MGS a DSL for modeling and simulating (DS)²

Martin Potier & Antoine Spicher

Demonstration

www.spatial-computing.org/mgs/iccsa14

LACL, University Paris-Est Créteil ICCSA – WS 2 – June. 2014

Outline

- Introduction to MGS
 - □ Interaction-based modeling
 - Presentation of MGS

Demonstrations

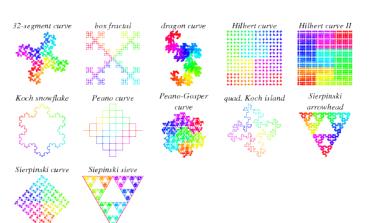
- Lindemayer Systems
- ☐ Chemical-like Systems
- Cellular Automata
- Multi-agent Systems

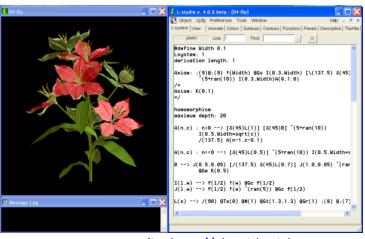
Short description

- Generative grammar working on sequences of symbols, called words
- \square Grammar rules $\alpha \to \beta$ where α and β are words + starting axiom ω_0
- Maximal-parallel application of the rules
 - Rules are applied in parallel everywhere in a word
 - Formally $\omega_i = \omega'_i \alpha \omega''_i$ becomes $\omega_{i+1} = \omega'_{i+1} \beta \omega''_{i+1}$
 - \square If α is found, it is replaced by β
 - \square ω'_i and ω''_i are transformed independently

Short description

- Generative grammar working on sequences of symbols, called words
- \square Grammar rules $\alpha \to \beta$ where α and β are words + starting axiom ω_0
- Maximal-parallel application of the rules
 - Rules are applied in parallel everywhere in a word
 - Formally $\omega_i = \omega'_i \alpha \omega''_i$ becomes $\omega_{i+1} = \omega'_{i+1} \beta \omega''_{i+1}$
 - \square If α is found, it is replaced by β
 - \square ω'_i and ω''_i are transformed independently



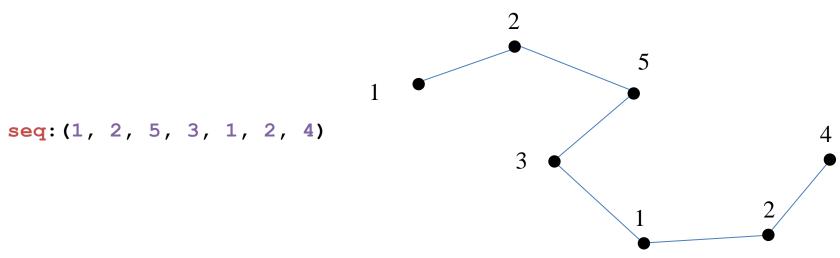


http://http://mathworld.wolfram.com

L-studio, http://algorithmicbotany.org

In MGS

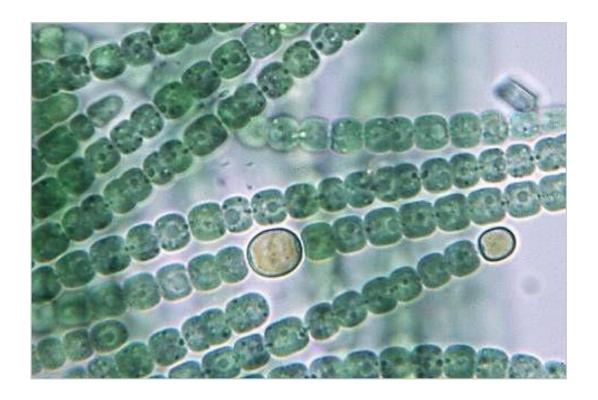
- Topological collection
 - Words represented by sequence of symbols
 - O-cells (vertices) labelled by symbols
 - □ 1-cells (edges) neighborhood (elements accessed one after the other)



