Musical Symbolic Representations and Spatial Computing

Louis BIGO

Thesis defense

December 13th 2013

LACL – LCP team, Université Paris-Est Créteil

IRCAM – Musical Representations team

Space in Music Theory

Space in Computer Science

- Spatial Computing

 Recent domain of computer science (≈ 2005)
- Importance of space in computation
 - □ Construction of a space
 - □ Motion in a space

■ Different dedicated tools (MGS, etc.)

Outline

Bridging the gap between spatial computing and music theory

- 1. Proof of concept: a spatial study of all-interval series
- 2. Building chord spaces for music theory and analysis
- 3. Linking spaces for music generation and analysis
- 4. Conclusion and perspectives

Outline

Bridging the gap between spatial computing and music theory

- 1. Proof of concept: a spatial study of all-interval series
- 2. Building chord spaces for music theory and analysis
- 3. Linking spaces for music generation and analysis
- 4. Conclusion and perspectives

All-Interval Series

- Motivation: enumeration of All-Interval Series (AIS)
- AIS: sequence of 12 notes including
 - □ The 12 pitch classes
 - □ The 11 interval classes
 - □ Example: Alban Berg's *Lyric Suite*

A. Berg (1885 – 1935)

■ 46272 AIS (1928 normalized AIS [Riotte62])

All-Interval Series

```
DIMENSION N(12), I(12), NX(11), IX(11)
Fortran code
                                DATA J, K, N/1, 12*0, 6/, I, NX/6, 22*0/, IX/11*0/
                          C MOVE RIGHT
                          7
                                 J = J + 1
                                IF(J.GT.11)GO TO 1
                                 N(J)=1
                          C IS N(J) A DUPLICATED NOTE?
                                IF(NX(N(J)). EQ. 0)GO TO 2
                          5
                                N(J)=N(J)+1
                                IF(N(J).EQ.6)GO TO 5
                                IF(N(J).GT.11)GO TO 3
                                GO TO 4
                          C CALCULATE I(J), THE INTERVAL
                                I(J)=N(J)-N(J-1)
                                IF(I(J), LT, 0)I(J)=I(J)+12
                          C IS I(J) A DUPLICATED INTERVAL?
                                IF(IX(I(J)).EQ.1)GO TO 5
                                 NX(N(J))=1
                                IX(I(J))=1
                                 GO TO 7
                          C CALCULATE THE 11TH INTERVAL
                                I(J)=N(12)-N(11)
                                IF(I(J), LT.0)I(J)=I(J)+12
                                IF(IX(I(J)).EQ.1)GO TO 3
                          C LAND HERE WHEN AN AIS IS FOUND
                                 K=K+1
                          C STATEMENT BELOW IS OPTIONAL—SHORTENS THE TABLE
                                IF(K.GE. 1929)STOP
                                 WRITE(6,8)K,N,I
                                 FORMAT (I5, 2(4X, 12I3))
                          C MOVE LEFT
                                 J=J-1
                                 IF(J. EQ. 1)STOP
                                 NX(N(J))=0
                                IX(I(J))=0
                                 GO TO 5
```

END

R. Morris

[Morris, Star – 1974]

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space

 Spatialization of pitch and interval classes

- What kind of *movement*?
 - □ Subspace with structural properties

 Uniqueness of pitch and interval classes

Toolbox: Cellular complex

• Partially ordered set $\mathcal{K} = (S, \leq)$

Toolbox: Cellular complex

- Partially ordered set $\mathcal{K} = (S, \leq)$
- S: Collection of topological cells
- ≤: *Incidence relationship*

Toolbox: Topological collection

Labeled cellular complex

Partial function $C: \mathcal{K} \rightarrow V$, where V is the set of labels

Toolbox: Topological collection

- Labeled cellular complex
 - Partial function $C: \mathcal{K} \rightarrow V$, where V is the set of labels
- Topological point of view of data structures (MGS)

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells

- What kind of *movement*?
 - □ Subspace with structural properties

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?
 - □ Subspace with structural properties

Complete graph K_{12}

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?

Complete graph K_{12}

n0

- AIS as movement in some space
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?

