ACTIMS ETH Zurich 2014 Opening

Rodrigo Castro* and Alexandre Muzy**

* Departamento de Computación, FCEyN, Universidad de Buenos Aires – Argentina

** I3S CNRS, Sophia-Antipolis – France.

January 13, 2014

Not possible without

- Rodrigo Castro
- Andreas Fischlin
- François Cellier
- Jean-François Santucci
- Laurent Capocchi
- Olivier Michel
- Gabriel Wainer

• On invitation only

- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity

• On invitation only

• Interdisciplinary (robots, biology, etc.)

- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity

- On invitation only
- Interdisciplinary (robots, biology, etc.)
- Work together, share ideas, make them emerge...
- Avoid the problems of large-scope conference
- Focus on M&S activity

Proceedings

- Play the game of collective involvement
- Minimum participation threshold
- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)
- Group article in CISE IEEE Magazine (technical but high level ;-)

Proceedings

- Play the game of collective involvement
- Minimum participation threshold
- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)
- Group article in CISE IEEE Magazine (technical but high level ;-)

Proceedings

- Play the game of collective involvement
- Minimum participation threshold
- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)
- Group article in CISE IEEE Magazine (technical but high level ;-)

- Proceedings
 - Play the game of collective involvement
 - Minimum participation threshold
- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)
- Group article in CISE IEEE Magazine (technical but high level ;-)

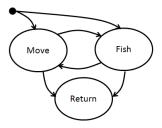
- Proceedings
 - Play the game of collective involvement
 - Minimum participation threshold
- Special issue in International Journal of Modeling, Simulation, and Scientific Computing (IJMSSC, depends on *threshold*)
- Group article in CISE IEEE Magazine (technical but high level ;-)

Usual activity definition I

Definitions

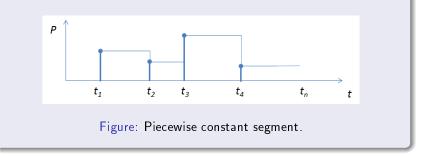
Usual qualitative definition, "start from an event and end with another" (Balci):

• Example: Fisherman



Usual activity definition II

Piecewise constant segment $\omega : [t_1, t_n] \to P$, where P is the set of activities/phases, and $\omega_{[t_{i-1}, t_i]}(t) = p_i$ for all $t \in [t_{i-1}, t_i]$.



7 / 22

Activity Measure: Number of events

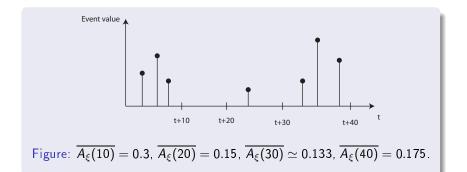
Definitions

Activity is a quantitative measure of the event rate, or event frequency, in an event set (about quantity) $\xi = \{ev_i = (t_i, v_i) \mid i = 1, 2, 3, ...\}, \text{ for } 0 \le t_i < T.$ Event-based activity $A_{\xi}(T)$:

$$A_{\xi}(T) = |\{ev_i = (t_i, v_i) \in \xi \mid 0 \le t_i < T\}|$$

Average event-based activity consists then of $\overline{A_{\xi}(T)} = \frac{A_{\xi}(T)}{T}$.

Example of event trajectory



DEVS

Definition

A basic Discrete Event System Specification (DEVS) is a structure:

$$DEVS = (X, Y, S, \delta_{ext}, \delta_{int}, \lambda, ta)$$

Where, X is the set of input events, Y is the set of output events, S is the set of partial states, $\delta_{ext} : Q \times X \to S$ is the external transition function with $Q = \{(s, e) | s \in S, 0 \le e \le ta(s)\}$ the set of total states, $\delta_{int} : S \to S$ is the internal transition function, $\lambda : S \to Y$ is the output function, and $ta : S \to \mathbb{R}^{0,+}_{\infty}$ is the time advance function.

Network

Definition

A DEVS network is a structure:

$$N = (X, Y, D, \{M_d\}, \{I_d\}, \{Z_{i,d}\}, Select)$$

Where X is the set of input events, Y is the set of output events, D is the set of component names, for each $d \in D$, M_d is a basic model, for each $d \in D \cup \{N\}$, I_d is the set of *influencers* of d such that $I_d \subseteq D \cup \{N\}$, $d \notin I_d$ and for each $i \in I_d$: $Z_{i,d}$ is the coupling function, and Select : $2^D - \{\emptyset\} \rightarrow D \cup \{\emptyset\}$ is the select function.