Transformation

Maximal/parallel rule application strategy (default in MGS)

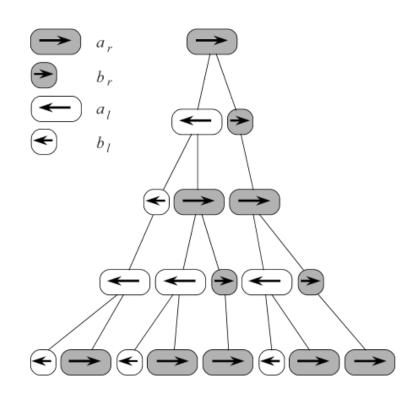
- Symbolic growth model of Anabaena Catenula
 - Filamentous cyanobacteria



- Symbolic growth model of Anabaena Catenula
 - □ Filamentous cyanobacteria
 - Asymmetric division: one daughter is smaller than the other
 - Polarized cell (left/right orientation)

$$\begin{cases} \omega_0 = a_r \\ a_r \to a_l b_r \\ a_l \to b_l a_r \\ b_r \to a_r \\ b_l \to a_l \end{cases}$$

The Algorithmic Beauty of Plants



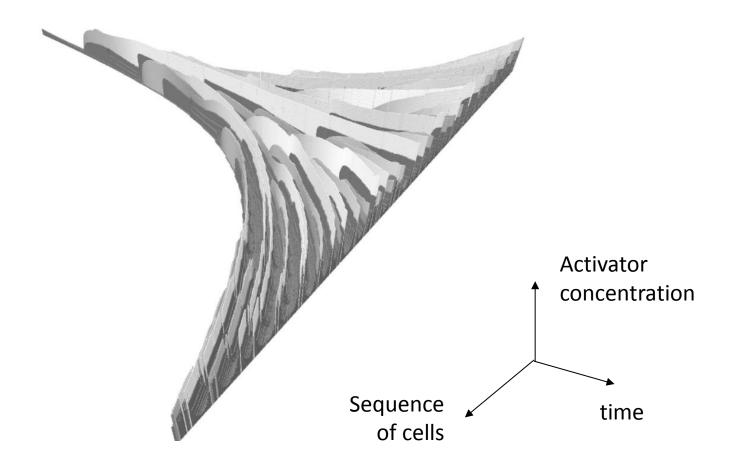
Symbolic growth model of Anabaena Catenula

```
type cell = `Left Long | `Right Long
          | `Left Short | `Right Short ;;
type anabaena = [cell]seq ;;
trans grammar = {
  `Right Short => `Right_Long;
  `Left Short => `Left Long;
  `Right Long => `Left Long, `Right Short;
  `Left_Long => `Left_Short, `Right_Long;
} ;;
grammar(seq:(`Right Long)) ;;
```

- Heterocysts Differentiation in Anabaena Catenula
 - Lack of nitrogen
 - □ Robust structure
 Heterocysts are very regularly distributed (every 10 cells)
 - Wilcox Model
 - Activator/inhibitor
 - Activator triggers the differentiation
 - Activator catalyzes the inhibitor production
 - Inhibitor represses the activator effects (antagonism)
 - L-system implemented in MGS

heterocyst

Heterocysts Differentiation in Anabaena Catenula



Outline

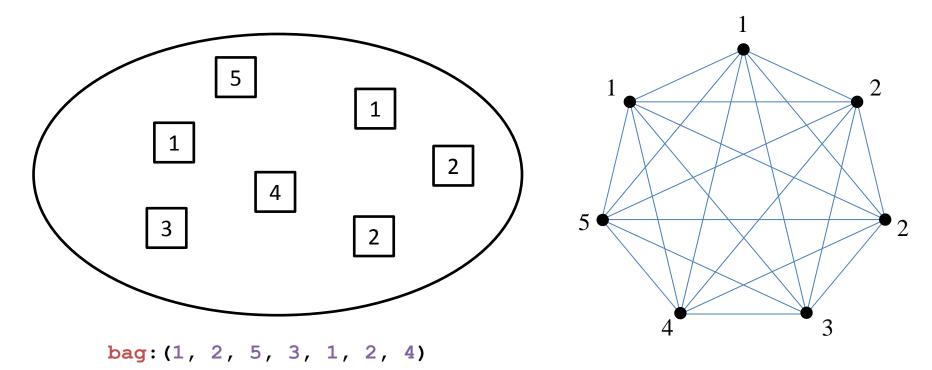
- Introduction to MGS
 - □ Interaction-based modeling
 - Presentation of MGS

