
Information Processing Letters 84 (2002) 311–317

www.elsevier.com/locate/ipl

Efficient multi-variate abstraction using an array representation
for combinators

Antoni Diller

University of Birmingham, School of Computer Science, Birmingham, UK B15 2TT

Received 15 February 2000; received in revised form 26 April 2002

Communicated by F.B. Schneider

Keywords:Bracket abstraction; Combinatory logic; Compilers; Functional programming

1. Introduction

Turner [9] showed how a pure functional program-
ming language could be implemented using combina-
tory logic in a practicable way. This method is cur-
rently out of fashion, but for some time I have believed
that its full potential is still to be realized. This belief
was partially vindicated by Stevens [7] who developed
a family of interesting algorithms which use a novel
notation for combinators. The work reported here was
inspired by that of Stevens, but is significantly differ-
ent. (Additional information about the motivation be-
hind the current research can be found elsewhere [2,
pp. 2–5].)

2. Fixing terminology

There are several systems of combinatory logic.
The one used here isweakcombinatory logic. On the
whole, standard terminology is used [4].

Assume given an infinite sequence of symbols
called variablesand two constants,K and S, called

E-mail address:a.r.diller@cs.bham.ac.uk (A. Diller).

basic combinators.The lettersv, w, x, y and z,
sometimes decorated with subscripts or superscripts,
are used for variables. Aterm is defined thus:

(a) Every variable is a term;
(b) Every constant is a term;
(c) If P andQ are terms, then so is(PQ).

The lettersP , Q, R, S, T andX, sometimes decorated
with subscripts or superscripts, are used for terms.
An atom is a variable or a constant. A term of the
form (PQ) is anapplication, but the outermost pair
of parentheses is usually omitted. Normally, no space
is left between the terms of an application, but some-
times one will be inserted for clarity and readability.
Application associates to the left, soPQRST is the
same as(((PQ)R)S)T . The symbol≡ representssyn-
tactic identity: P ≡ Q means thatP andQ are exactly
the same term.

A subtermis defined thus:P is a subterm ofP ; P
is a subterm ofQR if P is a subterm ofQ or P is a
subterm ofR. Every termP can be uniquely expressed
in the form P1P2 . . .Pm, whereP1 is an atom and
m � 1. ThePi are know as theprimal componentsof
P . The non-standard notion of asubprimal component

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(02)00318-6

312 A. Diller / Information Processing Letters 84 (2002) 311–317

is defined thus:P is a subprimal component ofP ; P
is a subprimal component ofQ if P is a subprimal
component of one of theprimal components ofQ. For
example, the subprimal components ofvw(x(yz)) are:
vw(x(yz)), v, w, x(yz), x, yz, y andz.

Because combinatory logic contains no variable-
binding operators every variable in a term isfree:
FV(P) represents the set of free variables inP . The
lengthof P , written #P , is the number of occurrences
of atoms inP . SubstitutingP for every occurrence of
x in X, written [P/x]X, is defined thus:

(a) [P/x]x ≡ x;
(b) [P/x]Y ≡ Y , if Y is an atom distinct fromx;
(c) [P/x]QR = ([P/x]Q)([P/x]R).

A term of the formKPQ or SPQR is a redex.
Contracting an instance of a redex in a termS
means replacing one occurrence ofKPQ by P or one
occurrence ofSPQR by PR(QR). Let the result be
T . Then we say thatS contractsto T , writtenS →1 T ,
and thatT is the contractum. S is said toreduceto
T , written S → T , iff T results fromS by carrying
out a finite (possibly zero) number of contractions.
CombinatorsB, C and I can be defined in terms ofK
andS:

B
∧= S(KS)K, C

∧= S(BBS)(KK) and I
∧= SKK.

These contract thus:

BPQR → P(QR),

CPQR → PRQ and IP → P.

