, then R; = Q; Xgi(Lys s Xgi(sj) where fitk) =
inx(k, X, Pj) and gj(k) = posyk, Y1,jV2,j--- Va,j)-
Thus, fj (k) = gj(k), for all k. Also, f;(g;) < a, for
all j,andrpv([xf;(1), - -» X5 g Pj) < rpv([X], P).
Thus,

o(fiap), rpo(lx sy, -5 X £y Pj))
< ¢(a, rpu([X], P)).

Therefore,R; — P;, by the inductive hypothesis. The
result follows by induction. O

The proof of Proposition 4 makes use of a lemma.
Informally, this states that the length of an abstract
produced by (M) is not affected by adding extra
variables to the bracket prefix which do not occur in
the input term.

Lemma 3. Let [X] = [x1, x2, ..., X,] and [¥] = [y1,
v2,...,yp]. Then if b < a and (Vk € 1..b)(Ji €
1l.a)(x; = y) and (Vk,l € 1..b)(Vi, j € L..a) (if x; =
ye andx; =y andi < j, thenk <) and (Vi
1..a) (if x; € FV(P), then(3k € 1..b)(x; = yx)), then
#([X]1P) = #([Y]P).

Proof. Let P = P1P>... P,, where P; is an atom.
Then[X]P = y0102...Qn, Wherey and theQ;,
for 1 < j < m, are as specified by (M) and]P =
8R1R>... R, wheres and therR;, for 1< j <m, are
also as specified by (M).

To establish thatvj € 1..m) Q; = R; we consider
two cases. (1) IfP; contains none of the abstraction
variables, thenQ; = P; andR; = P;, both by (M).
(2) When (M) is applied recursively only those vari-
ables that actually occur in the primal compon&nt
are included in the bracket prefix that is passed to the
recursive call of the algorithm. Thus, aga®; = R;.

The only difference between the abstracts is that
is ana x m yn-array, whereas is anb x m yn-array.

If b <a, theny hasa — b extra rows each of which
consists entirely of occurrencesrofThese correspond
to the extra variables in the bracket preffi§ which,

316 A. Diller / Information Processing Letters 84 (2002) 311-317

ex hypothesido not occurinP. As # = #§, we have
that #[X1P) =#([y]P). O

Proposition 4. #([x]P) = 1+ #P +rpv([X], P).

Proof. Let[x]=[x1,x2,...,x,]andP = P1P>... Py,

where P; is an atom. The proof is by induction on

rpv([X], P).

In the base casepv([¥], P) = 0. Thus, for 1<
Jj < m, either P; = x;, for somei such that 1< i <
a, or x; ¢ FV(P;), for anyi such that 1< i < a.
Also, [X]1P = yQ0102...Qn, Wherey and theQ;,
for 1 < j < m, are as specified by (M). IP; = x;,
thenQ; =1.1f x; ¢ FV(P;), thenQ; = P;. Thus,

#([X1P) =1+) #P; =1+#P +rpv([X]. P).
j=1

This establishes the base case.

In the inductive step, we have that]P = y 010>
...Qm, wherey and theQ;, for 1< j <m, are as
specified by (M). For K j <m, if P; = x;, for some
i such that 1< i <a, orx; ¢ FV(P;), for anyi such
that 1<i <a, then#); =#P;. Thus,

#(1x1P)

=1+ if (@i el.a)x; eFV(Pj) and
j=1
(Viel.a)x; #P;

then #([x ;1) X ;@ - -+ X501 P7)
else#Pj

=1+) if@iel.a)x eFV(P)) and
j=1
Vi €l..a) x; ;ﬁ Pj

then #([)?]Pj) EISQ#P]',
by Lemma 3,
=1+ if (@i el.a)x; eFV(Pj) and

=1
(Viel.a)x; #P;

then 1+ #P; + rpv([X], P;) else #P;,
by the inductive hypothesis,

m m
=1+ Z#Pj + Zif (3i € 1.a) x; e FV(P))
j=1 j=1
and (Vi € 1.a) x; # P;

then 1+ rpv([)?], Pj) ese0
=1+#P +rpv([X], P),

by the property of-pv mentioned above. This estab-
lishes the inductive step. The result follows by induc-
tion. O

6. Conclusion

The most popular way of judging the efficiency
of an abstraction algorithm is by considering the
length of the abstract produced. It has been correctly
argued, in my opinion, that by itself this is a very
crude measure of efficiency [8, pp. 148-159]. It is,
therefore, only one of the factors that we need to take
into account when comparing algorithms. If (M) is
applied to P, the length of the abstract produced is
1+ #P + rpv([X], P). This assumes that the length
of ayn-array is 1. This is reasonabledfandm are
small, as they usually are when the algorithm is used
to implement a functional language, but the larger
andm become the more problematic this assumption
becomes. The number gh-arrays in an abstract is
1+ rpv([X], P) and the largest of these is anx m
bit array. The maximum value thapv([X], P) can
take, if #P > 2, is #P — 2. Thus, the space required
to store these arrays is not greater tit8R — 1)(a x
m) bits. Joy, Rayward-Smith and Burton [5, Table 1,
p. 216] present the lengths of abstracts produced by
various algorithms and (M) is comparable to the best
of them. The way in which (M) operates is, however,
considerably simpler than its rivals.

It should be noted that & rpv([X], P) is also the
number of times that (M) is called. This is relevant
when considering the length of time needed to produce
the abstract. Similar information for other algorithms
is not readily available, but my experience with some
of the best known suggests that they are called many
more times than this when applied to the same input
terms. This is an area where more research needs to
be done. It would also be useful to know how (M)
performs in practice and how it compares empirically

A. Diller / Information Processing Letters 84 (2002) 311-317 317

with other abstraction methods and with other ways of Computer Science (WAIT2000) Proceedings: Tandil, September
implementing a functional language. 4-9, 2000, SADIO, Buenos Aires, 2000, pp. 52-62.
Even if it turns out thagn-arrays are not a practica- [4] J.R. Hindley, J.P. Seldin, Introduction to Combinators and
ble way of implementing a functional Ianguage they A-calculus, Cambridge University Press, Cambridge, 1986.
' [5]

K N X i M.S. Joy, V.J. Rayward-Smith, F.W. Burton, Efficient combina-
do have a certain theoretical interest and many fasci- * * o code, Comput. Languages 10 (1985) 211-224.

nating and unusual properties, as | am beginning to [6] J.R. Kennaway, M.R. Sleep, Variable abstraction i ©gn)

discover [3] space, Inform. Process. Lett. 24 (1987) 343-349.

[7] D. Stevens, Variable substitution with iconic combinators,
in: A.M. Borzyszkowski, S. Sokotowski (Eds.), Mathematical
Foundations of Computer Science, in: Lecture Notes in Com-

References puter Science, Vol. 711, Springer, Berlin, 1993, pp. 724-733.
[8] D. Stevens, A generalization of Turner's combinator-based
[1] H.B. Curry, R. Feys, in: Combinatory Logic, Vol. 1, North- technique for implementing a functional language, PhD thesis,
Holland, Amsterdam, 1958. School of Computer Science, University of Birmingham, 1996.

[2] A. Diller, Making abstraction behave by representing combina- [9] D.A. Turner, A new implementation technique for applicative
tors, Research Report CSR-99-12, School of Computer Science, languages, Software—Practice and Experience 9 (1979) 31-49.
University of Birmingham, 1999.

[3] A. Diller, Investigations into iconic representations of combi-
nators, in: J. Blanco (Ed.), Argentine Workshop on Theoretical