Demonstrations

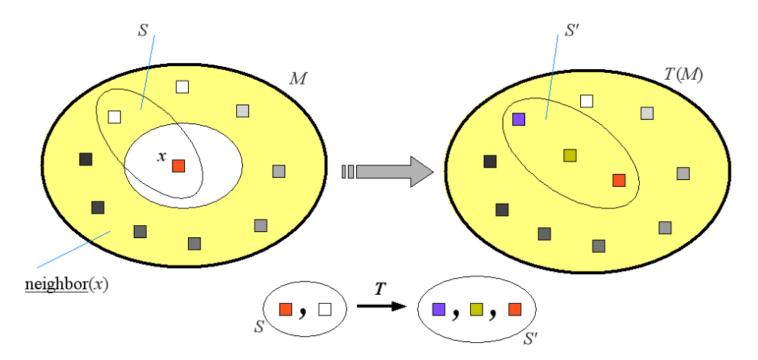
- ☐ Lindemayer Systems
- ☐ Chemical-like Systems
- Cellular Automata
- Multi-agent Systems

- Short description
 - Model as a chemical system
 - ☐ Highly parallel & autonomous
 - □ Chemical metaphor
 - Solution of data (data = chemicals)
 - Dynamics governed by chemical reactions
 - □ Used in theory of computer science
 - Gamma programming language, Banâtre, Le Metayer, 1986
 - CHAM (CHemical Abstract Machine), Berry, Boudole, 1990
 - Membrane computing
 Extension to nested chemical reactions
 - Can be used for modeling purpose

- □ Topological collection
 - Multi-set (bag) of symbols
 - Topology of complete graphAny symbol can interact with any other symbol



- \square Transformation T
 - Collection: multi-set M
 - Topology: neighbor(x) = $M \setminus \{x\}$ (any other element)
 - Subcollection: multi-set *S*



In MGS

- Rule application strategies
 - Maximal parallel (used in computing theory)
 - Gillespie's exact Stochastic Simulation Algorithm (1977)
 - Hypothesis

Data are "well-mixed", only one reaction may occur at a given time

Stochastic sequential strategy

A rule is chosen and applied once w.r.t. some probability law (TCMC)

t: current dateτ: elapsed to next reactionμ: chemical reaction

- c_{μ} : stochastic constant of reaction μ
- h_{μ} : number of molecular combinations to activate μ
- $a_{\mu} = c_{\mu} h_{\mu}$: *propensity* of reaction μ

Probability that

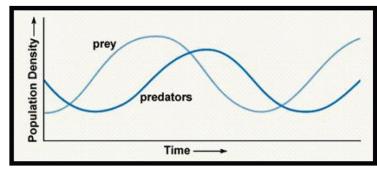
- nothing happens in the time interval $(t, t + \tau)$, and
- reaction μ occurs in the time interval $(t + \tau, t + \tau + d\tau)$

$$P(\tau,\mu)d\tau = a_{\mu}e^{-\tau\sum_{\nu}a_{\nu}}d\tau$$

Lotka-Volterra prey-predator system

- System exhibiting two interdependent populations, one of which serves as a food source for the other
- Coupled oscillations
- □ Informally
 - Preys spontaneously reproduce
 - Predators spontaneously die
 - Predators hunt preys
 - Preys may die
 - Predators may reproduce
- Models: ODE and chemical model

$$\begin{cases} \frac{dV}{dt} = V(\alpha - \beta P) \\ \frac{dP}{dt} = P(\gamma V - \delta) \end{cases}$$