Uni-variate bracket abstractionis a syntactic op-
eration which removes a variablex from a termX,
written [x]X, satisfying the property that([x]X)P →
[P/x]X. If [x]X ≡ Q, thenX is the input termand
Q the abstract. Usually, in combinatory logic,multi-
variate abstraction[x1, x2, . . . , xa]X is defined to be
the same as[x1]([x2](. . . ([xa−1]([xa]X)) . . .)). In this
paper, however, it represents an operation that removes
several variables simultaneously. Furthermore, all the
variables in the bracket prefix[x1, x2, . . . , xa] are as-
sumed to be distinct.

Two non-standard notations for combinators are
introduced here, namely as strings of the lettersy and
n, calledyn-strings, and as arrays or matrices of the
lettersy andn, calledyn-arrays. The lettersγ andδ

are used for arbitraryyn-arrays andβ for a yn-string.

size(β) is the number of occurrences ofy and n in
β andβi , for 1 � i � size(β), is the ith letter inβ .
String concatenation is represented by juxtaposition.
If γ is ana × m yn-array, thenγi,j , for 1� i � a and
1 � j � m, is thej th letter in rowi. Note that ifβ
is a yn-string, it is assumed that #β = 1. Similarly, if
γ is an yn-array, it is assumed that #γ = 1, but this
assumption is discussed in the conclusion.

Let β be ayn-string. Then aβ-redex is any term
of the form βP1P2 . . .Pm+1, where m = size(β).
Contracting an instance of aβ-redex in a termS

means replacing one occurrence ofβP1P2 . . .Pm+1 by
Q1Q2 . . .Qm, where, for 1� i � m,

Qi ≡
{
PiPm+1, if βi = y;

Pi, if βi = n.

Let [
x] = [x1, x2, . . . , xa]. Thenrpv([
x],P) is the
number of distinct non-atomic subprimal components
of P , other thanP itself, which contain at least one
of the variablesx1, x2, . . . , xa . There is an alternative
characterization ofrpv. Let P be represented using
the fewest possible parentheses. Thenrpv([
x],P) is
half the number of parentheses that enclose subterms
containing at least one of the variablesx1, x2, . . . , xa.
Thus,

rpv
([x, y, z], x(yz)(wv)z

) = 1 and

rpv
([x, y], x(y(wv))(w(xv))

) = 3.

Let P ≡ P1P2 . . .Pm, whereP1 is an atom. Then

rpv
([
x],P) =

m∑
j=1

if (∀i ∈ 1..a)xi /∈ FV(Pj) or

(∃i ∈ 1..a)xi ≡ Pj

then 0 else 1+ rpv
([
x],Pj

)
,

where(∀i ∈ 1..a) means ‘for alli such that 1� i � a’
and(∃i ∈ 1..a) means ‘for somei such that 1� i �
a’. Putting a conditional inside a summation may be
unusual, but its meaning is straightforward. LetΓ (j)

be a Boolean-valued function and letf (j) andg(j)

be integer-valued ones. Then
m∑

j=1

if Γ (j) then f (j) else g(j)

= (
if Γ (1) then f (1) else g(1)

)
+ (

if Γ (2) then f (2) else g(2)
) + · · ·

+ (
if Γ (m) then f (m) else g(m)

)
.

A. Diller / Information Processing Letters 84 (2002) 311–317 313

3. Contraction

In order to explain howyn-arrays are contracted
two functions have to be defined onyn-strings:yc(β)
is the number of occurrences of the lettery in β

and posy(i, β) is the position of theith occurrence
of y in β , where 1� i � yc(β); if i > yc(β), then
posy(i, β) is not defined. For example,yc(ynnynyy) =
4, posy(1, ynnynyy) = 1 and posy(2, ynnynyy) = 4.
Let γ be ana ×m yn-array. Then it contracts thus:

γP1P2 . . .PmPm+1 . . .Pm+a →1 Q1Q2 . . .Qm,

where, for 1� j � m, Qj ≡ PjPgj (1)Pgj (2) . . .

