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This note only presents a �rst introduction to the Activity concept. It aims
at providing simple de�nitions to be further developed in simulation models.

1 Traditional qualitative de�nition in Simulation

Traditionally , in the simulation context, an accepted qualitative de�nitionof activity is
a phase of the system under study starting from an event and ending with an-
other [1]. An event is also considered to cause a change in the state of a compo-
nent. Information about the system is embedded in qualities indexed by strings
(�burning�, �waiting�, etc.) We note an event evi by a couple (ti, vi), where ti is
the timestamp of the event, and vi is the information associated to the event.
Therefore, a qualitative activity Aj , indexed by j, is de�ned as: Aj = (evi, evi′).
The set of activities consists of: α = {Aj | j = 1, 2, 3...}.
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Figure 1: An example of qualitative activity de�nition.

2 A new quantitative richer de�nition?

An original quantitative de�nition of activity consists of considering activity as a
measure of the number of events in an event set de�ned as ξ = {evi = (ti, vi) | i = 1, 2, 3, ...}.
Formally, we de�ne the event-based activity measure νH(t) as a function of time
that provides the activity in a discrete event simulation, from t over a given time
horizon H[2]:
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νH(t) =
|{evi = (ti, vi) ∈ ξ | t ≤ ti < t+H}|

H

Activity is a measure of the event rate, or event frequency, in an event set.
The qualitative di�erences of in�uence of events on the state of the dynamic
system is voluntarily neglected here. Only the quantity of events over a period of
time is taken into account. For example, assuming the event trajectory depicted
in Figure 2, the activity of the system corresponds to the following values for
di�erent time horizons: ν10(t) = 0.3, ν20(t) = 0.15, ν30(t) ' 0.133, ν40(t) =
0.175.
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Figure 2: An example of event trajectory.

For the sake of simplicity, the activity measure is usually noted ν(t) (making
implicit the dependency on the time horizon H).

3 Activity in components

A component corresponds to a Discrete Event System Speci�cation, which
is a tuple, denoted as DEV S =< X,Y, S, δ, λ, τ >, where X is the set of
input values, Y is the set of output values, S is the set of partial sequen-
tial states, δ : Q × (X ∪ {Ø}) → S is the transition function, where Q =
{(s, e) |s ∈ S, 0 ≤ e ≤ τ (s)} is the total state set, e is the time elapsed since
the last transition, is the null input value, λ : S → Y is the output function,
τ : S → R+

0 ,∞ is the time advance function.
If no event arrives at the system, it will remain in partial sequential state

s for time τ (s). When e = τ (s), the system produces an output λ (s), then it
changes to state (δ(s, e, x), e) = (δ(s, τ (s) , ), 0), which is de�ned as an internal
transition. If an external event, x ∈ X, arrives when the system is in state
(s, e), it will change to state (δ(s, τ (s) , x), 0), which is de�ned as an external
transition.

Denoting new sequential states as s′, activity corresponds to:

• ActivityAext, related to the counting, next, of external transitions δext(s, x) =
(δ(s, τ (s) , x), 0), over a time period [t, t′]:
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{
s′ = δext(s, e, x)⇒ next = next + 1

Aext =
next

t′−t

• ActivityAint, related to the counting, nint, of internal transitions δint(s) =
(δ(s, τ (s) , ), 0), over a time period [t, t′]:{

s′ = δint(s, e)⇒ nint = nint + 1
Aint =

nint

t′−t

• Total activity is equal to:

A = Aext +Aint

4 Activity in Space

The activity measure is used to determine the sub-regions of the Cartesian
coordinate space [2] through:

• Activity region in space:

ARP(t) = {p ∈ P | νp(t) > 0}

• Inactivity region in space:

ARP(t) = {p ∈ P | νp(t)= 0}

We consider now the function of reachable states in time and space as q :
P×T → Q . We can de�ne now the set of all reachable states in the state set Q,
through time and space, through the universe U = {q (p, t) ⊆ Q | p ∈ P, t ∈ T }.

Considering that all reachable states in time and space can be active or inac-
tive, an activity-based partitioning of P can be achieved: ∀t ∈ T , P = ARP(t) ∪ ARP(t).

Figure 3 depicts activity values for two-dimensional Cartesian coordinates
X × Y . This is a neutral example, which can represent whatever activity mea-
sures in a Cartesian space (�re spread, brain activity, etc.)

5 Activity regions in Cartesian coordinates for

composite models

In spatialized models1 components are localized into a Cartesian coordinate
space P. Each component c is assigned to a position cp ∈ P. Applying the
de�nition of activity regions in space to components, we obtain:

1A model is said to be spatialized when the phenomenon under study has a spatial exten-

sion. This requires that states have a richer structure than just scalar values to cope with the

discretization of a spatially embedded phenomenon. Examples of spatialized models include

cellular automata and L-systems.
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Figure 3: 2D and 3D visualization of activity level in a 2D space. x and y
represent Cartesian coordinates. The activity amplitude (real value), of each
coordinate, is represented in the third dimension.

ARC(t) =
{
c ∈ C | cp ∈ ARP(t)

}
ARP(t) speci�es the coordinates where activity occurs. Consequently, active
components correspond to the components localized at positions p.

6 Open Research

The quanti�cation of activity in and of components opens new theoretical di-
rections, e.g., in:

• Machine Learning, where the activity as a usage of components in the
search space can be correlated to their score.

• Networks, where activity provides an indication of the frequency of node
accesses as well as indexes for information paths.

• Automatic Modeling and Simulation, where the combination of the use of
activity in Machine Learning and Networks can be used to build automat-
ically simulation models.

• ...

In relation to these theoretical directions, application domains are also large:

• In neurosciences, through the mapping between the activity of compo-
nents/networks and neurons/brainRegions,
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• In ecology, through the analogy between activity and the energy used by
organisms to survive and evolve,

• In economics, through the comparison of decision paths, characterized
through their activity.

• In propagation processes, activatabiliy and activity can be used at run-
time for optimization, for activatability pre-processing (e.g., in �re spread,
where the vegetation is expected to burn, etc.)

• ...

Notice that application domains are orthogonal to theoretical directions (e.g.,
simulation models of decisions in neuroscience can be developed together with
economic ones, simulation models of propagations in a brain can be developed
together with �re spreading ones, etc.)
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