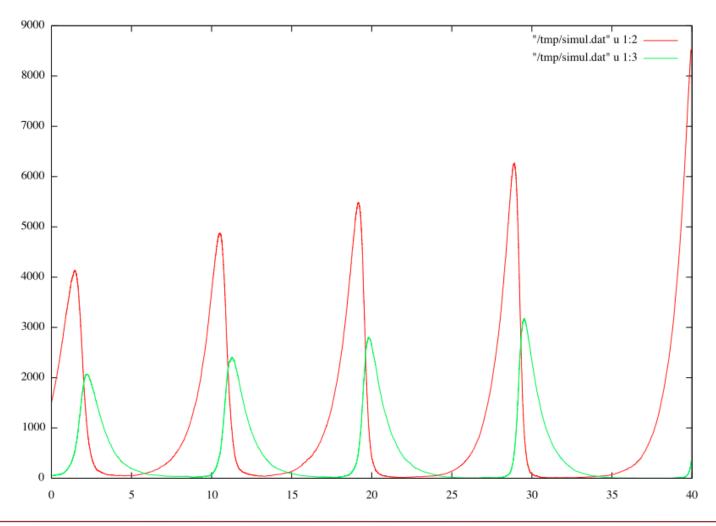
Sylvia S Mader, Biology 6th edition, 1998

$$\begin{cases} V & \stackrel{a}{\rightarrow} & 2V \\ V + P & \stackrel{b}{\rightarrow} & P \\ V + P & \stackrel{c}{\rightarrow} & 2P \\ P & \stackrel{d}{\rightarrow} & . \end{cases}$$

Lotka-Volterra prey-predator system

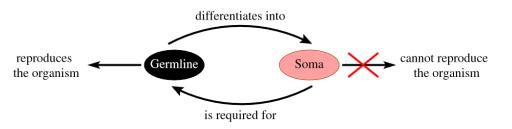
```
type chemical = `Prey | `Predator ;;
type population = [chemical]bag ;;
                                               Constant stochastic
trans reactions = {
                   ={ C = 1.0 }=> `Prey, `Prey;
  `Prey
  `Predator
                  ={ C = 1.0 }=> <undef>;
  `Predator, `Prey ={ C = 0.001 }=> `Predator;
  `Predator, `Prey ={ C = 0.001 }=> `Predator, `Predator;
} ;;
reactions[strategy = `gillespie](...) ;;
```

Lotka-Volterra prey-predator system

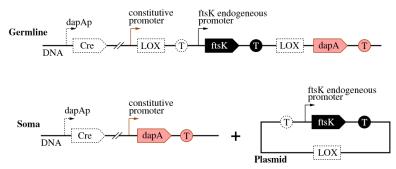


Synthetic Multi-cellular Bacterium (iGEM project of Paris team in 2007)

Bacterium line able to express a lethal gene without disturbing its growth



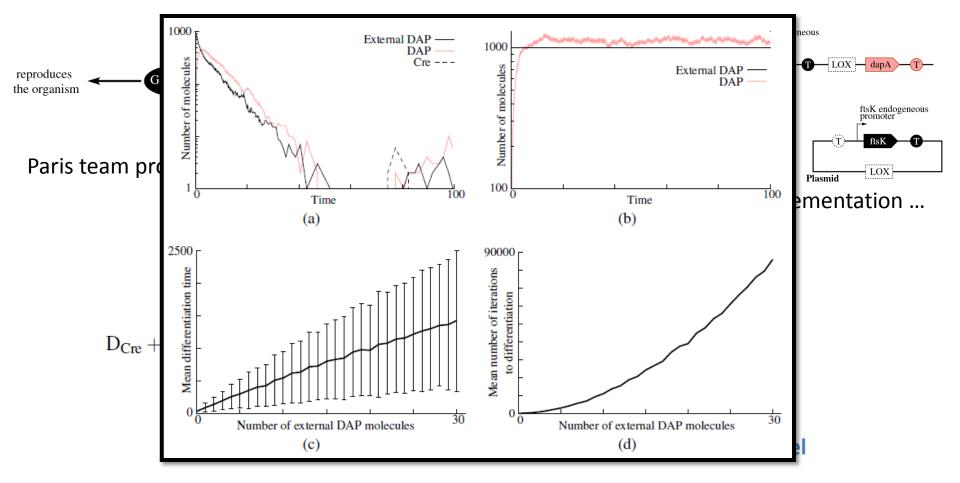
Paris team proposal...