Complete graph K_{12}

n0 < i1

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?

Complete graph K_{12}

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?

Complete graph K_{12}

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?

Complete graph K_{12}

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?

Complete graph K_{12}

Hamiltonian path

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells
- What kind of *movement*?

Complete graph K_{12}

Hamiltonian path

such that edges have different labels

n0 < i1 > n1 < i2 > n2 < ... > n10 < i11 > n11 / unique(i1,i2,...,i11)

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells (not unique)
 - Interval classes: 2-cells
- What kind of *movement*?

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells (not unique)
 - Interval classes: 2-cells
- What kind of *movement*?

- AIS as *movement* in some *space*
- What kind of *space*?
 - □ Search space
 - Pitch classes: 0-cells
 - Intervals: 1-cells (not unique)
 - Interval classes: 2-cells
- What kind of *movement*?

AIS Complex (too difficult to draw)

<0, 1>-Hamiltonian path <0, 2>-Eulerian path

Intermediate Summary

- Proof of concept
 - □ Spatial reformulation of an old music problem
 - ☐ Geometrical characterization of AIS
 - □ Structural (spatial) expression of constraints
- Other contributions
 - □ Topological classification of AIS based on the AIS complex
 - □ New method to build AIS including particular patterns

Harmonic C minor scale

Outline

Bridging the gap between spatial computing and music theory

- 1. Proof of concept: a spatial study of all-interval series
- 2. Building chord spaces for music theory and analysis
- 3. Linking spaces for music generation and analysis
- 4. Conclusion and perspectives

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale

E

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale
 - \square Underlying structure of the cyclic group \mathbb{Z}_N

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale
 - \square Underlying structure of the cyclic group \mathbb{Z}_N

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale
 - \square Underlying structure of the cyclic group \mathbb{Z}_N

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale
 - \square Underlying structure of the cyclic group \mathbb{Z}_N

$$C = \{0,4,7,10\}$$

 $SI = [4,3,3,2]$
 $CI_s = \{2,3,4,5,6\}$

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale
 - \square Underlying structure of the cyclic group \mathbb{Z}_N
 - Operations
 - **■** Transpositions

 $T_k: x \rightarrow x + k \mod 12$

Musical Representations

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale
 - \square Underlying structure of the cyclic group \mathbb{Z}_N
 - Operations
 - Transpositions
 - Inversions

 $I: x \rightarrow -x \mod 12$

Musical Representations

- *Set Theory*
 - □ Equal temperament
 - □ Octave reduction according to a scale
 - \square Underlying structure of the cyclic group \mathbb{Z}_N
 - Operations
 - Transpositions
 - Inversions
 - Permutations
 - Affine transformations

 $I: x \rightarrow -x \mod 12$

Spatialization of chord sets

Defining a topological collection to represent a set of chords

Toolbox: Simplicial complex

• n-Simplex: complete cellular complex from n + 1 vertices

Toolbox: Simplicial complex

- n-Simplex: complete cellular complex from n + 1 vertices
- *n*-Simplicial complex
 - Aggregate of p-simplicies $(p \le n)$
 - f-vector $(f_0 = 1, f_1, ..., f_{n+1})$ f_{p+1} is the number of p-simplices
 - p-skeleton: simplices of dimension $\leq p$

Toolbox: Self-Assembly

- Metaphor taken from chemical reactions
- Building simplicial collection from elementary parts

 $in \times * c$

(union (cofaces x)

(cofaces y))

- Spatialization of chord sets
 - □ Simplicial representation of chords
 - 1-note chord: 0-simplex (vertex)
 - 2-note chord: 1-simplex (edge)
 - 3-note chord: 2-simplex (triangle)
 - 4-note chord: 3-simplex (tetrahedron)

- Spatialization of chord sets
 - □ Simplicial representation of chords
 - □ Self-assembly of a set of chords

- Spatialization of chord sets
 - □ Algebraic-based chord complexes

 Chord population from chord transformation orbits

 Transposition, inversion, permutation, etc.
 - □ Piece-based chord complexes

 Chord population from a piece segmentation

 Analysis of Bach, Chopin, Schoenberg, Webern, Glass, etc.

