ACTIMS ETH Zurich 2014
Opening

Rodrigo Castro* and Alexandre Muzy**

* Departamento de Computación, FCEyN, Universidad de Buenos Aires – Argentina.
** I3S CNRS, Sophia-Antipolis – France.

January 13, 2014
Not possible without

- Rodrigo Castro
- Andreas Fischlin
- François Cellier
- Jean-François Santucci
- Laurent Capocchi
- Olivier Michel
- Gabriel Wainer
Workshop concept

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity
Workshop concept

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity
Workshop concept

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity
Workshop concept

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity
Workshop concept

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity
Win-win publications

- **Proceedings**
 - Play the game of collective involvement
 - Minimum participation *threshold*

- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)

- Group article in CISE IEEE Magazine
 (technical but high level ;-)
Win-win publications

- Proceedings
 - Play the game of collective involvement
 - Minimum participation *threshold*

- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)

- Group article in CISE IEEE Magazine
 (technical but high level ;-)
Win-win publications

- Proceedings
 - Play the game of collective involvement
 - Minimum participation *threshold*

- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)

- Group article in CISE IEEE Magazine
 (technical but high level ;-)
Win-win publications

- Proceedings
 - Play the game of collective involvement
 - Minimum participation *threshold*

- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)

- Group article in CISE IEEE Magazine
 (technical but high level ;-)
Win-win publications

- Proceedings
 - Play the game of collective involvement
 - Minimum participation *threshold*

- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)

- Group article in CISE IEEE Magazine (technical but high level ;-)

Usual activity definition I

Definitions

Usual qualitative definition, “start from an event and end with another” (*Balci)*:

- Example: Fisherman

![Diagram]

- Move
- Fish
- Return
Usual activity definition II

Piecewise constant segment $\omega : [t_1, t_n] \rightarrow P$, where P is the set of activities/ phases, and $\omega_{[t_{i-1}, t_i]}(t) = p_i$ for all $t \in [t_{i-1}, t_i]$.

Figure: Piecewise constant segment.
Activity Measure: Number of events

Definitions

Activity is a quantitative measure of the event rate, or event frequency, in an event set (about quantity)

\[\xi = \{ ev_i = (t_i, v_i) \mid i = 1, 2, 3, \ldots \}, \text{ for } 0 \leq t_i < T. \]

Event-based activity \(A_\xi(T) \):

\[A_\xi(T) = |\{ ev_i = (t_i, v_i) \in \xi \mid 0 \leq t_i < T \}| \]

Average event-based activity consists then of \(\overline{A_\xi(T)} = \frac{A_\xi(T)}{T} \).
Example of event trajectory

$$\xi(t+10) = 0.3, \quad \xi(t+20) = 0.15, \quad \xi(t+30) \approx 0.133, \quad \xi(t+40) = 0.175.$$
A basic Discrete Event System Specification (DEVS) is a structure:

$$DEVS = (X, Y, S, \delta_{ext}, \delta_{int}, \lambda, ta)$$

Where, X is the set of input events, Y is the set of output events, S is the set of partial states, $\delta_{ext} : Q \times X \rightarrow S$ is the external transition function with $Q = \{(s, e) | s \in S, 0 \leq e \leq ta(s)\}$ the set of total states, $\delta_{int} : S \rightarrow S$ is the internal transition function, $\lambda : S \rightarrow Y$ is the output function, and $ta : S \rightarrow \mathbb{R}_\infty^{0,+}$ is the time advance function.
A *DEVS* network is a structure:

\[N = (X, Y, D, \{ M_d \}, \{ I_d \}, \{ Z_{i,d} \}, \text{Select}) \]

Where \(X \) is the set of input events, \(Y \) is the set of output events, \(D \) is the set of component names, for each \(d \in D \), \(M_d \) is a basic model, for each \(d \in D \cup \{ N \} \), \(I_d \) is the set of *influencers* of \(d \) such that \(I_d \subseteq D \cup \{ N \} \), \(d \notin I_d \) and for each \(i \in I_d \): \(Z_{i,d} \) is the *coupling function*, and \(\text{Select} : 2^D \setminus \{ \emptyset \} \rightarrow D \cup \{ \emptyset \} \) is the *select function*.
Activity in DEVS

- **Average external activity** \(A_{\text{ext}}(T) \), related to the counting, \(n_{\text{ext}} \), of external transitions \(\delta_{\text{ext}}(s, e, x) \), over a time period \(T \):

\[
\begin{align*}
 s' &= \delta_{\text{ext}}(s, e, x) \Rightarrow n'_{\text{ext}} = n_{\text{ext}} + 1 \\
 A_{\text{ext}}(T) &= \frac{n_{\text{ext}}}{T}
\end{align*}
\]