Pgj (sj), wheresj = yc(γ1,j γ2,j · · ·γa,j) and, for 1�
k � sj , gj (k) = m+ posy(k, γ1,j γ2,j · · ·γa,j). For ex-
ample,∣∣∣∣∣
n n y n
y n y n
n n y y

∣∣∣∣∣P1P2P3P4P5P6P7

→1 P1P6P2(P3P5P6P7)(P4P7).

An a × m yn-arrayγ has to be followed by at least
a + m terms in order for a contraction to be possible.
Informally, the first m terms following γ can be
thought of as functions and the nexta can be seen as
their possible arguments. Theyn-array tells us which
of these are going to be passed to the functions to
become their actual arguments. Thus, thej th column
tells us which ofPm+1,Pm+2, . . . ,Pm+a follow Pj in
the contractum of theyn-array:Pm+i only occurs if
γi,j is y. For example, the 4th column of theyn-array
used in the example isnny. This tells us which of the
termsP5, P6 andP7 follow P4 in the contractum. As
only the last letter ofnny is y, only P7 does. This
means that(P4P7) occurs in the contractum.

4. Translation

Many people, on first encounteringyn-strings, think
that they are similar to director strings [6]. Director
strings, however, are not combinators. They are el-
ements of a new formal system called ‘the director
string calculus’ whose properties have to be estab-
lished from scratch.yn-strings andyn-arrays, by con-
trast, are just alternative notations for combinators,
just as Roman and Arabic numerals are alternative
representations for numbers. This can be established

by translating them into the usual notation for combi-
nators. This is achieved by the functionTranswhich
employstrans which translatesyn-strings into stan-
dard combinators. The functiontrans uses the series
of combinatorsBi , for i � 1, defined thus:

Bi
∧=

{
B, if i = 1,
B Bi−1 B, if i > 1.

Note that eachBi , for i � 1, has the same effect as the
Bi defined in [1, pp. 163–164]. The functiontrans is
defined thus:

trans(y)
∧= BI,

trans(n)
∧= K,

trans(βy)
∧= BiS trans(β), if size(β) � 1,

trans(βn)
∧= BiC trans(β), if size(β)� 1,

wherei = size(β). For example,

trans(nny) = B2S trans(nn)

= B2 S
(
B1 C trans(n)

)
= B2 S (B1 C K).

The functiontrans is correct if trans(β) P1P2 . . .Pm

Pm+1 → Q, wherem = size(β) andQ is the result of
contractingβP1P2 . . .PmPm+1. That trans is correct
is proved elsewhere [2, pp. 9–10].

The functionTransis defined thus:

Trans(γ)
∧=

ta︷ ︸︸ ︷
trans(nn . . .n︸ ︷︷ ︸

a−1 times

γ1,1γ1,2 . . . γ1,m)

ta−1︷ ︸︸ ︷
trans(nn . . .n︸ ︷︷ ︸

a−2 times

γ2,1γ2,2 . . . γ2,m) . . .

t2︷ ︸︸ ︷
trans(nγa−1,1γa−1,2 . . . γa−1,m)

t1︷ ︸︸ ︷
trans(γa,1γa,2 . . . γa,m) .

Transproduces quite complicated terms as the follow-
ing example shows:

Trans

∣∣∣∣∣
y n y
n y y
n n y

∣∣∣∣∣
= trans(nnyny) trans(nnyy) trans(nny)

= B4S
(
B3C(B2S(B1CK))

)
(
B3S(B2S(B1CK))

)(
B2S(B1CK)

)
.

314 A. Diller / Information Processing Letters 84 (2002) 311–317

Proposition 1. The function Trans is correct in the
sense that if

γP1P2 . . .PmPm+1 . . .Pm+a → Q1Q2 . . .Qm,

whereγ is a yn-array and theQj , for 1 � j � m, are
as specified by the wayγ contracts, then

Trans(γ)P1P2 . . .PmPm+1 . . .Pm+a

→ Q1Q2 . . .Qm.