Motivation

Formalization/generalization of the *Tonnetz*

[Euler - 1739]

[Cohn - 1997]

- Assembling chords related by some equivalence relation
 - \square Transposition (Cyclic group action $Z_n \rightarrow Z_n$)

- Assembling chords related by some equivalence relation
 - □ Transposition (Cyclic group action $Z_n \rightarrow Z_n$)

- Assembling chords related by some equivalence relation
 - □ Transposition (Cyclic group action $Z_n \rightarrow Z_n$)

Mazzola, G. (2002). The topos of music: geometric logic of concepts, theory, and performance

- Assembling chords related by some equivalence relation
 - □ Transposition (Cyclic group action $Z_n \rightarrow Z_n$)

- Assembling chords related by some equivalence relation
 - □ Transposition (Cyclic group action $Z_n \rightarrow Z_n$)
 - □ Transposition and inversion (Dihedral group action $D_n \rightarrow Z_n$)

Complexes enumeration in heptatonic/chromatic systems

Equivalence relation	Chromatic system (Z ₁₂)	Heptatonic system (Z ₇)	
Transposition	352 complexes	20 complexes	
Transposition / inversion	224 complexes	18 complexes	
Permutations	77 complexes 16 complex		
Application affine	157 complexes	16 complexes	

Complexes enumeration in heptatonic/chromatic systems

$$S_1(\mathcal{K}_{TI}[3,4,5])$$
[Cohn – 1997]

$$S_1(\mathcal{K}_{TI}[2,3,3,4])$$
 [Gollin - 1998]

$$\mathcal{K}_{T}[3,4], \mathcal{K}_{T}[2,2,3], \mathcal{K}_{T}[1,2,2,2]$$

[Mazzola – 2002]

$$\mathcal{K}_{TI}[1,1,10] \rightarrow \mathcal{K}_{TI}[4,4,4]$$

[Catanzaro - 2011]

$$S_1(\mathcal{K}_{TI}[1,2,4])$$
[Hook – 2013]

d	complexe	taille	b_n	p-v	χ
-	\mathcal{K}_{\emptyset}	0	0		0
0	$\mathcal{K}_{TI}[0]$	0	[0]		0
	$\mathcal{K}_{TI}[1,11]$	12	[1, 1]	X	0
	$\mathcal{K}_{TI}[2,10]$	12	[2, 2]		0
1	$\mathcal{K}_{TI}[3,9]$	12	[3, 3]		0
1	$\mathcal{K}_{TI}[4,8]$	12	[4, 4]		0
	$\mathcal{K}_{TI}[5,7]$	12	[1, 1]	X	0
	$\mathcal{K}_{TI}[6,6]$	6	[6, 0]		6
	$\mathcal{K}_{TI}[1,1,10]$	12	[1, 1, 0]	X	0
	$\mathcal{K}_{TI}[1,2,9]$	24	[1, 2, 1]	X	0
	$K_{TI}[1, 3, 8]$	24	[1, 2, 1]	X	0
	$\mathcal{K}_{TI}[1,4,7]$	24	[1, 2, 1]	X	0
	$\mathcal{K}_{TI}[1,5,6]$	24	[1, 1, 6]		6
$_2$	$\mathcal{K}_{TI}[2,2,8]$	12	[2, 2, 0]		0
	$\mathcal{K}_{TI}[2,3,7]$	24	[1, 2, 1]	X	0
	$\mathcal{K}_{TI}[2,4,6]$	24	[2, 2, 6]		6
	$\mathcal{K}_{TI}[2,5,5]$	12	[1, 1, 0]	X	0
	$\mathcal{K}_{TI}[3,3,6]$	12	[3, 0, 3]		6
	$\mathcal{K}_{TI}[3,4,5]$	24	[1, 2, 1]	X	0
	$\mathcal{K}_{TI}[4,4,4]$	4	[4, 0, 0]		4
	$\mathcal{K}_{TI}[1,1,1,9]$	12	[1, 1, 0, 0]	X	0
	$\mathcal{K}_{TI}[1, 1, 2, 8]$	24	[1, 1, 12, 0]		12
	$\mathcal{K}_{TI}[1,1,3,7]$	24	[1, 2, 13, 0]		12
	$\mathcal{K}_{TI}[1,1,4,6]$	24	[1, 1, 18, 0]		18
	$\mathcal{K}_{TI}[1, 1, 5, 5]$	12	[1, 1, 6, 0]		6