Activity in DEVS

• Average external activity $\overline{A_{ext}(T)}$, related to the counting, n_{ext} , of external transitions $\delta_{ext}(s, e, x)$, over a time period T:

$$\begin{cases} s' = \delta_{ext}(s, e, x) \Rightarrow n'_{ext} = n_{ext} + 1\\ \overline{A_{ext}(T)} = \frac{n_{ext}}{T} \end{cases}$$

• Average internal activity $\overline{A_{int}(T)}$, related to the counting, n_{int} , of internal transitions $\delta_{int}(s)$, over a time period T:

$$\begin{cases} s' = \delta_{int}(s, e) \Rightarrow n'_{int} = n_{int} + 1\\ \overline{A_{int}(T)} = \frac{n_{int}}{T} \end{cases}$$

• Total average activity is equal to:

$$\overline{A_s(T)} = \overline{A_{ext}(T)} + \overline{A_{int}(T)}$$

(ロ) (部) (言) (言) (言) (で) (11/22)

Activity in DEVS

• Average external activity $\overline{A_{ext}(T)}$, related to the counting, n_{ext} , of external transitions $\delta_{ext}(s, e, x)$, over a time period T:

$$\begin{cases} s' = \delta_{ext}(s, e, x) \Rightarrow n'_{ext} = n_{ext} + 1\\ \overline{A_{ext}(T)} = \frac{n_{ext}}{T} \end{cases}$$

• Average internal activity $\overline{A_{int}(T)}$, related to the counting, n_{int} , of internal transitions $\delta_{int}(s)$, over a time period T:

$$\begin{cases} s' = \delta_{int}(s, e) \Rightarrow n'_{int} = n_{int} + 1\\ \overline{A_{int}(T)} = \frac{n_{int}}{T} \end{cases}$$

Total average activity is equal to:

$$\overline{A_s(T)} = \overline{A_{ext}(T)} + \overline{A_{int}(T)}$$

▲ □ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶
 11 / 22

Activity in DEVS

• Average external activity $\overline{A_{ext}(T)}$, related to the counting, n_{ext} , of external transitions $\delta_{ext}(s, e, x)$, over a time period T:

$$\begin{cases} s' = \delta_{ext}(s, e, x) \Rightarrow n'_{ext} = n_{ext} + 1\\ \overline{A_{ext}(T)} = \frac{n_{ext}}{T} \end{cases}$$

• Average internal activity $\overline{A_{int}(T)}$, related to the counting, n_{int} , of internal transitions $\delta_{int}(s)$, over a time period T:

$$\begin{cases} s' = \delta_{int}(s, e) \Rightarrow n'_{int} = n_{int} + 1\\ \overline{A_{int}(T)} = \frac{n_{int}}{T} \end{cases}$$

Total average activity is equal to:

$$\overline{A_{s}(T)} = \overline{A_{ext}(T)} + \overline{A_{int}(T)}$$

11 / 22

イロト イロト イヨト イヨト 三日

Abstract simulator

1: variables 2: tl — time of last event 3: *tn* — time of next event 4: when receive *-message (*, t) at time t 5: if (t = tn) then 6: $y = \lambda(s)$ send y-message (y, t) to parent coordinator 7: $s = \delta_{int}(s)$ 8: $\underline{n_{int}'=n_{int}+1}$ 9: 10: when receive x-message (x, t)if $(x \neq \emptyset$ and $tl \leq t \leq tn)$ then 11: $s = \delta_{ext}(s, x, e)$ 12: $n'_{ext} = n_{ext} + 1$ 13: · 돈 ▶ · ★ 돈 ▶ · · · 12 / 22

Weighted activity in DEVS

Average external weighted activity A^w_{ext}(T), related to the counting, n_{ext}, of external transitions δ_{ext}(s, e, x), over a time period T:

$$\begin{cases} s' = \delta_{ext}(s, e, x) \Rightarrow n'_{ext} = n_{ext} + w_{ext}(s, e, x) \\ \overline{A_{ext}^w(T)} = \frac{n_{ext}}{T} \end{cases}$$