Proof. Let ti , for 1 � i � a, be as shown above and
let P 1

i ≡ Pi , for 1� i � m. Then

ta . . . t1P
1
1P

1
2 . . .P 1

mPm+1 . . .Pm+a

→ ta−1 . . . t1P
2
1P

2
2 . . .P 2

mPm+2 . . .Pm+a,

whereP 2
j ≡ P 1

j Pm+1, if γ1,j = y, andP 2
j ≡ P 1

j , if
γ1,j = n, becauseta is a yn-string which contracts in
this way,

→ ta−2 . . . t1P
3
1P

3
2 . . .P 3

mPm+3 . . .Pm+a,

whereP 3
j = P 2

j Pm+2, if γ2,j = y, andP 3
j ≡ P 2

j , if
γ2,j = n, becauseta−1 is ayn-string,

→ ·· ·
→ Pa+1

1 Pa+1
2 . . .P a+1

m ,

wherePa+1
j ≡ Pa

j Pm+a , if γa,j = y, andPa+1
j ≡ Pa

j ,
if γa,j = n, becauset1 is ayn-string. Thus,

Pa+1
j ≡ P 1

j Phj (1)Phj (2) . . .Phj (rj),

wherePhj (1) is the hj (1)th term in the listPm+1,

Pm+2, . . . ,Pm+a , wherehj (1) is the position of the
first occurrence of the lettery in γ1,j γ2,j . . . γa,j , and
Phj (2) is thehj (2)th term in the same list, wherehj (2)
is the position of the second occurrence of the let-
ter y in γ1,j γ2,j . . . γa,j and so on.hj (rj) is the po-
sition of the final occurrence ofy in γ1,j γ2,j . . . γa,j .
Thus, rj is the total number of occurrences ofy
in γ1,j γ2,j . . . γa,j . Thus, rj = yc(γ1,j γ2,j . . . γa,j)

and, for 1� k � rj , hj (k) = gj (k), where gj (k)

is the function defined in the context of explain-
ing how yn-arrays contract, namelygj (k) = a +
posy(k, γ1,j γ2,j . . . γa,j). ✷

5. Abstraction

In order to present an abstraction algorithm that
produces abstracts containingyn-arrays two func-
tions have to be defined:tv([
x],P) returns the to-
tal number of variables in the list
x occurring in
P and inx(i, [
x],P) returns the index of theith
variable in the list
x occurring in P . For exam-
ple, tv([x1, x2, x3], x1x3) = 2 and inx(1, [x1, x2, x3],
x2x3(x1x2)) = 2. Algorithm (M) is shown in Fig. 1.
Note that a different algorithm would result if it was
not a requirement forP1 to be an atom. The element
γi,j of theyn-arrayγ tells us whether or notxi occurs
in Pj . A lettery says that it does andn that it does not.
An example of (M) should clarify its operation:

[x1, x2, x3]x1(x2x1)(x3x1)x2

=
∣∣∣∣∣
y y y n
n y n y
n n y n

∣∣∣∣∣ I
([x1, x2] x2x1

)([x1, x3] x3x1
)

I

=
∣∣∣∣∣
y y y n
n y n y
n n y n

∣∣∣∣∣ I

(∣∣∣∣n y
y n

∣∣∣∣ I I

)(∣∣∣∣n y
y n

∣∣∣∣ I I

)
I.

The top rowyyyn of the 3× 4 yn-array shows the
pattern of occurrences of the variablex1 in the primal
components of the input term. Similarly, the second
row nyny shows the pattern of occurrences of the
variablex2 in the primal components of the input term
and the third row does the same for the variablex3.

Algorithm (M) has the property that([
x]P)
x → P .
This is Proposition 2 and the proof is by induction
on φ(a, rpv([
x],P)), whereφ :N1 × N → N1 is a
total bijection. (N is the set of all non-negative whole
numbers andN1 is the set of all positive whole
numbers.) The functionφ is defined thus:

φ(x, y)
∧=



x2, x = y + 1;
(x − 1)2 + y + 1, x > y + 1;
y2 + y + x, x < y + 1.