... its genetic implementation ...

■ Synthetic Multi-cellular Bacterium (iGEM project of Paris team in 2007)

Bacterium line able to express a lethal gene without disturbing its growth



Outline

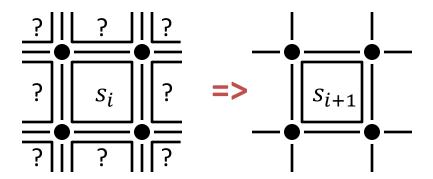
- Introduction to MGS
 - □ Interaction-based modeling
 - Presentation of MGS

Demonstrations

- ☐ Lindemayer Systems
- ☐ Chemical-like Systems
- Cellular Automata
- Multi-agent Systems

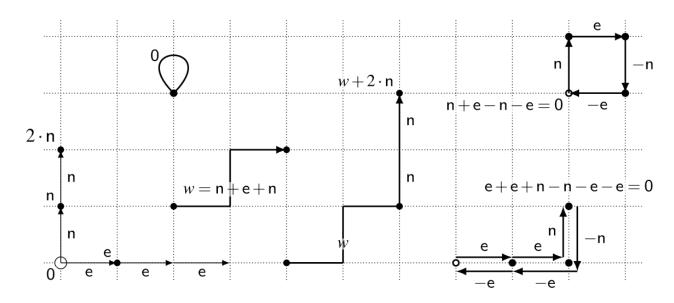
Short description

- Dynamical systems discrete in space and time
- Space
 - Set (finite or infinite) of cells homogeneously and regularly organized
 - Each cell characterized by its state
- □ Time
 - Transition function from a *configuration* to another
 - Synchronous update (all cells update their state at the same time)
 - Local specification (as function of the neighbor cells state)



In MGS

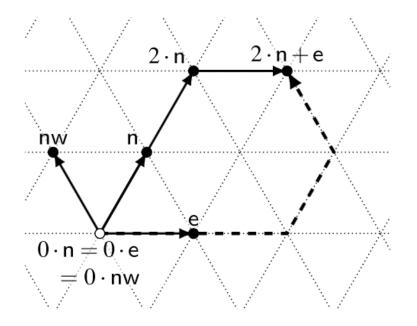
- Topological collection
 - Group Based Field (GBF)
 - Cayley graph associated with a (abelian) group presentation
 - ☐ Generators: atomic displacement
 - Relators: displacement properties



 $gbf NEWS = \langle e, n; e + n = n + e \rangle$

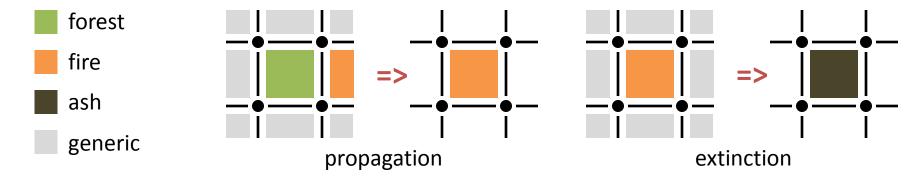
In MGS

- Topological collection
 - Group Based Field (GBF)
 - Cayley graph associated with a (abelian) group presentation
 - ☐ Generators: atomic displacement
 - Relators: displacement properties