Average internal weighted activity A^w_{int}(T), related to the counting, n_{int}, of internal transitions δ_{int}(s), over a time period T:

$$\begin{cases} s' = \delta_{int}(s, \underline{e}) \Rightarrow n'_{int} = n_{int} + w_{int}(s) \\ \overline{A_{int}^w(T)} = \frac{n_{int}}{T} \end{cases}$$

• Total average weighted activity is equal to:

$$\overline{A_s^w(T)} = \overline{A_{ext}^w(T)} + \overline{A_{int}^w(T)}$$

Weighted activity in DEVS

Average external weighted activity A^w_{ext}(T), related to the counting, n_{ext}, of external transitions δ_{ext}(s, e, x), over a time period T:

$$\begin{cases} s' = \delta_{ext}(s, e, x) \Rightarrow n'_{ext} = n_{ext} + w_{ext}(s, e, x) \\ \overline{A_{ext}^w(T)} = \frac{n_{ext}}{T} \end{cases}$$

Average internal weighted activity A^w_{int}(T), related to the counting, n_{int}, of internal transitions δ_{int}(s), over a time period T:

$$\begin{cases} s' = \delta_{int}(s, \underline{e}) \Rightarrow n'_{int} = n_{int} + w_{int}(s) \\ \overline{A^w_{int}(T)} = \frac{n_{int}}{T} \end{cases}$$

• Total average weighted activity is equal to:

$$\overline{A_s^w(T)} = \overline{A_{ext}^w(T)} + \overline{A_{int}^w(T)}$$

Weighted activity in DEVS

Average external weighted activity A^w_{ext}(T), related to the counting, n_{ext}, of external transitions δ_{ext}(s, e, x), over a time period T:

$$\begin{cases} s' = \delta_{ext}(s, e, x) \Rightarrow n'_{ext} = n_{ext} + w_{ext}(s, e, x) \\ \overline{A_{ext}^w(T)} = \frac{n_{ext}}{T} \end{cases}$$

• Average internal weighted activity $\overline{A_{int}^w(T)}$, related to the counting, n_{int} , of internal transitions $\delta_{int}(s)$, over a time period T:

$$\begin{cases} s' = \delta_{int}(s, \underline{e}) \Rightarrow n'_{int} = n_{int} + w_{int}(s) \\ \overline{A^w_{int}(T)} = \frac{n_{int}}{T} \end{cases}$$

• Total average weighted activity is equal to:

$$\overline{A_{s}^{w}(T)} = \overline{A_{ext}^{w}(T)} + \overline{A_{int}^{w}(T)}$$

Activity of a network

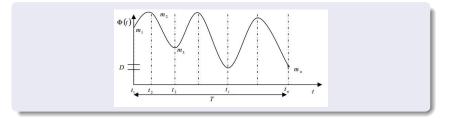
Definition

Average simulation activity of a network N is the sum of average simulation activities of components $i \in D$ in N: $\overline{A_{s,N}} = \sum_{i \in D} \overline{A_{s,i}(t'-t)}.$

Continuous activity

$$A_{c}(T) = \int_{0}^{T} \left| \frac{\partial \Phi(t)}{\partial t} \right| dt \simeq \sum_{i=1}^{n} |m_{i} - m_{i+1}|$$

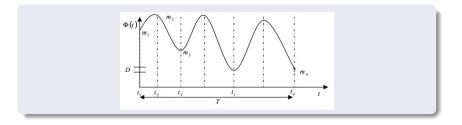
Average continuous activity consists then of $\overline{A_c(T)} = \frac{A_c(T)}{T}$.



Link Events/Transitions and continuous activity

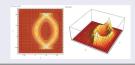
Significant change of value of size $D = |\Phi^{n+1} - \Phi^n|$ (quantum) Discretization activity $A_d(T)$ is minimum number of transitions necessary for discretizing/approching the trajectory of $\Phi(t)$

$$A_d(T) = \frac{A_c(T)}{D}$$



Two-dimensional cartesian coordinates

• Fire spread, brain activity...: Activity amplitude (real value), of each coordinate, is represented in the third dimension:



Definition

- We consider sub-sets of the state set: $Q = \prod_{i=0...n} E_i$, with E_i : Any set with *n* the number of sets. Ex: $Q = \mathbb{R} \times \mathbb{N} \times \mathbb{R}$, and a possible state would be q = (68.2, 20, 381.5).
- Set of activity referenced states: G_I = π_I(Q) = ∏_{i∈I} E_i, as a projection of the state space Q onto indexes I ⊆ {1,..., n}
- π : operator to "select" a subset of the state elements.