Proposition 2. ([
x]P)
x → P .

Proof. Let [
x] = [x1, x2, . . . , xa] andP ≡ P1P2 . . .Pm,
whereP1 is an atom. The proof is by induction on
φ(a, rpv([
x],P)).

In the base caseφ(a, rpv([
x],P)) = 1. Thus,a =
1 and rpv([
x],P) = 0. We have that([x1]P)x1 ≡
γQ1Q2 . . .Qmx1, whereγ and theQj , for 1 � j �

A. Diller / Information Processing Letters 84 (2002) 311–317 315

In this algorithmP1 must be an atom.

[x1, x2, . . . , xa]P1P2 . . . Pm ≡ γQ1Q2 . . .Qm,

whereγ is ayn-array and, for 1� i � a and 1� j � m,

γi,j =
{

y, if xi ∈ FV(Pj),
n, otherwise;

and, for 1� j � m,

Qj ≡



I, if Pj ≡ xi , for somei such that 1� i � a,

Pj , if xi /∈ FV(Pj), for anyi such that 1� i � a,

[xfj (1), xfj (2), . . . , xfj (qj)]Pj , otherwise;
whereqj = tv([x1, . . . , xa],Pj) and, for 1� k � qj , fj (k) = inx(k, [x1, . . . , xa],Pj).

Fig. 1. Algorithm (M).

m, are as specified by (M). Asrpv([
x],P) = 0,
either Pj ≡ x1 or x1 /∈ FV(Pj), for 1 � j � m. If
Pj ≡ x1, thenγ1,j = y andQj ≡ I. If x1 /∈ FV(Pj),
then γ1,j = n and Qj ≡ Pj . Thus, γQ1Q2 . . .Qm

x1 → R1R2 . . .Rm, as specified by the wayyn-arrays
contract. Ifγ1,j = y, thenRj ≡ Qj x1 ≡ Ix1 → x1.
If γ1,j = n, thenRj ≡ Qj ≡ Pj . So,R1R2 . . .Rm →
P1P2 . . .Pm ≡ P . This establishes the base case.

In the inductive stepφ(a, rpv([
x],P)) > 1. So,([x1, x2, . . . , xa]P
)
x1x2 . . . xa

≡ γQ1Q2 . . .Qmx1x2 . . . xa,

whereγ and theQj , for 1� j � m, are as specified
by (M),

→ R1R2 . . .Rm,

where theRj , for 1 � j � m, are determined by the
way yn-arrays contract. First, consider the case when
(∀i ∈ 1..a)(∀j ∈ 1..m)xi /∈ FV(Pj). Then,γi,j = n,
Qj ≡ Pj andRj ≡ Qj . Thus,Rj ≡ Pj . Next, con-
sider the case when(∃i ∈ 1..a)(∃j ∈ 1..m) xi ∈
FV(Pj). Then,γi,j = y and eitherPj is a variable or
a term. IfPj ≡ xi , for somei, thenQj ≡ I. If Pj is a
term, thenQj ≡ [xfj (1), . . . , xfj (qj)]Pj . Whenγi,j =
y, then Rj ≡ Qj xgj (1), . . . , xgj (sj), wherefj (k) =
inx(k,
x,Pj) and gj (k) = posy(k, γ1,j γ2,j . . . γa,j).
Thus,fj (k) = gj (k), for all k. Also, fj (qj) � a, for
all j , andrpv([xfj (1), . . . , xfj (qj)],Pj) < rpv([
x],P).
Thus,

φ
(
fj (qj), rpv

([xfj (1), . . . , xfj (qj)],Pj

))
< φ

(
a, rpv([
x],P)

)
.