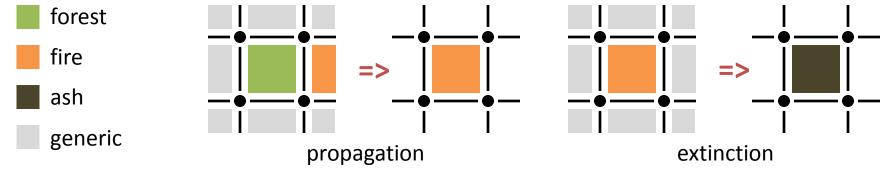


 $gbf hexa = \langle n, e, nw; n = e + nw \rangle$

3-State fire spread model

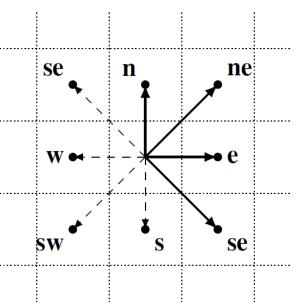


3-State fire spread model

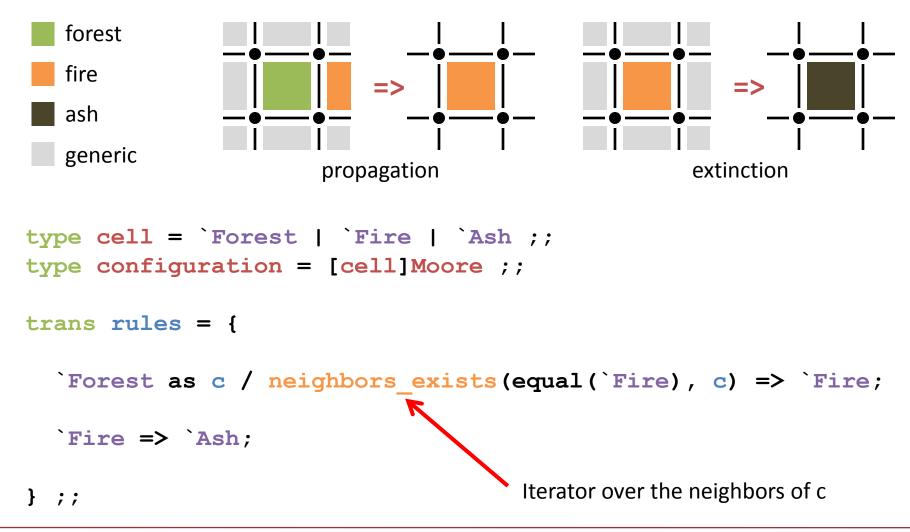


```
gbf Moore = < N, NE, E, SE;
    N + E = NE,
    E - N = SE
    > ;;
```