- Spatialization of chord sets
 - □ Algebraic-based chord complexes
 Chord population from chord transformation orbits
 Transposition, inversion, permutation, etc.
 - □ Piece-based chord complexes
 Chord population from a piece segmentation
 Analysis of Bach, Chopin, Schoenberg, Webern, Glass, etc.

Chord complex built from a piece

Prelude No. 4 Op. 28 of F. Chopin

120 (2,1)-Hamiltonian paths

- Chord complex built from a piece
- Sequence of complexes resulting from a segmentation

- Chord complex built from a piece
- Sequence of complexes resulting from a segmentation

- Chord complex built from a piece
- Sequence of complexes resulting from a segmentation
- Meaningful musical properties via topological properties
 - □ Dimension

Number of distinct pitch classes simultaneously used in the same segment

- Chord complex built from a piece
- Sequence of complexes resulting from a segmentation
- Meaningful musical properties via topological properties?
 - □ Dimension
 - \square Size (at some dimension n)

Mean number of distinct (n+1)-chords played in the same segment

- Chord complex built from a piece
- Sequence of complexes resulting from a segmentation
- Meaningful musical properties via topological properties?
 - □ Dimension
 - □ Size
- Perspectives: other topological properties
 - □ Betti numbers
 - \square etc.

Intermediate Summary

- Chord complexes
 - □ Formalization and generalization of the *Tonnetz*
 - Widely used representation in musical theory and analysis
 - \blacksquare Generic to any system (\mathbb{Z}_n) and relation (\mathbb{Z} -relation, etc.)
 - □ Chord catalogues with topological properties
 - ☐ Topological analysis of a piece

 Musical interpretations of topological features
- Other contributions
 - □ Skeleton-based classification
 - ☐ Higher-order complexes

 Neighborhood between chord complexes (*e.g.*, voice-leading)

Outline

Bridging the gap between spatial computing and music theory

- 1. Proof of concept: a spatial study of all-interval series
- 2. Building chord spaces for music theory and analysis
- 3. Linking spaces for music generation and analysis
- 4. Conclusion and perspectives

Motivation

- Representation of movement in chord spaces
 - ☐ Musical sequences seen as trajectories in some space
 - □ Construction of trajectories
- Musical interpretation of spatial transformations
- Analysis of a movement for piece analysis

Toolbox: Morphisms

- Function of complexes preserving dimension and incidence
- Extension to topological collections
- Structural inclusion: injective morphisms of complexes

Toolbox: Morphisms

- Function of complexes preserving dimension and incidence
- Extension to topological collections
- Structural inclusion: injective morphisms of complexes

- Spatialization of chord sets
 Defining a topological collection to represent a set of chords
- Structural inclusion (≠ *label*)

- Spatialization of chord sets
 Defining a topological collection to represent a set of chords
- Structural inclusion (≠ *label*)

- Chord complexes are used as *support spaces*
- Trajectories
 - □ A segment is represented by a region of the support space

Piece P

Support space K

- Chord complexes are used as *support spaces*
- Trajectories
 - □ A segment is represented by a region of the support space

- Chord complexes are used as *support spaces*
- Trajectories
 - □ A segment is represented by a region of the support space

- Chord complexes are used as support spaces
- Trajectories
 - □ A segment is represented by a region of the support space
 - □ Chords can be represented in multiple locations

Piece P

Unfolded support space $\mathcal{K}^{\mathcal{U}}$

Trajectory Transformations

Automorphism of the support space
 Geometrical transformations of trajectories

Trajectory Transformations

■ Isomorphism from a support space to another Transformation of the initial space of the trajectory