- **Average internal activity** \(A_{\text{int}}(T) \), related to the counting, \(n_{\text{int}} \), of internal transitions \(\delta_{\text{int}}(s) \), over a time period \(T \):

\[
\begin{align*}
 s' &= \delta_{\text{int}}(s, e) \Rightarrow n'_{\text{int}} = n_{\text{int}} + 1 \\
 A_{\text{int}}(T) &= \frac{n_{\text{int}}}{T}
\end{align*}
\]

- **Total average activity is equal to**:

\[
A_s(T) = A_{\text{ext}}(T) + A_{\text{int}}(T)
\]
Activity in DEVS

- **Average external activity** \(\overline{A_{\text{ext}}(T)} \), related to the counting, \(n_{\text{ext}} \), of external transitions \(\delta_{\text{ext}}(s, e, x) \), over a time period \(T \):
 \[
 \begin{align*}
 s' = \delta_{\text{ext}}(s, e, x) \Rightarrow n'_{\text{ext}} &= n_{\text{ext}} + 1 \\
 \overline{A_{\text{ext}}(T)} &= \frac{n_{\text{ext}}}{T}
 \end{align*}
 \]

- **Average internal activity** \(\overline{A_{\text{int}}(T)} \), related to the counting, \(n_{\text{int}} \), of internal transitions \(\delta_{\text{int}}(s) \), over a time period \(T \):
 \[
 \begin{align*}
 s' = \delta_{\text{int}}(s, e) \Rightarrow n'_{\text{int}} &= n_{\text{int}} + 1 \\
 \overline{A_{\text{int}}(T)} &= \frac{n_{\text{int}}}{T}
 \end{align*}
 \]

- **Total average activity** is equal to:
 \[
 \overline{A_s(T)} = \overline{A_{\text{ext}}(T)} + \overline{A_{\text{int}}(T)}
 \]
Activity in DEVS

- **Average external activity** $\overline{A_{ext}(T)}$, related to the counting, n_{ext}, of external transitions $\delta_{ext}(s, e, x)$, over a time period T:

 $$\begin{align*}
 s' = \delta_{ext}(s, e, x) \Rightarrow n_{ext}' = n_{ext} + 1 \\
 \overline{A_{ext}(T)} = \frac{n_{ext}}{T}
 \end{align*}$$

- **Average internal activity** $\overline{A_{int}(T)}$, related to the counting, n_{int}, of internal transitions $\delta_{int}(s)$, over a time period T:

 $$\begin{align*}
 s' = \delta_{int}(s, e) \Rightarrow n_{int}' = n_{int} + 1 \\
 \overline{A_{int}(T)} = \frac{n_{int}}{T}
 \end{align*}$$

- **Total average activity is equal to:**

 $$\overline{A_s(T)} = \overline{A_{ext}(T)} + \overline{A_{int}(T)}$$
Abstract simulator

1: variables
2: \(tl \) — time of last event
3: \(tn \) — time of next event
4: \textbf{when} receive \(*\)-message \((*, t)\) at time \(t \)
5: \textbf{if} \((t = tn)\) \textbf{then}
6: \(y = \lambda(s) \)
7: send \(y \)-message \((y, t)\) to parent coordinator
8: \(s = \delta_{\text{int}}(s) \)
9: \(n'_{\text{int}} = n_{\text{int}} + 1 \)
10: \textbf{when} receive \(x \)-message \((x, t)\)
11: \textbf{if} \((x \neq \emptyset \text{ and } tl \leq t \leq tn)\) \textbf{then}
12: \(s = \delta_{\text{ext}}(s, x, e) \)
13: \(n'_{\text{ext}} = n_{\text{ext}} + 1 \)
Weighted activity in DEVS

- **Average external weighted activity** $A_{\text{ext}}^w(T)$, related to the counting, n_{ext}, of external transitions $\delta_{\text{ext}}(s, e, x)$, over a time period T:

$$
\begin{align*}
 s' &= \delta_{\text{ext}}(s, e, x) \\
 n_{\text{ext}}' &= n_{\text{ext}} + w_{\text{ext}}(s, e, x) \\
 A_{\text{ext}}^w(T) &= \frac{n_{\text{ext}}}{T}
\end{align*}
$$

- **Average internal weighted activity** $A_{\text{int}}^w(T)$, related to the counting, n_{int}, of internal transitions $\delta_{\text{int}}(s)$, over a time period T:

$$
\begin{align*}
 s' &= \delta_{\text{int}}(s, e) \\
 n_{\text{int}}' &= n_{\text{int}} + w_{\text{int}}(s) \\
 A_{\text{int}}^w(T) &= \frac{n_{\text{int}}}{T}
\end{align*}
$$