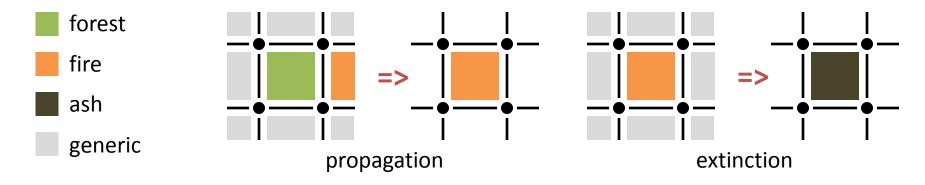
Moore neighborhood, predefined in MGS

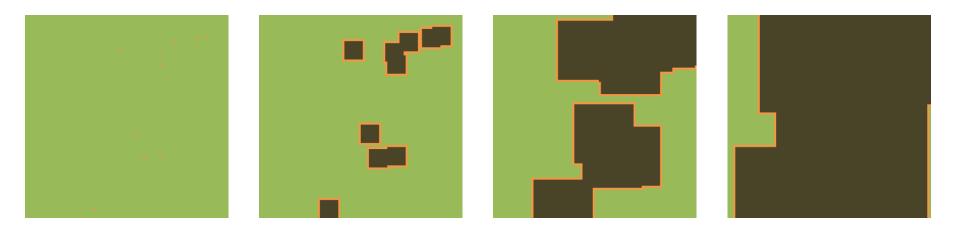


3-State fire spread model

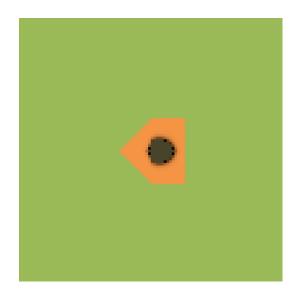


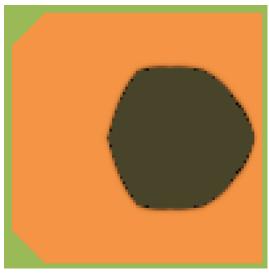
3-State fire spread model

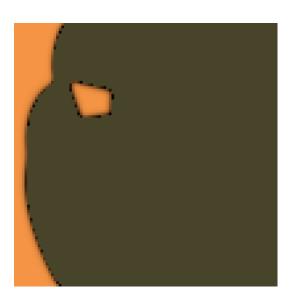




- Karafyllidis-Thanailakis model
 - More elaborated CA for fire spread
 - Cell state: ratio of burnt area from 0 (none) to 1 (all)
 - Environmental effects
 - Wind (speed and direction)
 - Type of fuel
 - Landscape topography







Outline

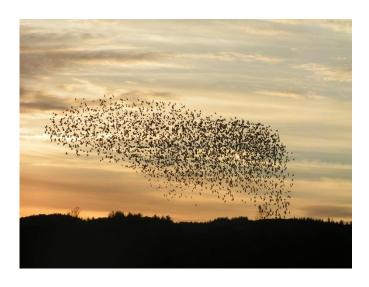
- Introduction to MGS
 - □ Interaction-based modeling
 - Presentation of MGS

Demonstrations

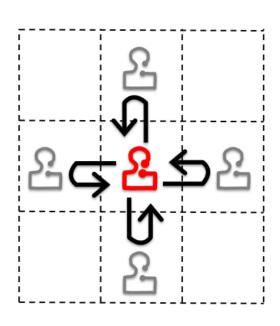
- □ Lindemayer Systems
- ☐ Chemical-like Systems
- Cellular Automata
- Multi-agent Systems

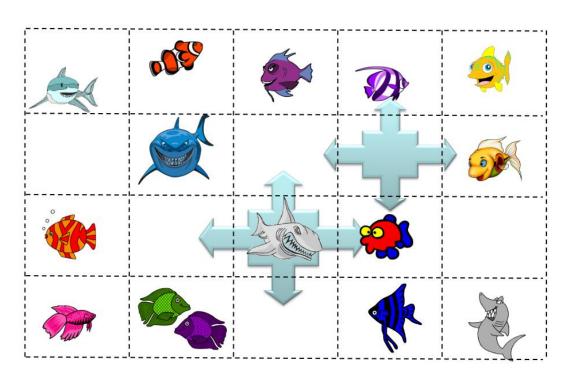
Short Description

- Population of entities interacting in some environment
- □ Agents
 - Characterized by a state
 - Actions
 - Decision procedure
 - Dependence on the nearby environment and neighbors

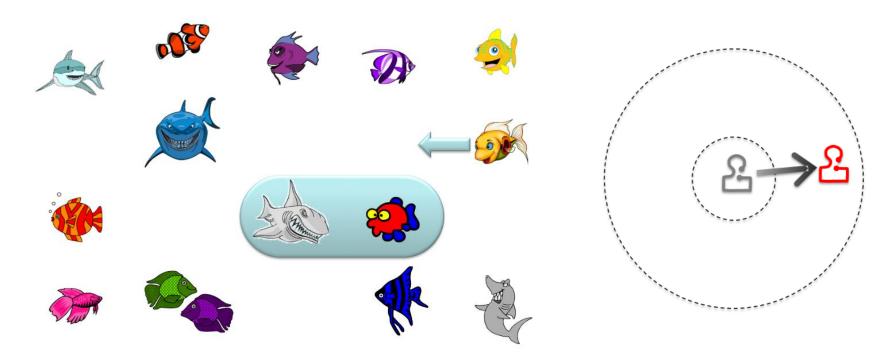


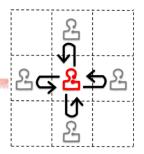
- Representation of a population of agents
 - Newtonian
 - Structure of the system described through its spatial domain
 - Agents localized a pre-existing space