Trajectory Transformations

Musical interpretation of spatial transformations

Transformation sur l'espace	Transformation sur la trajectoire	Transformation musicale	Régularité
$\mathcal{K}^{\mathrm{u}}_{\mathcal{I}\mathcal{I}}[\mathrm{X}_{\mathrm{chro}}] o \mathcal{K}^{\mathrm{u}}_{\mathcal{I}\mathcal{I}}[\mathrm{X}_{\mathrm{chro}}]$	Translation	Transposition chromatique	Régulier
	Symétrie centrale	Inversion chromatique	Régulier
	Rotation d'angle ≠π Symétrie axiale	?	Semi-régulier
	$(\Leftrightarrow \mathcal{K}^{u}_{\mathcal{I}}[X_{chro}] \to \mathcal{K}^{u}_{\mathcal{I}}[X'_{chro}])$?	Semi-régulier
$\mathcal{K}^{u}_{\mathcal{I}}[X_{hep}]_{T} \rightarrow \mathcal{K}^{u}_{\mathcal{I}}[X_{hep}]_{T}$	Translation	Transposition modale	Régulier
	Symétrie centrale	Inversion modale	Régulier
	Rotation d'angle ≠π Symétrie axiale	?	Semi-régulier
	$(\Leftrightarrow \mathcal{K}^{u}_{\mathcal{I}\mathcal{I}}[X_{hep}]_{T} \mathcal{K}^{u}_{\mathcal{I}\mathcal{I}}[X'_{hep}]_{T})$?	Semi-régulier
$\mathcal{K}^{u}_{\mathcal{I}}[X_{chro}] \rightarrow \mathcal{K}^{u}_{\mathcal{I}}[X'_{chro}]$	Plongement	?	Semi-régulier
$\mathcal{K}^{u}_{TZ}[X_{hep}]_{T} \rightarrow \mathcal{K}^{u}_{TZ}[X'_{hep}]_{T}$	Plongement	?	Semi-régulier
$\mathcal{K}^{u}_{\mathcal{I}\mathcal{I}}[X_{hep}]_{T} \to \mathcal{K}^{u}_{\mathcal{I}\mathcal{I}}[X_{hep}]_{T}$	Plongement	Transposition chromatique (+ transposition modale)	Régulier
Trace → Trace	Isométrie	Permutation dans le temps des ensembles de notes	Irrégulier
$\kappa \to \kappa$	Isométrie	?	Irrégulier
$\mathcal{K} \to \mathcal{K}'$	Plongement	?	Irrégulier

■ The aspect of a trajectory depends on the support space

- The "look" of a trajectory depends on the support space
- Notion of *compliance*
 - □ Propension of a space to fit with a piece
 - □ Computation based on compactness
 - " The more compact is a trajectory,

the more compliant is the support space with the piece"

■ Compactness at a dimension dSimplicial collection A, complex K, injective morphism τ from A to K

$$\max_{\tau} \frac{f_{d+1}(\tau(A))}{f_{d+1}(A)} = \max_{\tau} \frac{f_{d+1}(\tau(A))}{\begin{pmatrix} f_1(A) \\ d+1 \end{pmatrix}}$$
 if A is a simplex

Complex compliance: some examples

Complex compliance: some examples

Complex compliance: some examples

- Complex compliance: some examples
- Compliance of a set of spaces for music classification

- Complex compliance: some examples
- Compliance of a set of spaces for music classification

Intermediate Summary

- Trajectories enable to formalize the use chord-class complexes (including *Tonnetz*) for musical analysis
- Spatial representation of a system evolving in time
 - □ Spatial transformations
 - Spatial transformations relate to familiar or new musical operations
 - Spatial transformations only affect pitches (time is not structurally represented)
 - □ Spatial analysis (for example: compactness computation)
 - Compliant underlying spaces can be viewed as a signature of a style
 - From static compliance to dynamic compliance

Outline

Bridging the gap between spatial computing and music theory

- 1. Proof of concept: a spatial study of all-interval series
- 2. Building chord spaces for music theory and analysis
- 3. Linking spaces for music generation and analysis
- 4. Conclusion and perspectives