Therefore,Rj → Pj , by the inductive hypothesis. The
result follows by induction. ✷

The proof of Proposition 4 makes use of a lemma.
Informally, this states that the length of an abstract
produced by (M) is not affected by adding extra
variables to the bracket prefix which do not occur in
the input term.

Lemma 3. Let [
x] = [x1, x2, . . . , xa] and [
y] = [y1,

y2, . . . , yb]. Then if b � a and (∀k ∈ 1..b)(∃i ∈
1..a)(xi ≡ yk) and(∀k, l ∈ 1..b)(∀i, j ∈ 1..a) (if xi ≡
yk and xj ≡ yl and i < j , then k < l) and (∀i ∈
1..a) (if xi ∈ FV(P), then(∃k ∈ 1..b)(xi ≡ yk)), then
#([
x]P) = #([
y]P).

Proof. Let P ≡ P1P2 . . .Pm, wherePi is an atom.
Then [
x]P ≡ γQ1Q2 . . .Qm, whereγ and theQj ,
for 1 � j � m, are as specified by (M) and[
y]P ≡
δR1R2 . . .Rm, whereδ and theRj , for 1� j � m, are
also as specified by (M).

To establish that(∀j ∈ 1..m) Qj ≡ Rj we consider
two cases. (1) IfPj contains none of the abstraction
variables, thenQj ≡ Pj andRj ≡ Pj , both by (M).
(2) When (M) is applied recursively only those vari-
ables that actually occur in the primal componentPj

are included in the bracket prefix that is passed to the
recursive call of the algorithm. Thus, again,Qj ≡ Rj .

The only difference between the abstracts is thatγ

is ana × m yn-array, whereasδ is anb × m yn-array.
If b < a, thenγ hasa − b extra rows each of which
consists entirely of occurrences ofn. These correspond
to the extra variables in the bracket prefix[
x] which,

316 A. Diller / Information Processing Letters 84 (2002) 311–317

ex hypothesi, do not occur inP . As #γ = #δ, we have
that #([
x]P) = #([
y]P). ✷
Proposition 4. #([
x]P) = 1+ #P + rpv([
x],P).

Proof. Let [
x] = [x1, x2, . . . , xa] andP ≡ P1P2 . . .Pm,
wherePi is an atom. The proof is by induction on
rpv([
x],P).

In the base caserpv([
x],P) = 0. Thus, for 1�
j � m, eitherPj ≡ xi , for somei such that 1� i �
a, or xi /∈ FV(Pj), for any i such that 1� i � a.
Also, [
x]P ≡ γQ1Q2 . . .Qm, whereγ and theQj ,
for 1 � j � m, are as specified by (M). IfPj ≡ xi ,
thenQj ≡ I. If xi /∈ FV(Pj), thenQj ≡ Pj . Thus,

#
([
x]P) = 1+

m∑
j=1

#Pj = 1+ #P + rpv
([
x],P)

.

This establishes the base case.
In the inductive step, we have that[
x]P ≡ γQ1Q2

. . .Qm, whereγ and theQj , for 1 � j � m, are as
specified by (M). For 1� j � m, if Pj ≡ xi , for some
i such that 1� i � a, or xi /∈ FV(Pj), for any i such
that 1� i � a, then #Qj ≡ #Pj . Thus,

#
([
x]P)

= 1+
m∑

j=1

if (∃i ∈ 1..a) xi ∈ FV(Pj) and

(∀i ∈ 1..a) xi �= Pj

then #
([xfj (1), xfj (2), . . . , xfj (qj)]Pj

)
else #Pj

= 1+
m∑

j=1

if (∃i ∈ 1..a) xi ∈ FV(Pj) and

(∀i ∈ 1..a) xi �= Pj

then #
([
x]Pj

)
else #Pj ,

by Lemma 3,

= 1+
m∑

j=1

if (∃i ∈ 1..a) xi ∈ FV(Pj) and

(∀i ∈ 1..a) xi �= Pj

then 1+ #Pj + rpv
([
x],Pj

)
else #Pj ,

by the inductive hypothesis,

= 1+
m∑

j=1

#Pj +
m∑

j=1

if (∃i ∈ 1..a) xi ∈ FV(Pj)

and (∀i ∈ 1..a) xi �= Pj

then 1+ rpv
([
x],Pj

)
else 0

= 1+ #P + rpv
([
x],P)