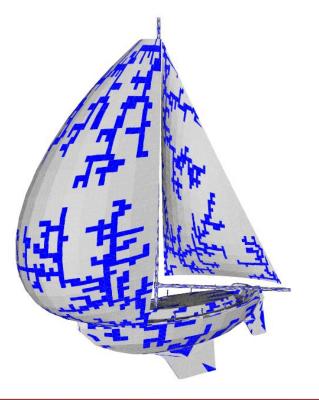


- Representation of a population of agents
 - Leibnizian
 - □ Structure of the system described through its components
 - Space as relation between agents





- □ Representation of a population of agentsLeibnizian, newtonian
- Example of a newtonian collection for representing a population



```
type particle = `Mobile | `Fixed ;;
type mas = [particle]Moore ;;

trans behaviors = {
   `Fixed, `Mobile => `Fixed, `Fixed;
   `Mobile, <undef> => <undef>, `Mobile;
} ;;
```


In MGS

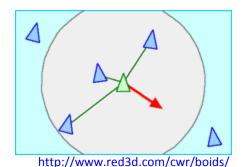
- □ Representation of a population of agentsLeibnizian, newtonian
- □ Example of a leibnizian collection for representing a population
 - Geoproximal topological collection
 - Two elements are neighbors if they are close enough
 Agents are embedded in an n-dimensional Euclidean space

geoprox population(2, 5.0) = fun ag -> (ag.x, ag.y) ;;

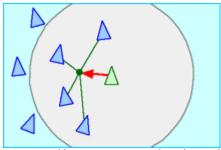
Dimension of the considered Radius max. Function to get the coordinates of an agent

Reynolds' Boids

- Model explaining flock behaviors of birds, fishes, ...
 No leader, simple local behavior rules
- Agent
 - Virtual bird
 - Positioned and oriented in the 2D space
 - Neighborhood given by a geoproximal with radius 5
- ☐ Three simple behavior rules

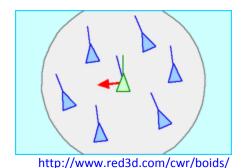


Separation: avoid collision with too close mates (dist. < 1)



http://www.red3d.com/cwr/boids/

Cohesion: steer towards neighbors to keep close (dist. > 4)



Alignment: follow the average directions of

the mates

Reynolds' Boids

```
record boid = {
    x:float, y:float, t:float
} ;;
geoprox population(2, 5.0) =
    fun b:boid -> (b.x, b.y) ;;
```

Reynolds' Boids

```
record boid = {
  x:float, y:float, t:float
} ;;
geoprox population(2, 5.0) =
  fun b:boid -> (b.x, b.y) ;;
trans behaviors = { (* see details on the website *)
 b / neighbors exists(too close(b), b) => (
    let g = barycenter(b) in
    let dx = b.x - g.x and dy = b.y - g.y in
    let t = to angle(dx, dy) in
    let b' = b + \{ t = t \} in
     move boid(b')
  );
```

Reynolds' Boids

```
record boid = {
  x:float, y:float, t:float
} ;;
geoprox population(2, 5.0) =
  fun b:boid \rightarrow (b.x, b.y);
trans behaviors = { (* see details on the website *)
 b / neighbors forall(too far(b), b) => (
    let g = barycenter(b) in
    let dx = g.x - b.x and dy = g.y - b.y in
    let t = to angle(dx, dy) in
    let b' = b + \{ t = t \} in
      move boid(b')
  );
```

Reynolds' Boids

} ;;

```
record boid = {
  x:float, y:float, t:float
} ;;
geoprox population(2, 5.0) =
  fun b:boid \rightarrow (b.x, b.y);
trans behaviors = { (* see details on the website *)
 b => (
    let g = barycenter(b) in
    let b' = b + \{ t = g.t \} in
      move boid(b')
  );
```