- **Total average weighted activity** is equal to:

$$
A_s^w(T) = A_{\text{ext}}^w(T) + A_{\text{int}}^w(T)
$$
Weighted activity in DEVS

- **Average external weighted activity** $\overline{A^w_{\text{ext}}(T)}$, related to the counting, n_{ext}, of external transitions $\delta_{\text{ext}}(s, e, x)$, over a time period T:

 $\begin{cases}
 s' = \delta_{\text{ext}}(s, e, x) \Rightarrow n'_{\text{ext}} = n_{\text{ext}} + w_{\text{ext}}(s, e, x) \\
 \overline{A^w_{\text{ext}}(T)} = \frac{n_{\text{ext}}}{T}
 \end{cases}$

- **Average internal weighted activity** $\overline{A^w_{\text{int}}(T)}$, related to the counting, n_{int}, of internal transitions $\delta_{\text{int}}(s)$, over a time period T:

 $\begin{cases}
 s' = \delta_{\text{int}}(s, e) \Rightarrow n'_{\text{int}} = n_{\text{int}} + w_{\text{int}}(s) \\
 \overline{A^w_{\text{int}}(T)} = \frac{n_{\text{int}}}{T}
 \end{cases}$

- **Total average weighted activity** is equal to:

 $\overline{A^w_s(T)} = \overline{A^w_{\text{ext}}(T)} + \overline{A^w_{\text{int}}(T)}$
Weighted activity in DEVS

- **Average external weighted activity** \(A_{\text{ext}}^w(T) \), related to the counting, \(n_{\text{ext}} \), of external transitions \(\delta_{\text{ext}}(s, e, x) \), over a time period \(T \):

\[
\begin{align*}
s' &= \delta_{\text{ext}}(s, e, x) \Rightarrow n'_{\text{ext}} = n_{\text{ext}} + w_{\text{ext}}(s, e, x) \\
A_{\text{ext}}^w(T) &= \frac{n_{\text{ext}}}{T}
\end{align*}
\]

- **Average internal weighted activity** \(A_{\text{int}}^w(T) \), related to the counting, \(n_{\text{int}} \), of internal transitions \(\delta_{\text{int}}(s) \), over a time period \(T \):

\[
\begin{align*}
s' &= \delta_{\text{int}}(s, e) \Rightarrow n'_{\text{int}} &= n_{\text{int}} + w_{\text{int}}(s) \\
A_{\text{int}}^w(T) &= \frac{n_{\text{int}}}{T}
\end{align*}
\]

- **Total average weighted activity** is equal to:

\[
A_{s}^w(T) = A_{\text{ext}}^w(T) + A_{\text{int}}^w(T)
\]
Activity of a network

Definition

Average simulation activity of a network N is the sum of average simulation activities of components $i \in D$ in N:

$$\bar{A}_{s,N} = \sum_{i \in D} A_{s,i}(t' - t).$$
Continuous activity

\[A_c(T) = \int_0^T \left| \frac{\partial \Phi(t)}{\partial t} \right| \, dt \approx \sum_{i=1}^n \left| m_i - m_{i+1} \right| \]

Average continuous activity consists then of \(\overline{A_c(T)} = \frac{A_c(T)}{T} \).
Link Events/Transitions and continuous activity

Significant change of value of size $D = |\Phi^{n+1} - \Phi^n|$ (quantum)

Discretization activity $A_d(T)$ is minimum number of transitions necessary for discretizing/approaching the trajectory of $\Phi(t)$

$$A_d(T) = \frac{A_c(T)}{D}$$
Two-dimensional cartesian coordinates

- Fire spread, brain activity...: Activity amplitude (real value), of each coordinate, is represented in the third dimension:
Activity referenced states

Definition

Activity references constitute a viewpoint of the state set where only the variables relevant for activity are selected.

- We consider sub-sets of the state set: \(Q = \prod_{i=0}^{n} E_i \), with \(E_i \): Any set with \(n \) the number of sets. Ex: \(Q = \mathbb{R} \times \mathbb{N} \times \mathbb{R} \), and a possible state would be \(q = (68.2, 20, 381.5) \).
- Set of activity referenced states: \(G_I = \pi_I(Q) = \prod_{i \in I} E_i \), as a projection of the state space \(Q \) onto indexes \(I \subseteq \{1, ..., n\} \)
- \(\pi \): operator to “select” a subset of the state elements.
Activity referenced states

Definition

Activity references constitute a viewpoint of the state set where only the variables relevant for activity are selected.