Summary

	Algebraic complex	Piece complex
Construction		B E Ds
Trajectory generation		F_{\sharp} E D G_{\sharp}
Piece representation	D B Ab F D V# Eb C A F# C# Bb G E C# F D B Ab F	
Piece transformation		ϕ_1 ϕ_2 ϕ_3 ϕ_4 ϕ_5

Summary

- Tool development
 - □ HexaChord
 - Automatic construction of trajectories in chord complexes
 - Compliance computation
 - Transformations on MIDI files

- □ PaperTonnetz (with J. Garcia/LRI-IRCAM)
 - Composition in chord complexes with interactive paper

Benefits of the spatial representation

- Understanding
 - □ Intuitive visualization of regularities in musical patterns
- Technical
 - ☐ Use of spatial tools for musical problems
- Heuristic
 - □ Original representations inspire new approaches:
 - in music formalization
 - in music analysis
 - in music generation

Perspectives

- Complex construction:
 - Extension to other equivalence classes
 - other scales $(Z_{5}, Z_{8}, Z_{n>12,...})$
 - other equivalence relations (Z-relation,...)
 - Combinatorial representation of other musical features (timbres,...)
 - Different abstraction levels for topological studies
 - A unified viewpoint with the AIS spaces
 - A chord complex can be viewed as the boundary of a higher dimensional cell representing the chord class

Perspectives

- Complex construction:
 - Extension to other equivalence classes
 - other scales $(Z_{5}, Z_{8}, Z_{n>12,...})$
 - other equivalence relations (Z-relation,...)
 - Combinatorial representation of other musical features (timbres,...)
 - Different abstraction levels for topological studies
 - A unified viewpoint with the AIS spaces
 - A chord complex can be viewed as the boundary of a higher dimensional cell representing the chord class

Perspectives

Trajectories

- Transformations
 - Spatial composition based on *new* transformations
 - Transformations of other musical aspects (rhythm, etc.)
- Compliance
 - Compactness of *transitions* between chords
 - Evaluation of other spatial features (periodicity of the movement, etc.)
- Algorithmic composition
 - Trajectory generation in chord class complexes
- HexaChord:
 - Complete availability for music theorists
 - Integration of audio inputs

Scientific contributions

Journal

□ L. Bigo, A. Spicher. *Self-Assembly of Musical Representations in MGS*.

International Journal of Unconventionnal Computing. Accepted for publication

Conferences

- □ L. Bigo, A. Spicher and O. Michel. *Spatial Programming for Music Representation and Analysis*. Spatial Computing Workshop 2010.
- □ L. Bigo, A. Spicher and O. Michel. *Two Representations of Music Computed with a Spatial Programming Language*New Worlds of Computation 2011.
- L. Bigo, J-L. Giavitto and A. Spicher. Building Topological Spaces for Musical Objects
 Mathematics and Computation in Music 2011.
- L. Bigo, J. Garcia, A. Spicher and W. E. Mackay. *PaperTonnetz: Music Composition with Interactive Paper*. Sound and Music Computing 2012.
- □ L. Bigo and A. Spicher. *Self-Assembly of Musical Representations in MGS*. Artificial Intelligence and Simulation of Behaviour Convention 2013.
- □ L. Bigo, J-L. Giavitto and A. Spicher. *Spatial Programming for Musical Transformations and Harmonization*. Spatial Computing Workshop 2013.
- L. Bigo, M. Andreatta, J-L. Giavitto and A. Spicher. *Computation and Visualization of Musical Structures in Chord-based Simplicial Complexes*. Mathematics and Computation in Music 2013.
- J. Garcia, L. Bigo, A. Spicher and W E. Mackay. *PaperTonnetz: Supporting Music Composition with Interactive Paper* ACM SIGCHI Conference on Human Factors in Computing Systems 2013.

Talks

LACL, LRI, MaMuX seminar, GRATOS, Queen Mary University, LaBRI, Lip6, McGill University, Journées science et musique

Award

□ Prize young researcher 2013 in science and music (IRISA, AFIM)

Softwares

- □ HexaChord
- □ PaperTonnetz (with Jérémie Garcia/LRI-IRCAM)