Definition

- We consider sub-sets of the state set: $Q = \prod_{i=0...n} E_i$, with E_i : Any set with *n* the number of sets. Ex: $Q = \mathbb{R} \times \mathbb{N} \times \mathbb{R}$, and a possible state would be q = (68.2, 20, 381.5).
- Set of activity referenced states: G_I = π_I(Q) = ∏_{i∈I} E_i, as a projection of the state space Q onto indexes I ⊆ {1,..., n}
- π : operator to "select" a subset of the state elements.

Definition

- We consider sub-sets of the state set: Q = ∏_{i=0...n} E_i, with E_i
 : Any set with n the number of sets. Ex: Q = ℝ × ℕ × ℝ, and a possible state would be q = (68.2, 20, 381.5).
- Set of activity referenced states: G_I = π_I(Q) = ∏_{i∈I} E_i, as a projection of the state space Q onto indexes I ⊆ {1,..., n}
- π : operator to "select" a subset of the state elements.

Definition

- We consider sub-sets of the state set: Q = ∏_{i=0...n} E_i, with E_i
 : Any set with n the number of sets. Ex: Q = ℝ × ℕ × ℝ, and a possible state would be q = (68.2, 20, 381.5).
- Set of activity referenced states: G_I = π_I(Q) = ∏_{i∈I} E_i, as a projection of the state space Q onto indexes I ⊆ {1,..., n}
- π : operator to "select" a subset of the state elements.

Definition

- We consider sub-sets of the state set: Q = ∏_{i=0...n} E_i, with E_i
 : Any set with n the number of sets. Ex: Q = ℝ × ℕ × ℝ, and a possible state would be q = (68.2, 20, 381.5).
- Set of activity referenced states: G_I = π_I(Q) = ∏_{i∈I} E_i, as a projection of the state space Q onto indexes I ⊆ {1,..., n}
- π : operator to "select" a subset of the state elements.

Activity Regions in Activity Referenced States

• Activity region in activity referenced states:

$$\mathcal{AR}^{\mathcal{G}_I}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) > 0\}$$

• Inactivity region in activity referenced states:

$$\overline{\mathcal{AR}^{\mathcal{G}_I}}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) = 0\}$$

• Activity-based partitioning of \mathcal{G}_I :

$$\forall t \in \mathbb{R}^+, \ \mathcal{G}_I = \mathcal{AR}^{\mathcal{G}_I}(t) \cup \overline{\mathcal{AR}^{\mathcal{G}_I}}(t)$$

Activity Regions in Activity Referenced States

• Activity region in activity referenced states:

$$\mathcal{AR}^{\mathcal{G}_I}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) > 0\}$$

Inactivity region in activity referenced states:

$$\overline{\mathcal{AR}^{\mathcal{G}_I}}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) = 0\}$$

• Activity-based partitioning of \mathcal{G}_I :

$$\forall t \in \mathbb{R}^+, \ \mathcal{G}_I = \mathcal{AR}^{\mathcal{G}_I}(t) \cup \overline{\mathcal{AR}^{\mathcal{G}_I}}(t)$$

Activity Regions in Activity Referenced States

• Activity region in activity referenced states:

$$\mathcal{AR}^{\mathcal{G}_I}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) > 0\}$$

• Inactivity region in activity referenced states:

$$\overline{\mathcal{AR}^{\mathcal{G}_I}}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) = 0\}$$

• Activity-based partitioning of \mathcal{G}_I :

$$\forall t \in \mathbb{R}^+, \ \mathcal{G}_I = \mathcal{AR}^{\mathcal{G}_I}(t) \cup \overline{\mathcal{AR}^{\mathcal{G}_I}}(t)$$

Activity Regions in Activity Referenced States

• Activity region in activity referenced states:

$$\mathcal{AR}^{\mathcal{G}_I}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) > 0\}$$

• Inactivity region in activity referenced states:

$$\overline{\mathcal{AR}^{\mathcal{G}_I}}(t) = \{g \in \mathcal{G}_I \mid A_{\xi}(t) = 0\}$$