- We consider sub-sets of the state set: $Q = \prod_{i=0}^{n} E_i$, with E_i:

 Any set with n the number of sets. Ex: $Q = \mathbb{R} \times \mathbb{N} \times \mathbb{R}$, and a possible state would be $q = (68.2, 20, 381.5)$.

- Set of activity referenced states: $G_I = \pi_I(Q) = \prod_{i \in I} E_i$, as a *projection of the state space Q onto indexes $I \subseteq \{1, ..., n\}$*

- π: operator to “select” a subset of the state elements.
Activity referenced states

Definition

Activity references constitute a viewpoint of the state set where only the variables relevant for activity are selected.

- We consider sub-sets of the state set: \(Q = \prod_{i=0}^{n} E_i \), with \(E_i \): Any set with \(n \) the number of sets. Ex: \(Q = \mathbb{R} \times \mathbb{N} \times \mathbb{R} \), and a possible state would be \(q = (68.2, 20, 381.5) \).
- Set of activity referenced states: \(G_I = \pi_I(Q) = \prod_{i \in I} E_i \), as a projection of the state space \(Q \) onto indexes \(I \subseteq \{1, ..., n\} \).
- \(\pi \): operator to “select” a subset of the state elements.
Activity referenced states

Definition

Activity references constitute a viewpoint of the state set where only the variables relevant for activity are selected.

- We consider sub-sets of the state set: $Q = \prod_{i=0}^{n} E_i$, with E_i:
 Any set with n the number of sets. Ex: $Q = \mathbb{R} \times \mathbb{N} \times \mathbb{R}$, and a possible state would be $q = (68.2, 20, 381.5)$.

- Set of activity referenced states: $G_I = \pi_I(Q) = \prod_{i \in I} E_i$, as a projection of the state space Q onto indexes $I \subseteq \{1, \ldots, n\}$

- π: operator to “select” a subset of the state elements.
Activity referenced states

Definition

Activity references constitute a viewpoint of the state set where only the variables relevant for activity are selected.

- We consider sub-sets of the state set: $Q = \prod_{i=0}^{n} E_i$, with E_i:
 - Any set with n the number of sets. Ex: $Q = \mathbb{R} \times \mathbb{N} \times \mathbb{R}$, and a possible state would be $q = (68.2, 20, 381.5)$.
- Set of activity referenced states: $G_l = \pi_l(Q) = \prod_{i \in I} E_i$, as a projection of the state space Q onto indexes $I \subseteq \{1, \ldots, n\}$
- π: operator to “select” a subset of the state elements.
Activity Regions in Activity Referenced States

- Activity region in activity referenced states:

\[
\mathcal{AR}^{G_i}(t) = \{ g \in G_i \mid A_\xi(t) > 0 \}
\]

- Inactivity region in activity referenced states:

\[
\overline{\mathcal{AR}^{G_i}}(t) = \{ g \in G_i \mid A_\xi(t) = 0 \}
\]

- Activity-based partitioning of \(G_i \):

\[
\forall t \in \mathbb{R}^+, \ G_i = \mathcal{AR}^{G_i}(t) \cup \overline{\mathcal{AR}^{G_i}}(t)
\]
Activity Regions in Activity Referenced States

- Activity region in activity referenced states:
 \[\mathcal{AR}^{G_i}(t) = \{ g \in G_i \mid A_\xi(t) > 0 \} \]

- Inactivity region in activity referenced states:
 \[\overline{\mathcal{AR}^{G_i}}(t) = \{ g \in G_i \mid A_\xi(t) = 0 \} \]

- Activity-based partitioning of \(G_i \):
 \[\forall t \in \mathbb{R}^+, \ G_i = \mathcal{AR}^{G_i}(t) \cup \overline{\mathcal{AR}^{G_i}}(t) \]
Activity Regions in Activity Referenced States

- Activity region in activity referenced states:
 \[
 \mathcal{AR}^{G_I}(t) = \{ g \in G_I \mid A_\xi(t) > 0 \}
 \]

- Inactivity region in activity referenced states:
 \[
 \overline{\mathcal{AR}^{G_I}}(t) = \{ g \in G_I \mid A_\xi(t) = 0 \}
 \]

- Activity-based partitioning of \(G_I \):
 \[
 \forall t \in \mathbb{R}^+, \ G_I = \mathcal{AR}^{G_I}(t) \cup \overline{\mathcal{AR}^{G_I}}(t)
 \]
Activity Regions in Activity Referenced States