,

by the property ofrpv mentioned above. This estab-
lishes the inductive step. The result follows by induc-
tion. ✷

6. Conclusion

The most popular way of judging the efficiency
of an abstraction algorithm is by considering the
length of the abstract produced. It has been correctly
argued, in my opinion, that by itself this is a very
crude measure of efficiency [8, pp. 148–159]. It is,
therefore, only one of the factors that we need to take
into account when comparing algorithms. If (M) is
applied toP , the length of the abstract produced is
1 + #P + rpv([
x],P). This assumes that the length
of a yn-array is 1. This is reasonable ifa andm are
small, as they usually are when the algorithm is used
to implement a functional language, but the largera

andm become the more problematic this assumption
becomes. The number ofyn-arrays in an abstract is
1 + rpv([
x],P) and the largest of these is ana × m

bit array. The maximum value thatrpv([
x],P) can
take, if #P � 2, is #P − 2. Thus, the space required
to store these arrays is not greater than(#P − 1)(a ×
m) bits. Joy, Rayward-Smith and Burton [5, Table 1,
p. 216] present the lengths of abstracts produced by
various algorithms and (M) is comparable to the best
of them. The way in which (M) operates is, however,
considerably simpler than its rivals.

It should be noted that 1+ rpv([
x],P) is also the
number of times that (M) is called. This is relevant
when considering the length of time needed to produce
the abstract. Similar information for other algorithms
is not readily available, but my experience with some
of the best known suggests that they are called many
more times than this when applied to the same input
terms. This is an area where more research needs to
be done. It would also be useful to know how (M)
performs in practice and how it compares empirically

A. Diller / Information Processing Letters 84 (2002) 311–317 317

with other abstraction methods and with other ways of
implementing a functional language.

Even if it turns out thatyn-arrays are not a practica-
ble way of implementing a functional language, they
do have a certain theoretical interest and many fasci-
nating and unusual properties, as I am beginning to
discover [3].

References

[1] H.B. Curry, R. Feys, in: Combinatory Logic, Vol. 1, North-
Holland, Amsterdam, 1958.

[2] A. Diller, Making abstraction behave by representing combina-
tors, Research Report CSR-99-12, School of Computer Science,
University of Birmingham, 1999.

[3] A. Diller, Investigations into iconic representations of combi-
nators, in: J. Blanco (Ed.), Argentine Workshop on Theoretical

Computer Science (WAIT2000) Proceedings: Tandil, September
4–9, 2000, SADIO, Buenos Aires, 2000, pp. 52–62.

[4] J.R. Hindley, J.P. Seldin, Introduction to Combinators and
λ-calculus, Cambridge University Press, Cambridge, 1986.

[5] M.S. Joy, V.J. Rayward-Smith, F.W. Burton, Efficient combina-
tor code, Comput. Languages 10 (1985) 211–224.

[6] J.R. Kennaway, M.R. Sleep, Variable abstraction in O(n logn)
space, Inform. Process. Lett. 24 (1987) 343–349.

[7] D. Stevens, Variable substitution with iconic combinators,
in: A.M. Borzyszkowski, S. Sokołowski (Eds.), Mathematical
Foundations of Computer Science, in: Lecture Notes in Com-
puter Science, Vol. 711, Springer, Berlin, 1993, pp. 724–733.

[8] D. Stevens, A generalization of Turner’s combinator-based
technique for implementing a functional language, PhD thesis,
School of Computer Science, University of Birmingham, 1996.

[9] D.A. Turner, A new implementation technique for applicative
languages, Software—Practice and Experience 9 (1979) 31–49.