• Activity-based partitioning of \mathcal{G}_I :

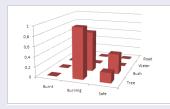
$$\forall t \in \mathbb{R}^+, \ \mathcal{G}_I = \mathcal{AR}^{\mathcal{G}_I}(t) \cup \overline{\mathcal{AR}^{\mathcal{G}_I}}(t)$$

Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

x ∈ ℝ and y ∈ ℝ;
status ∈ {burnt, burning, safe};
type ∈ {tree, bush, water, road};
heat ∈ ℝ.

$$AR^{\mathcal{G}_{2,3}}(t) = \{ \{ burning, safe \} \times \{ tree, bush \} \}, \forall t \in \mathbb{R}^{-1}$$

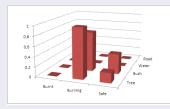


Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- status ∈ {burnt, burning, safe};
- type ∈ {tree, bush, water, road};
- heat $\in \mathbb{R}$.

$$AR^{\mathcal{G}_{2,3}}(t) = \{ \{ \textit{burning}, \textit{safe} \} \times \{ \textit{tree}, \textit{bush} \} \}, \forall t \in \mathbb{R}^{-1}$$

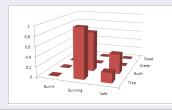


Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- status ∈ {burnt, burning, safe};
- $type \in \{tree, bush, water, road\};$
- heat $\in \mathbb{R}$.

$$AR^{\mathcal{G}_{2,3}}(t) = \{ \{ \textit{burning}, \textit{safe} \} \times \{ \textit{tree}, \textit{bush} \} \}, \forall t \in \mathbb{R}^{-1}$$

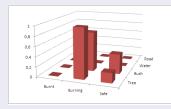


Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- status ∈ {burnt, burning, safe};
- $type \in \{tree, bush, water, road\};$
- heat $\in \mathbb{R}$.

$$AR^{\mathcal{G}_{2,3}}(t) = \{ \{ burning, safe \} \times \{ tree, bush \} \}, \forall t \in \mathbb{R}^{-1}$$

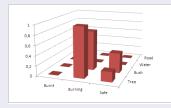


Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- status ∈ {burnt, burning, safe};
- $type \in \{tree, bush, water, road\};$
- heat $\in \mathbb{R}$.

$$AR^{\mathcal{G}_{2,3}}(t) = \{ \{ burning, safe \} \times \{ tree, bush \} \}, \forall t \in \mathbb{R}^{-1}$$

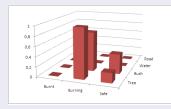


Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- status ∈ {burnt, burning, safe};
- $type \in \{tree, bush, water, road\};$
- heat $\in \mathbb{R}$.

$$AR^{\mathcal{G}_{2,3}}(t) = \{ \{ burning, safe \} \times \{ tree, bush \} \}, \forall t \in \mathbb{R}^{-1}$$

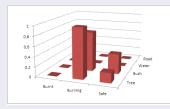


Fire Spread Example

Assume the fire model describes the state of a cell with the following states:

- $x \in \mathbb{R}$ and $y \in \mathbb{R}$;
- status ∈ {burnt, burning, safe};
- $type \in \{tree, bush, water, road\};$
- heat $\in \mathbb{R}$.

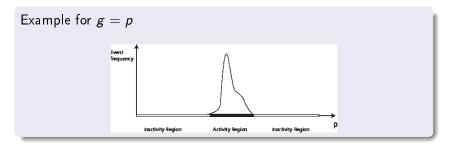
$$AR^{\mathcal{G}_{2,3}}(t) = \{ \{ burning, safe \} \times \{ tree, bush \} \}, \forall t \in \mathbb{R}^{-1}$$



Extension to Activity Generalized Coordinates

Definitions

$$A(g_{max} - g_{min}) = \int_{g_{min}}^{g_{max}} \left| rac{\partial \Phi(g)}{\partial g} \right| dg$$



- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?

• Analytic activity (Jean-François and Laurent)

- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?

- Analytic activity (Jean-François and Laurent)
- Continuous activity (Rodrigo and Fernando)
- Evolutionist adaptive systems (Patrick and Laurianne)
- To be discussed at ACTIMS?