- Activity region in activity referenced states:
 \[
 \mathcal{AR}^{G_i}(t) = \{ g \in \mathcal{G}_i \mid A_\xi(t) > 0 \}
 \]

- Inactivity region in activity referenced states:
 \[
 \overline{\mathcal{AR}^{G_i}}(t) = \{ g \in \mathcal{G}_i \mid A_\xi(t) = 0 \}
 \]

- Activity-based partitioning of \(\mathcal{G}_i \):
 \[
 \forall t \in \mathbb{R}^+, \quad \mathcal{G}_i = \mathcal{AR}^{G_i}(t) \cup \overline{\mathcal{AR}^{G_i}}(t)
 \]
Fire Spread Example

Assume the fire model describes the state of a cell with the following states:
- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- $status \in \{ burnt, burning, safe \}$;
- $type \in \{ tree, bush, water, road \}$;
- $heat \in \mathbb{R}$.

A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be $G_{2,3}$. The resulting activity region specification would be

$$AR^{G_{2,3}}(t) = \{\{burning, safe\} \times \{tree, bush\}\}, \forall t \in \mathbb{R}^+$$
Fire Spread Example

- Assume the fire model describes the state of a cell with the following states:
 - $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
 - \textit{status} $\in \{\text{burnt, burning, safe}\}$;
 - \textit{type} $\in \{\text{tree, bush, water, road}\}$;
 - \textit{heat} $\in \mathbb{R}$.

- A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be $G_{2,3}$. The resulting activity region specification would be

$$AR^{G_{2,3}}(t) = \{\{\text{burning, safe}\} \times \{\text{tree, bush}\}\}, \forall t \in \mathbb{R}^+$$
Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- \(x \in \mathbb{R} \) and \(y \in \mathbb{R} \);
- \(status \in \{burnt, burning, safe\} \);
- \(type \in \{tree, bush, water, road\} \);
- \(heat \in \mathbb{R} \).

A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be \(G_{2,3} \). The resulting activity region specification would be

\[
AR^{G_{2,3}}(t) = \{(burning, safe) \times \{tree, bush\}\}, \forall t \in \mathbb{R}^+
\]
Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- $status \in \{\text{burnt, burning, safe}\}$;
- $type \in \{\text{tree, bush, water, road}\}$;
- $heat \in \mathbb{R}$.

A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be $\mathcal{G}_{2,3}$. The resulting activity region specification would be

$$AR^{G_{2,3}}(t) = \{\{\text{burning, safe}\} \times \{\text{tree, bush}\}, \forall t \in \mathbb{R}^+$$
Fire Spread Example

- Assume the fire model describes the state of a cell with the following states:
 - \(x \in \mathbb{R} \) and \(y \in \mathbb{R} \);
 - \(\text{status} \in \{\text{burnt}, \text{burning}, \text{safe}\} \);
 - \(\text{type} \in \{\text{tree}, \text{bush}, \text{water}, \text{road}\} \);
 - \(\text{heat} \in \mathbb{R} \).

- A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be \(G_{2,3} \). The resulting activity region specification would be

\[
AR^{G_{2,3}}(t) = \{\{\text{burning}, \text{safe}\} \times \{\text{tree, bush}\} \}, \forall t \in \mathbb{R}^+
\]
Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- $status \in \{\text{burnt}, \text{burning}, \text{safe}\}$;
- $type \in \{\text{tree}, \text{bush}, \text{water}, \text{road}\}$;
- $heat \in \mathbb{R}$.

A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be $\mathcal{G}_{2,3}$. The resulting activity region specification would be

$$AR^{G_{2,3}}(t) = \{\{\text{burning}, \text{safe}\} \times \{\text{tree}, \text{bush}\}\}, \forall t \in \mathbb{R}^+$$

![Diagram showing activity regions for different statuses and types]
Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- $status \in \{burnt, burning, safe\}$;
- $type \in \{tree, bush, water, road\}$;
- $heat \in \mathbb{R}$.

A simple model of the activity regions can involve the status and the type of the cell. Formally, the set of activity referenced states would be $G_{2,3}$. The resulting activity region specification would be

$$AR^{G_{2,3}}(t) = \{\{burning, safe\} \times \{tree, bush\}\}, \forall t \in \mathbb{R}^+$$
Extension to Activity Generalized Coordinates

Definitions

\[
A(g_{\text{max}} - g_{\text{min}}) = \int_{g_{\text{min}}}^{g_{\text{max}}} \left| \frac{\partial \Phi(g)}{\partial g} \right| \, dg
\]

Example for \(g = p \)
Perspectives

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?
Perspectives

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?
Perspectives

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?
Perspectives

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?
Perspectives

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?